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Abstract. A graph is planar if it can be embedded on the plane withoueenlgssings. A graph is 2-
outerplanar if it has a planar embedding such that the sphgoatained by removing the vertices of
the external face is outerplanar (i.e. with all its verticeasthe external face). An orientddcoloring

of an oriented grapl® is a homomorphism fron® to an oriented grapkl of orderk. We prove that
every oriented triangle-free planar graph has an oriertteahtatic number at most 40, that improves the
previous known bound of 47 [Borodin, O. V. and lvanova, A.&n,oriented colouring of planar graphs
with girth at least 4 Sib. Electron. Math. Reports, vol. 2, 239-249, 2005]. Weogbrove that every
oriented 2-outerplanar graph has an oriented chromatidrumt most 40, that improves the previous
known bound of 67 [Esperet, L. and Ochem(Riented colouring of 2-outerplanar graphgnform.
Process. Lett., vol. 101(5), 215-219, 2005].
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1. Introduction

Oriented graphs are directed graphs with neither loops pposite arcs. For an oriented graph
G, we denote by (G) its set of vertices and b&(G) its set of arcs. For two adjacent vertices
u andv, we denote byuv the arc fromu to v or simply u ~ v whenever its orientation is not
relevant (thereforey ~ v= GV or u~ v= Vti). The number of vertices @ is theorder of G.
Let G andH be two oriented graphs. Bomomorphisnfrom G toH is a mapping :V(G) —

V(H) that preserves the aras{x)d(y) € A(H) wheneveixy € A(G).

An orientedk-coloring of G can be defined as a homomorphism fr@to H, whereH is an
oriented graph of ordé«. In other words, that corresponds to a partition of the gesiofG into
kstable set$;, S, ..., S such that all the arcs between any pair of stableSetsdS; have the
same direction (either fror§ to S;, or fromS; to §). The existence of such a homomorphism
from G to H is denoted byG — H. The vertices oH are calledcolors and we say thaG
is H-colorable. Theoriented chromatic numbesf an oriented grapks, denoted byxo(G), is
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defined as the smallest order of an oriented gtsuch thatG — H. For a graph familyr , the
oriented chromatic numbeg (¥ ) of # is defined as the maximum of the oriented chromatic
numbers taken over all memberspof(i.e. xo( 7 ) = kiff every G € # hasyo(G) <k, and there
existsH € # such thaio(H) = k).

Links between colorings and homomorphisms are presentetbie details in the mono-
graph [8] by Hell and NeSetfil.

A graph isplanarif it can be embedded on the plane without edge-crossingsgiftin of a
graph is the length of a shortest cycle.

The notion of oriented coloring introduced by Courcelle [@s been studied by several
authors in the last decade and the problem of bounding tkated chromatic number has been
investigated for various graph classes: outerplanar grapith given minimum girth) [15,17],
2-outerplanar graphs [7], planar graphs (with given mimmgirth) [2-5,12,14,16], graphs
with bounded maximum average degree [4,5], graphs with dedirdegree [9], graphs with
bounded treewidth [13,17,18], and graph subdivisions.[21]

For planar graphs in particular, bounding their orientetbofatic number is a very hard
question. In 1994, Courcelle [6] proved that every planapbradmits an oriente3coloring
by means of monadic second order logic. This bound was vaokigumproved by Raspaud
and Sopena [16] who have proved that every planar graph sdmibriented 80-coloring using
Borodin’s theorem stating that every planar graph is acgttif 5-colorable [1]. Since then,
no new improvement has been found. However, everyone atpesss/ that this bound is far
from the optimal one. Nevertheless, nobody has dared to raakeconjecture. In the mean
time, Sopena [19] proved that there exist planar graphs @rignted chromatic number 16
in 2002; five years later, Marshall [10] improved this lowe&und to 17 and very recently to
18 [11]. Thus, the oriented chromatic number of planar gsdigs between 18 and 80 and any
improvement of these bounds seems, at least up to now, torbheuterly challenging.

Therefore, several authors decided to bound the orientexhatic number of sparse planar
graphs, say planar graphs with given minimum girth.

Theorem 1 gives the current best known lower and upper baumdsented chromatic num-
ber of planar graphs due to Borodin, Ivanova, Kostochka,skiat, NeSetfil, Ochem, Pinlou,
Raspaud, and Sopena [2-5,11-14,16]:

Theorem 1. (Borodin, lvanova, Kostochka, Marshall, Neétril, Ochem, Pinlou, Raspaud,
Sopena [2-5,11-14,16])
Let 2y be the family of all planar graphs with girth at least g.

1. Xo(?12) =5[4].

2. Xo(P11) < 6[13].

3. Xo(?7) < 7[2].

4. Xo(®6) < 11[5].

5.6 < Xo(?5) < 16[14].

6. 11< Xo(a) < 47[3,12].
7.18< Xo(?3) < 80[11, 16].

One way to upper bound the oriented chromatic number of ahgiapily # is to find a
universal target graph such that, for every grap® € 7, we haveG — H. Such a result
can be obtained if the target graphhas “interesting” structural properties that can be used
to prove the existence of the homomorphism; thus an impopian of the task is to construct
such a target graph.
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In this paper, we first describe the construction of the grgphin Section 2, an oriented
graph on 40 vertices which has very useful properties fanteid coloring of planar graphs.
These structural properties ofp allow us to prove that every oriented triangle-free plamapb
admits a homomorphism fhyg; this gives the following theorem, which improves the poew
known upper bound of 47 due to Borodin and Ivanova [3] (seefiéra 1(6)).

Theorem 2.Let 24 be the family of triangle-free planar graphs. Theg(#4) < 40.

A graph is2-outerplanarif it has a planar embedding such that the subgraph obtaiped b
removing the vertices of the external face is outerplanar\{ith all its vertices on the external
face).

In 2007, Esperet and Ochem [7] studied the structural ptigsesf 2-outerplanar graphs. By
means of these properties, they proved the following:

Theorem 3. (Esperet, Ochem [7]Let G be a2-outerplanar graph. Thego(G) < 67.

Concerning the lower bound, we know that there exists a 2rplatnar graph with oriented
chromatic number 15. This graph is obtained as followsGgbe the graph with one vertex
and no arcs(; is obtained from two copies @;_; plus a new vertex by adding all the arcs
from the vertices of the first copy towargsand all the arcs fromr towards the vertices of the
second copy. The graphy is a 2-outerplanar graph and has oriented chromatic nuniber 1

The oriented grapfisg, that we have constructed to bound the oriented chromatidbeu of
triangle-free planar graphs, has also suitable propeddibeund the oriented chromatic number
of 2-outerplanar graphs, leading us to an improvement obfidra 3:

Theorem 4.Let G be a 2-outerplanar graph. Theg(G) < 40.

In the remainder of this paper, we use the following notidfws. a vertexv of a graphG,
we denote bydg (v) its indegree by df (v) its outdegreeand bydg(v) its degree (subscripts
are omitted when the considered graph is clearly identifiethfthe context). We denote by
Ng (v) the set of outgoing neighbors af by N (v) the set of incoming neighbors efand by
N (V) = N (v) UNg (v) the set of neighbors of A vertex of degred (resp. at leask, at most
K) is called ak-vertex(resp.=k-vertex =k-vertey. If a vertexu is adjacent to &-vertex (resp.
Zk-vertex, <k-vertex)v, thenv is ak-neighbor(resp.=k-neighbor =k-neighbo} of u. A path
of lengthk (i.e. formed byk edges) is called &-path The length of a facd of a graphG is
denoted bydg(f). If dg(f) =k (resp.dg(f) <k, ds(f) > K), thenf is called ak-face(resp.
<k-face =k-face. If two graphsG andH are isomorphic, we denote this &= H. Given a
planar graphG with its embedding in the plane and a verterf G, we say that a sequence
(ug, Uz, ..., Ux) of neighbors ol areconsecutivef uy,up, ..., ux appear around consecutively
(clockwise or counterclockwise) iG.

The paper is organised as follows. The next section is ddvot¢he target grapfiso and
some of its properties. We prove Theorem 2 in Section 3 andrEne4 in Section 4.

2. The Tromp graph T4o

In this section, we describe the construction of the targaplyTso used to prove Theorems 2
and 4 and give some useful properties.

Tromp [20] proposed the following construction. L@&tbe an oriented graph ar@ be an
isomorphic copy ofG. The Tromp graphTr(G) has 2V(G)| + 2 vertices and is defined as
follows:
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Fig. 1. The Tromp grapfir(G).

~ V(TT(G)) = V/(G) UV(G) U e, '}

— YU EV(G): 8,00l Ue’ o'uec ATr(G))
— Vu,veV(G),uve A(G) : v, u'V,vu,Vu € A(Tr(G))

Figure lillustrates the constructiondf(G). We can observe that, for evang V (G) U {},
there is no arc betweemandu’. Such pairs of vertices will be callédin verticesand we denote
by t(u) the twin vertex ofu. Remark that(t(u)) = u. This notion can be extended to sets in a
standard way: for a givaWW CV(G),W = {vi,Vvo,..., W}, thent(W) = {t(v1),t(v2),...,t(w)}.

By construction, the graphr(G) satisfies the following property:

Yue Tr(G) : N (u) =N~ (t(u)) andN~(u) = N (t(u))

In the remainder, we focus on the specific graph family oleiby applying the Tromp’s
construction to Paley tournaments. For a prime poper 3 (mod 4), the Paley tournament
QR is defined as the oriented graph whose vertices are the nstegedulop and such that
uv is an arc if and only ifv — u is a non-zero quadratic residue pf For instance, the Paley
tournamen@QRyg has vertex s&f (QRyo) = {0,1,...,18} anduv € A(QRyg) whenever —u=r
(mod 19 forr € {1,4,5,6,7,9,11,16,17}. Note that the upper bounds of Theorems 1(3), 1(4),
and 1(6) have been obtained by proving that all the graphbeotonsidered families admit
a homomorphism to the Paley tourname@f;, QR;1, andQRy7 respectively. Moreover, the
upper bound of Theorem 1(5) has been obtained by provingththie graphs of the considered
family admit a homomorphism to the Tromp graphQRy;).

Let Ts0= Tr(QRy9) be the Tromp graph on 40 vertices obtained fl@Ry¢. In the remainder
of this paper, the vertex set ®fpisV (Ts0) ={0,1,...,18,0,0, 1 ..., 18, '} where{0,1,...,
18} is the vertex set of the first copy @fRigand{0',1, ..., 18} is the vertex set of the second
copy of QRyg; thus, for everyu € {0,1,..., 18 »}, we havet(u) = u'. In addition, for every
u €V (Ta0), we have by constructio|m\lﬁo(u)| = [Np,,(U)| = 19. The grapfT4 has remarkable
symmetry and some useful properties given below.

Proposition 1. (Marshall [10]) For any QR,, the graph T(QRy) is such that:
Yue V(Tr(QRy)) : N*(u) =2 QR, and N~ (u) = QR,
Proposition 2. (Marshall [10]) For any QR,, if {a1,a2,a3} and {by,b,b3} span triangles t

and b respectively in T(QR,) and the mapp taking g to Iy (1 <i < 3) is an isomorphism
t; — to, theny can be extended to an automorphism ofQIRy).
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It is then clear thal r(QR,) is vertex-transitive and arc-transitive.
For an oriented grap@® and a vertex, pushing vmeans reversing the orientation of every
arc incident withv.

Proposition 3. (Push Property)Let G be an oriented graph such that-G Tr(QRy). Then,
for any vertex v of G, the graph’®btained from G by pushing v admits a homomorphism to

Tr(QRy).
Proof. Let ¢ be aTr(QRy)-coloring of G. For everyw € V (Tr(QRy)), we haveN;, (w) =

Tr(QRp)
NT‘r(QRp) (t(w)) andNT‘r(QRp) (w) = NTﬁ(QRp) (t(w)). Therefore, the mappiny : V(G') — V(Tr(QRy))
defined by¢’(u) = ¢(u) for all ue V(G) \ {v} and¢’(v) =t($(v)) is clearly aTr(QRy)-

coloring of G'.

An orientation n-vectois a sequenca = (01,02,...,0n) € {0,1}" of n elements. LeB=
(v1,V2,...,Vn) be a sequence af (not necessarily distinct) vertices @fo. The vertexu is
said to be aru-successor of § for any i, 1 <i < n, we havelly € A(T40) whenever; = 1
andviu € A(T40) otherwise. For instance, the vertexd Tyo is a(1,1,0,1,1,0)-successor of

_ = —— — —
(1,2,6',1,',2') since the arc8'1, 3'2,6'3, 3'«’, and2'3’ belong toA(Typ).

If, for a sequenc& = (v1,Va,...,Vn) of n vertices ofTyp and an orientatiom-vectora =
(ag,0p, ...,0n), there exisi # j such thaty = vj anda; # aj, then there does not exist any
a-successor 0F, indeed,T4o does not contain opposite arcs. In addition, if there éx#sf such
thatv; = t(vj) anda; = aj, then there does not exist aoysuccessor o§; indeed, for any pair
of verticesxandy of Tso with x=t(y), we haveNﬁq(x) n N7 (y) =0 andNr, () N, (y) =0.

A sequencé&= (v1,Vo,...,Vy) Of nvertices ofTyg is said to becompatiblewith an orientation
n-vectora = (01,0z,...,dp) if and only if for anyi # j, we havea; # aj whenevewn; =t(vj),
andaj = aj whenevew; = vj. Note that if then vertices ofSinduce am-clique subgraph of4g
(i.e.v1,Vvo,..., Vv, are pairwise distinct and induce a complete graph), Bisrcompatible with
any orientatiom-vector since a verten and its twint(u) cannot belong together to the same
clique.

In the remainder, we say th@ig hasProperty R y if, for every sequencé of n vertices of
Tao that form am-clique and any orientationvectora, there exisk a-successors d.

Proposition 4.1f, for a fixeda = (a1,02,...,0n), every n-clique S ofs§ admits ka-successors,
then there exist ki’-successors of S for evemy = {0,1}", that is Ty has property R.

Proof. Assume that everg-cligue admitk a-successors. L&= (uz,up,...,U,) be an-clique
of Taganda’ = (a’,as,...,ay) be an orientatiom-vector. Then leS = (vi,vo,...,vn) defined
such thaty, = u; if af = a; andy; = t(u;) otherwise. Due to the structure ®fp (i.e. if X~y
belongs toA(T4o), thent(x) ~y, x ~ t(y) andt(x) ~ t(y) belongs toA(Tap)), S is ann-clique of
T40. By hypothesisS admitsk a-successonsi, W, . . . , W. SinceyTx)) € A(Ta) if Xy € A(Tao),
we havew;’s arek a’-successor o8

Proposition 5. The graph %o has Properties Pyg, P> o, P34, and R ;.

Proof. By Proposition 1, we havfN™ (u)| = [N~ (u)| = 19 for every vertex of Tyo; therefore
Tao has Property; 1o.

It is obvious thatQRyg has propertie®; g (for every vertexu of QRyg, we have|N ™ (u)| =
IN~(u)| = 9). Borodin et al. [5] proved tha®Ry ¢ has propertie®, 4 andPz 1. We will show in
the remainder of this proof that@Ry g has propertyp,_1 k, thenTsg has property?, i; that will
complete the proof.



6 Pascal Ochem, Alexandre Pinlou

Suppose thaQRyg has propertyP,_1x and leta = (ag,ap»,...,0,) be a given orienta-
tion n-vector. LetS= (ug,up,...,Ur—1,W) be a induced-clique of Tso. If a, =0, we de-
fine S = (V1,V2,...,Vh_1,W) such thaty, = u; if GwW andv; = t(u;) if Wi. Hence,S is an
n-clique of T4o such that J;vi € N~ (w). By Proposition 1IN~ (w) = K19 = QRy9, and there-
fore the(n—1)-cliqueS’ = (vq, Vo, ...,Vn_1) belongs tK19. Then by Property,_1 x of QRyg,
there exisk (a,05,...,07_;)-sUccessorsy, Xy, . .., Xk of S’ in Kig, with aj = a; (resp.aj =
1—ay) if uy =V (resp.uy; =t(v;)). Thex’s are clearly in-neighbors of and hence, they are
(af,a5,...,a],_;,dn)-successors, and thus there exi$t a-successors ob. Proportion 4 al-
lows us to conclude.

The caseax, = 1 would be treated similarly: we would have cho&ea- (v1,Vvo, ..., Vh_1,W)
is such a way that); vi € N*(w).

3. Proof of Theorem 2

In this section, we prove Theorem 2, that is, every orienteagle-free planar grap@ admits
a homomorphism t@4o.

Recall that Borodin and Ivanova [3] proved that every orentriangle-free planar graph
G admits a homomorphism tQRy7. This proof was only published in Russian. Our proof is
highly inspired by this paper. Indeed, our list of forbiddemfigurations is designed to fit with
Borodin and Ivanova’s discharging procedure [3] up to axligodification in Rule (R3).

Let us define the partial ordet. Let nz(G) be the number of 3-vertices inG. For any two
graphsG; andGy, we haveGi < G, if and only if at least one of the following conditions hold:

- ‘V(Gl)| < ‘V(Gz)| andng(Gl) < n3(Gz).
— n3(Gl) < ng(Gz).

Note that the partial ordeK is well-defined and is a partial linear extension of the iretlic
subgraph poset.

Let H be a hypothetical minimal counterexample to Theorem 2 auegrto <. We first
prove thatH does not contain a set of ten configurations listed in Lemmahé&n, using a
discharging procedure, we show that each oriented triainggeplanar graph contains at least
one of these configurations of Lemma 1, contradicting thetfeat H is a triangle-free planar
graph.

3.1. Structural properties of H

In the following, H is a triangle-free planar graph given with its embeddinghi@ plane. A
weak7-vertex uin H is a 7-vertex adjacent to four 2-vertices ..., vs and three>3-vertices
w1, Wz, W3 in such a way that the sequence of neighbors appear a1, Wy, Vo, Wo, V3, W3, Vy
(clockwise or counterclockwise).

Lemma 1.The graph H does not contain the following configurations:

(C1) a=1-vertex;

(C2) a k-vertex adjacent to Xvertices for2 < k < 39;

(C3) a k-vertex adjacent tk — 1) 2-vertices for2 < k < 19;
(C4) a k-vertex adjacent tk — 2) 2-vertices for3 < k < 10;
(C5) a3-vertex;

(C6) a k-vertex adjacent t(k — 3) 2-vertices for3 < k < 6;
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1<k<39 2<k<19 3<k<10 V1 4<k<6
\@ < 2 2\) Vi . s 3 A :/lz : V4 4\,\':
Vk \/k/ " Vi VL/ V2 Vi \/k/ v3 Vo Vi VeV
(a) C2 (b) C3 (c) C4 (d) C5 (e) C6

Fig. 2. Configuration<C2-C6.

(C7) two vertices u and v linked by two disti2epaths, both paths havingzvertex as internal
vertex;

(C8) a4-face wxyz such that x is 2-vertex, w and y are weéalertices, and z is a k-vertex
adjacent to(k — 3) 2-vertices for3 <k < §;

(C9) a4-face wxyz such that x is 2-vertex, w and y are wéalertices, and z is a k-vertex
adjacent to(k — 4) 2-vertices fod < k < 7,

The drawing conventions for eonfiguration Ccontained in a grapks are the following.
If uandv are two vertices o€, then they are adjacent @ if and only if they are adjacent
in C. Moreover, the neighbors ofvahite vertex inG are exactly its neighbors i@, whereas a
black vertex may have neighbors outside@fTwo or more black vertices i@ may coincide
in a single vertex irG, provided they do not share a common white neighbor. Finallyedge
will represent an arc with any of its two possible orientatioConfiguration§C2)—(C9) are
depicted in Figures 2 and 3.

Let G be an oriented graph,be ak-vertex withN(v) = {v1,v>,...,w} anda be an orien-
tation k-vector such thati; = 0 whenevenv € A(G) anda; = 1 otherwise. Leth be aTyo-
coloring of G\ {v} andS= (¢(v1),d(v2),...,d(w%)). Recall that a necessary condition to have
a-successors ddis thata must be compatible witl, that is for any pair of verticeg andv;,
d(vi) # d(vj) whenevem; # aj andd(vi) # t(d(vj)) whenever; = aj. Hence, every vertex
v; forbids one color for each vertex, i € [1 k], i # j. We definef\‘,'i’(v,-) to be the forbidden
color forv; by ¢(vj) (i.e. f\‘,?(v,) ¢ (vj) whenever; # aj and f\‘,?(v,) =1t(¢(vj)) whenever
a; = aj). Thereforep is compatible W|trS|f and only if we havep (v;) # f\‘," (vj) for every pair
i,j, 1<i< j<k Notethatifp(vj) # fv, (vj), then we necessarily haggv;) # f\‘,ﬁ (Vi).

For each configuration, we suppose tHatontains it and we consider a triangle-free reduc-
tion H’ such thaH’ < H; therefore, by minimality oH, H’ admits aTso-coloring ¢. We will
then show that we can choogeso that it can be extended kbby Proposition 5, contradicting
the fact thaH is a counterexample.

In the remainder, iH contains a configuration, thet* will denote the graph obtained from
H by removing all the white vertices from this configuration.

Proof of Configuratior(C1). Trivial. O

Proof of ConfiguratiofC2). Suppose that contalns the configuration depicted in Figure 2(a)
and let¢ be aTso-coloring of H*. LetF = {fv( s es 4’( v,)} be the set of forbidden colors
for v. Any Tso-coloring of H* can be extended td since|F| < 39. O

Proof of Configuratior{C3). Suppose that contalns the configuration depicted in Figure 2(b)
and let¢ be aTp-coloring of H*. LetF = {fv( s 4’( v,)} be the set of forbidden colors
for v. By PropertyPy 19, ¢ can be extended td since|F| < 18. O

Proof of Configuratior{C4). Suppose tha#l contains the configuration depicted in Flgure 2(c)
and let¢ be aTso-coloring of H' = H \ {vs,...,w}. Then, we clearly havé(v1) # fy,(v2)
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3<k<s8 4<k<7

, y
- Vi
u w

\

(a) C7 (b) C8 (c) C9
Fig. 3. Configuration<7-C9.

u@w
\

Fig. 4. ConfigurationC7'.

sincev is colored inH'. Therefore, by Propertf, o, there exists ao-coloring’ of H' such
that¢'(v) ¢ {f\? (V3),..., £ (Vi) }. The coloringd’ can be extended td. O

Proof of ConfiguratiofC5). Suppose thatl contains the configuration depicted in Figure 2(d).
Let H' be the graph obtained froM* by adding, for every KX i < j < 3, a 2-path joiningy;

to v; with the same orientation as the pathv,v;] in H. Since ConfigurationfC1)—(C4) are
forbidden, we havely (vi) > 3 for 1 <i < 3; we thus havéd’ < H sinceng(H') = n3(H) — 1,
andH’ is clearly triangle-free. Anylyo-coloring ¢ of H’ induces a coloring oH* such that
d(vi) # f\‘,‘i> (vj) foranyi, j, 1<i < j < 3. Then Property; 4 allows us to exteng toH. O

Proof of Configuratior{C6). Suppose thatl contains the configuration depicted in Figure 2(e).
Let ¢ be aTo-coloring of H' = H \ {va,...,w}. Then, we clearly havé(v;) # f\f (vj), for all
1<i<j<3,sincevis colored inH'. Therefore, by Propertl; 4, there exists d4o-coloring

¢’ of H' such thaty'(v) & {£¢ (v}),..., 1 (V)}. O

Proof of ConfigurationC7). Suppose first thaltl contains the configuratiofC7’) depicted
in Figure 4. LetH’ be the graph obtained frotd* by adding a 2-patlhuvw betweenu and
w such thatuvw is directed if and only ifuvw is not directed. We have that’ < H since
IV(H")| = |V(H)|—1andnz(H") = n3(H). Due to the orientations of the 2-patindw anduvw,
any Tao-coloring ¢ of H’ ensures thap (u) # ¢(w) andd(u) # t(¢(w)). The coloringd can be
extended tdH.

Suppose that contains the configuration depicted in Figure 3(a). Heébe the graph ob-
tained fromH* by adding an edge betweenandw. We have thaH’ < H since|V(H')| =
IV(H)| —2 andng(H’) = n3(H). Since ConfiguratioiC?7’) is forbidden, the vertices andw
are at distance at least 3kt andH’ is therefore triangle-free. Anfuo-coloringd of H” ensures
thatd(u) # ¢(w) andd(u) # t(¢(w)). The coloringp can be extended td. O

Proof of Configuration$C8) and(C9). To prove that these two configurations are forbidden in
a minimal counterexample to Theorem 2, a computer checkeidate Indeed, Properti€s 1o,
P>, P34 andPy 1 are not sufficient.

A computer check allows us to show that for any compatiblercassignment on the black
vertices (i.e. any two black vertices at distance 2 in thdigaration get compatible colors) and
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~
/ RN

! Z5-face |
/ - -~ / > N 1
! Z5-face \ ! 25.face \
1
/]:i kl\ 1( 2 \ Z5-face \ Z5-face
\ s v \ s -
(@) R1 (b) R2 (c) R2 (d) R3 (e) R3

Fig. 5. Discharging rules

any orientation of the arcs, the white vertices can be cdla@air computer check runs in less
than two days. Therefore, that shows thiatloes not contain any of these two configurations.
0]

3.2. Discharging procedure

To complete the proof of Theorem 2, we use a discharging druoee We define the weight
functionw by w(x) = d(x) — 4 for everyx € V(H) UF(H). SinceH is a plane graph, we have
by Euler's formula [V(H)| — |A(H)|+ |[F(H)| = 2):

W+ Y wf)= ¥ dv-4+ ¥ (d(f)-4=-8<0.
veV(H) feF(H) veV(H) feF(H)

In what follows, we will define discharging rules (R1), (Rahd (R3) and redistribute weights
accordingly. Once the discharging is finished, a nhew weighttion w* is produced. How-
ever, the total sum of weights is fixed by the dischargingsiulevertheless, we can show that
w*(v) > 0 for everyx € V(H) UF(H). This leads to the following obvious contradiction:

0< 5 o'+ Yy wi(f)= 3 wv)+ Y wf)<0.
veV(H) feF(H) veV(H) feF(H)

Therefore, no such counterexampleexists.
The discharging rules are defined as follows:

(R1) Each”4-vertex gives 1 to each of its 2-neighbors.

(R2) Each=5-face...axbsuch thata andb are 2-vertices gives 1 (resé) to x if xis a weak
7-vertex (resp. is not a weak 7-vertex).

(R3) Each=5-face f = ...awxybsuch thata,b,x are 2-vertices aneh,y are weak 7-vertices
either receive% from the vertexz if wxyzis a 4-face, or receives 1 from thes-face
f’ = ...cwxydif c,d are=4-vertices.

The discharging rules are illustrated in Figure 5; whit&sligesp. black disks, black squares)
are 2-vertices (resp.4-vertices, weak 7-vertices).

3.2.1. For all vertices vw*(v) > 0 In the following,d>4(v) denotes the number of neighbors
of v with degree at least 4. In the same way(v) denotes the number of neighborswoivith
degree exactly 2. Then it is clear that, for every vest@t H, we haved(v) = d>4(v) + da(V)
sinceH contains neither vertices of degree at most 1®¥), nor 3-vertices byC5).
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Let v be ak-vertex ofH. Thereforek = d>4(v) 4+ dz(v). Recall that the initial charge ofis
w(v) =k—4.

If k=2, thenv receives 2 1 by (R1); hencew*(v) = w(v) +2=0.

Clearly, in the remainder of this sectidnz> 4.

— if d>4(v) =0, thendy(v) = k > 40 by (C2). By (R1),v givesk x 1. By (C7), v is incident
with k =5-faces, and thereforereceivesk x % by (R2). Hencew*(v) = w(Vv) — k+‘§‘ > 16.
— if d>4(v) =1, thendy(v) = k— 1> 19 by (C3). By (R1),v gives(k—1) x 1. By (C7), vis
incident with(k — 2) =5-faces each of which give%sto v by (R2). Moreovery is adjacent to
at most one weak 7-vertex and therefore (R3) does not applycélw"(v) = w(v) — (k—
1)+ %2 > 6.
— if d>4(v) = 2, thendy(v) = k—2 > 9 by (C4). By (R1),v gives(k—2) x 1. By (C7), vis
incident with(k — 4) =5-faces each of which give%to vby (R2). Moreover, by (R3) gives
at most% sincev is adjacent to at most two weak 7-vertices. Hernwogyv) = w(v) — (k—
2)+158—3> 1.
— if d>a(v) = 3, thendz(v) =k—3> 4 by (C6) and s&k > 7. In each subcase, by (R¥)gives
(k—3) x 1.
> Suppose that the thregt-neighbors are consecutive. B37), v is incident with(k — 4)
~5-faces of each of which givel?‘ to v by (R2). Moreover, by (R3)y gives at most
2 X % If k <8, thend;(v) < 6 and by(C8), v gives no charge. Hence,kf< 8, w*(v) =
(V) — (k=3) + 52> Lif k> 9, w (v) = w(v) — (k- 3) + k24 2.1 > 1,

> Suppose that twe4-neighbors are consecutive. Bg7), v is incident with(k —5) =5-
faces each of which giv&}tov by (R2). Moreover, by (R3) gives at mos% if and only
if d2(v) > 6, thatimpliek > 9 by (C8). Hence, itk < 8, w*(v) = w(v) — (k—3) + k;25 >0;
if k>9,w (V) =w(v) — (k-3)+ k5 -1>1

> Suppose that none of tha-neighbors are consecutive. By7), vis incident with(k— 6)
~5-faces each of which give%stov by (R2) ifd(v) > 8, or give 1 tovby (R2) ifd(v) =7
(i.e.vis a weak 7-vertex). Moreover, (R3) does not apply. Hence(\if = 7, w*(v) =
w(v) — (k—3)+1=0;if d(v) > 8, w*(v) = w(v) — (k—3) + 5 > 0.

— If d>4(v) = 4, thendy(v) = k—4. By (C1), vgives(k—4) x 1.

Suppose that (R3) does not apply. The@h(v) > w(v) — (k—4) = 0. Suppose now that (R3)

applies: it applies at most twice (otherwise there would besak 7-vertex with three con-

secutive 2-neighbors). Moreover, £89), we haved,(v) > 4, that impliesk > 8.

> Suppose first that (R3) applies only once; thegives% to the corresponding 4-face.
Moreover, by (R2)v receives'%. Hencew"(v) = w(v) — (k—4) + % —3>0.

> Suppose now that (R3) applies twice; thegives 2x % to the corresponding 4-faces.
Moreover, by (R2)y receives’%®. Hence ' (v) = w(v) — (k—4) + k8 —2x 1 > 0.

— Suppose finally thatl>4(v) > 5. By (C1), v gives(k — d>4(Vv)) x 1. Moreover, by (R3)y

gives at mos§ x L %4lV) J Hencew* (V) > w(v) — (K—d>a(V)) — 3 x { G240V J > 0.

Thus, for every € V(H), we havew*(v) > 0.

3.2.2. For all faces fw*(f) >0 Let f be ak-face ofH. SinceH is triangle-free, we have
k > 4. Recall that the initial charge dfis w(f) = k—4.

— If k=4, then no rule applies. Henag; (f) = w(f) =0
— If k=5, thenf is incident with at most two 2-vertices HZ3).
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uy V3 u3z
Vi Vo

uz2 V4 Ug

Fig. 6. Unavoidable configuration in a 2-outerplanar graph coigineither a=3-vertex, nor two adja-
cent 4-vertices

> If f has no incident 2-vertices, thesti(v) > w(f) = 1.
> If f isincident with one 2-vertex, then only (R3) may apply anddezo*(f) > w(f) —
1=0.
> If f is adjacent to two 2-verticesandz, thenf gives at most 1 to the common neighbor
of xandz by (R2). Hencew*(v) > w(f) —1=0.
— If k=6, thenf is incident with at most three 2-vertices [§3).
> If f has no incident 2-vertices, thest(v) > w(f) = 2.
> If f is incident with one 2-vertex, then only (R3) may apply anddeo*(f) > w(f) —
1=1.
> Suppose that is incident with two 2-verticeg andz. If xandzhas a common neighbor,
thenf f gives at most 1 by (R2), and hena¥(v) > w(f) —1=0. If x andz has no
common neighbor, then only (R3) may apply at most twice. lde®t(v) > w(f) — 2 x
1=0.
> Finally, suppose that is adjacent to three 2-vertices.
o If fisincidentwith at most one weak 7-vertex, thiegives at most k 1+ 2 x % =2
by (R2). Hencew*(v) > w(f)—2=0.
o If fis incident with two weak 7-vertices, thehgives 2x 1+1x 3 = 3 by (R2).
Moreover,f receives at leasy by (R3). Hencew*(v) > w(f) — 3+ 3 =0.
o If fisincident with three weak 7-vertices, thérgives 3x 1 by (R2). Moreoverf
receives at least8 2 by (R3). Hencew*(v) > w(f) —3+3x 3 =1.
— Suppose finally that > 7, and assume that (R2) appliesimes and (R3) applies times.
Itis clear thatf gives weights by (R2) to at mo$t§ | vertices: hencey < | X |. Moreover,

we can easily check than2- 3m < k. With these constraints, we hare- m = 213 <
K

L2 [+ 23J+k. which implies thah+m < k—4 whenk > 7. Hencew*(v) > w(f) —n—m> 0.

Thus, for everyf € F(H), we havew*(v) > 0.

4. Proof of Theorem 4

In this section, we prove Theorem 4, which says that evergnted 2-outerplanar graph
admits a homomorphism .
Esperet and Ochem [7] proved the following structural teeofor 2-outerplanar graphs.

Theorem 5. (Esperet, Ochem [7]Let G be a2-outerplanar graph. Then G contains either a
<3-vertex, or two adjacert-vertices, or the configuration depicted in Figure 6.

Note that the class of 2-outerplanar graphs is minor closed.

To prove Theorem 4, we will consider a minimal counterexagsid prove that it cannot
contain any of the configurations described in Theorem 5irteesat a contradiction.

Let H be a hypothetical minimal counterexample (with respechérinor order) to Theo-
rem4.
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Ui us

uz Va Ug

Fig. 7. Reduction of the configuration depicted in Figure 6

— ltis trivial to show thatH does not contain a 1-vertex.

— Suppose thatl contains a 2-vertex adjacent tai; andus. If u; andu, are not adjacent, let
H’ be the graph obtained frok by contracting the ara;v; otherwise, leH’ = H \ {v}. By
minimality of H, the graphH’ admits aTg-coloring ¢, and sincau; andu, are adjacent in
H’, §(u1) # ¢ (u2) andd(uy) # t(dp(u2)). By P2 g, ¢ can be extended td, a contradiction.

— Suppose thaH contains a 3-vertex adjacent tou;, Uy, andus. If v is a sink, letH' =
H; otherwise, letH’ be the graph obtained froid by pushingu; and/oru, and/oruz in
such a way thav becomes a sink i’ (i.e. UV, UpV, UzV € A(H’)). By the Push Property
(Proposition 3), the grapH’ is clearly a minimal counterexample to Theorem 4 siH¢és
Tao-colorable if and only oH does.

Suppose first that the subgraph inducedibyu,, andus in H’ contains a sink, say;. Then,
let H” be the graph obtained froid’ by contractinguiv. By minimality of H’, the graph
H” admits aTyo-coloring¢. Sincelzuy, Uzu; € A(H”), we have that either the three vertices
d(u1),d(u2), d(uz) form a 3-clique inT4p or they form a 2-clique 4o with ¢(uz) = ¢(uz)
(recall thatN™ (u) "N (t(u)) = 0 for everyu of Tag). By Ps 4, the coloringp can be extended
toH’.

Suppose now that the subgraph inducedihy,, andus in H’ does not contain a sink; then,
u1, Up, uz form a directed cycle. Led” = H’\ {v}. By minimality of H’, the graptH” admits
aTao-coloring ¢. It is clear thatp(u1),$(uz) andd(usz) form a 3-clique inT4o. By P34, the
coloring¢ can be extended td’.

ThereforeH admits alsg-coloring, a contradiction.

— Suppose thatl contains two adjacent 4-verticasindv and letH’ = H \ {TV}. Letug, up, u3
(resp.vi, V2, V3) denote the three neighborsw{resp.v) distinct fromv (resp.u). By mini-
mality of H, H” admits aTsg-coloring¢. Then, erase the colors ofandv. By P34, we can
coloruto getd(u) ¢ Ui—123 £ (vi). Then byPy 1, there exists a color to exterdto H, a
contradiction.

— Suppose thadtl contains the configuration depicted in Figure 6. Hébe the graph obtained
from H by contracting the aras vy, u1vs, andusve: we get the graphl’ depicted in Figure 7.
Note that if the edge-contractions create pairs of oppesis inH’, then we just keep the
initial arc from each pair (i.e., one existinglt) and we delete the other one. By minimality
of H, H” admits aT4o-coloring ¢. Sinceus,uz andv, form a triangle inH’, we have that
¢ (ur),d(uz) andd(va) are compatible so that ki3 4 we can choose one of the four available
colors forvs. At least two of these four colors are distinct frdﬁﬁ(uz) and f\‘,bs(u4). Then,
by P41, we can coloi; andvy, a contradiction.

ThereforeH does not contain any of the configurations described in Témeds, a contra-
diction that proves

Theorem 4.
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