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Abstract. A graph is planar if it can be embedded on the plane without edge-crossings. A graph is 2-
outerplanar if it has a planar embedding such that the subgraph obtained by removing the vertices of
the external face is outerplanar (i.e. with all its verticeson the external face). An orientedk-coloring
of an oriented graphG is a homomorphism fromG to an oriented graphH of orderk. We prove that
every oriented triangle-free planar graph has an oriented chromatic number at most 40, that improves the
previous known bound of 47 [Borodin, O. V. and Ivanova, A. O.,An oriented colouring of planar graphs
with girth at least 4, Sib. Electron. Math. Reports, vol. 2, 239-249, 2005]. We also prove that every
oriented 2-outerplanar graph has an oriented chromatic number at most 40, that improves the previous
known bound of 67 [Esperet, L. and Ochem, P.Oriented colouring of 2-outerplanar graphs, Inform.
Process. Lett., vol. 101(5), 215-219, 2005].
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1. Introduction

Oriented graphs are directed graphs with neither loops nor opposite arcs. For an oriented graph
G, we denote byV(G) its set of vertices and byA(G) its set of arcs. For two adjacent vertices
u andv, we denote by−→uv the arc fromu to v or simply u ∼ v whenever its orientation is not
relevant (therefore,u∼ v = −→uv or u∼ v = −→vu). The number of vertices ofG is theorder of G.

LetG andH be two oriented graphs. Ahomomorphismfrom G toH is a mappingϕ :V(G)→

V(H) that preserves the arcs:
−−−−−→
ϕ(x)ϕ(y) ∈ A(H) whenever−→xy∈ A(G).

An orientedk-coloring ofG can be defined as a homomorphism fromG to H, whereH is an
oriented graph of orderk. In other words, that corresponds to a partition of the vertices ofG into
k stable setsS1,S2, . . . ,Sk such that all the arcs between any pair of stable setsSi andSj have the
same direction (either fromSi to Sj , or fromSj to Si). The existence of such a homomorphism
from G to H is denoted byG → H. The vertices ofH are calledcolors, and we say thatG
is H-colorable. Theoriented chromatic numberof an oriented graphG, denoted byχo(G), is
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defined as the smallest order of an oriented graphH such thatG→ H. For a graph familyF , the
oriented chromatic numberχo(F ) of F is defined as the maximum of the oriented chromatic
numbers taken over all members ofF (i.e.χo(F ) = k iff every G∈ F hasχo(G)≤ k, and there
existsH ∈ F such thatχo(H) = k).

Links between colorings and homomorphisms are presented inmore details in the mono-
graph [8] by Hell and Nešetřil.

A graph isplanar if it can be embedded on the plane without edge-crossings. Thegirth of a
graph is the length of a shortest cycle.

The notion of oriented coloring introduced by Courcelle [6]has been studied by several
authors in the last decade and the problem of bounding the oriented chromatic number has been
investigated for various graph classes: outerplanar graphs (with given minimum girth) [15,17],
2-outerplanar graphs [7], planar graphs (with given minimum girth) [2–5,12,14,16], graphs
with bounded maximum average degree [4,5], graphs with bounded degree [9], graphs with
bounded treewidth [13,17,18], and graph subdivisions [21].

For planar graphs in particular, bounding their oriented chromatic number is a very hard
question. In 1994, Courcelle [6] proved that every planar graph admits an oriented 363-coloring
by means of monadic second order logic. This bound was very quickly improved by Raspaud
and Sopena [16] who have proved that every planar graph admits an oriented 80-coloring using
Borodin’s theorem stating that every planar graph is acyclically 5-colorable [1]. Since then,
no new improvement has been found. However, everyone agreesto say that this bound is far
from the optimal one. Nevertheless, nobody has dared to makeany conjecture. In the mean
time, Sopena [19] proved that there exist planar graphs withoriented chromatic number 16
in 2002; five years later, Marshall [10] improved this lower bound to 17 and very recently to
18 [11]. Thus, the oriented chromatic number of planar graphs lies between 18 and 80 and any
improvement of these bounds seems, at least up to now, to be particularly challenging.

Therefore, several authors decided to bound the oriented chromatic number of sparse planar
graphs, say planar graphs with given minimum girth.

Theorem 1 gives the current best known lower and upper boundson oriented chromatic num-
ber of planar graphs due to Borodin, Ivanova, Kostochka, Marshall, Nešetřil, Ochem, Pinlou,
Raspaud, and Sopena [2–5,11–14,16]:

Theorem 1. (Borodin, Ivanova, Kostochka, Marshall, Nešetřil, Ochem, Pinlou, Raspaud,
Sopena [2–5,11–14,16])

LetPg be the family of all planar graphs with girth at least g.

1. χo(P12) = 5 [4].
2. χo(P11) ≤ 6 [13].
3. χo(P7) ≤ 7 [2].
4. χo(P6) ≤ 11 [5].
5. 6≤ χo(P5) ≤ 16 [14].
6. 11≤ χo(P4) ≤ 47 [3,12].
7. 18≤ χo(P3) ≤ 80 [11,16].

One way to upper bound the oriented chromatic number of a graph family F is to find a
universal target graphH such that, for every graphG ∈ F , we haveG → H. Such a result
can be obtained if the target graphH has “interesting” structural properties that can be used
to prove the existence of the homomorphism; thus an important part of the task is to construct
such a target graph.
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In this paper, we first describe the construction of the graphT40 in Section 2, an oriented
graph on 40 vertices which has very useful properties for oriented coloring of planar graphs.
These structural properties ofT40 allow us to prove that every oriented triangle-free planar graph
admits a homomorphism toT40; this gives the following theorem, which improves the previous
known upper bound of 47 due to Borodin and Ivanova [3] (see Theorem 1(6)).

Theorem 2.LetP4 be the family of triangle-free planar graphs. Thenχo(P4) ≤ 40.

A graph is2-outerplanarif it has a planar embedding such that the subgraph obtained by
removing the vertices of the external face is outerplanar (i.e. with all its vertices on the external
face).

In 2007, Esperet and Ochem [7] studied the structural properties of 2-outerplanar graphs. By
means of these properties, they proved the following:

Theorem 3. (Esperet, Ochem [7])Let G be a2-outerplanar graph. Thenχo(G) ≤ 67.

Concerning the lower bound, we know that there exists a 2-outerplanar graph with oriented
chromatic number 15. This graph is obtained as follows: letG1 be the graph with one vertex
and no arcs;Gi is obtained from two copies ofGi−1 plus a new vertexv by adding all the arcs
from the vertices of the first copy towardsv and all the arcs fromv towards the vertices of the
second copy. The graphG4 is a 2-outerplanar graph and has oriented chromatic number 15.

The oriented graphT40, that we have constructed to bound the oriented chromatic number of
triangle-free planar graphs, has also suitable propertiesto bound the oriented chromatic number
of 2-outerplanar graphs, leading us to an improvement of Theorem 3:

Theorem 4.Let G be a 2-outerplanar graph. Thenχo(G) ≤ 40.

In the remainder of this paper, we use the following notions.For a vertexv of a graphG,
we denote byd−

G(v) its indegree, by d+
G(v) its outdegree, and bydG(v) its degree (subscripts

are omitted when the considered graph is clearly identified from the context). We denote by
N+

G (v) the set of outgoing neighbors ofv, by N−
G (v) the set of incoming neighbors ofv and by

NG(v) = N+
G (v)∪N−

G(v) the set of neighbors ofv. A vertex of degreek (resp. at leastk, at most
k) is called ak-vertex(resp.≥k-vertex, ≤k-vertex). If a vertexu is adjacent to ak-vertex (resp.
≥k-vertex,≤k-vertex)v, thenv is ak-neighbor(resp.≥k-neighbor, ≤k-neighbor) of u. A path
of lengthk (i.e. formed byk edges) is called ak-path. The length of a facef of a graphG is
denoted bydG( f ). If dG( f ) = k (resp.dG( f ) ≤ k, dG( f ) ≥ k), then f is called ak-face(resp.
≤k-face, ≥k-face). If two graphsG andH are isomorphic, we denote this byG ∼= H. Given a
planar graphG with its embedding in the plane and a vertexv of G, we say that a sequence
(u1,u2, . . . ,uk) of neighbors ofv areconsecutiveif u1,u2, . . . ,uk appear aroundv consecutively
(clockwise or counterclockwise) inG.

The paper is organised as follows. The next section is devoted to the target graphT40 and
some of its properties. We prove Theorem 2 in Section 3 and Theorem 4 in Section 4.

2. The Tromp graph T40

In this section, we describe the construction of the target graphT40 used to prove Theorems 2
and 4 and give some useful properties.

Tromp [20] proposed the following construction. LetG be an oriented graph andG′ be an
isomorphic copy ofG. The Tromp graphTr(G) has 2|V(G)|+ 2 vertices and is defined as
follows:
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Fig. 1. The Tromp graphTr(G).

– V(Tr(G)) = V(G)∪V(G′)∪{∞,∞′}

– ∀u∈V(G) : −→u∞,
−→
∞u′,

−−→
u′∞′,

−→
∞′u∈ A(Tr(G))

– ∀u,v∈V(G),−→uv∈ A(G) : −→uv,
−→
u′v′,

−→
vu′,

−→
v′u∈ A(Tr(G))

Figure 1 illustrates the construction ofTr(G). We can observe that, for everyu∈V(G)∪{∞},
there is no arc betweenuandu′. Such pairs of vertices will be calledtwin vertices, and we denote
by t(u) the twin vertex ofu. Remark thatt(t(u)) = u. This notion can be extended to sets in a
standard way: for a givenW ⊆V(G), W = {v1,v2, . . . ,vk}, thent(W) = {t(v1), t(v2), . . . , t(vk)}.

By construction, the graphTr(G) satisfies the following property:

∀u∈ Tr(G) : N+(u) = N−(t(u)) andN−(u) = N+(t(u))

In the remainder, we focus on the specific graph family obtained by applying the Tromp’s
construction to Paley tournaments. For a prime powerp ≡ 3 (mod 4), the Paley tournament
QRp is defined as the oriented graph whose vertices are the integers modulop and such that
−→uv is an arc if and only ifv− u is a non-zero quadratic residue ofp. For instance, the Paley
tournamentQR19 has vertex setV(QR19) = {0,1, . . . ,18} and−→uv∈A(QR19) wheneverv−u≡ r
(mod 19) for r ∈ {1,4,5,6,7,9,11,16,17}. Note that the upper bounds of Theorems 1(3), 1(4),
and 1(6) have been obtained by proving that all the graphs of the considered families admit
a homomorphism to the Paley tournamentsQR7, QR11, andQR47 respectively. Moreover, the
upper bound of Theorem 1(5) has been obtained by proving thatall the graphs of the considered
family admit a homomorphism to the Tromp graphTr(QR7).

Let T40 = Tr(QR19) be the Tromp graph on 40 vertices obtained fromQR19. In the remainder
of this paper, the vertex set ofT40 isV(T40) = {0,1, . . . ,18, ∞,0′,1′, . . . , 18′,∞′} where{0,1, . . . ,
18} is the vertex set of the first copy ofQR19 and{0′,1′, . . . ,18′} is the vertex set of the second
copy of QR19; thus, for everyu ∈ {0,1, . . . , 18,∞}, we havet(u) = u′. In addition, for every
u∈V(T40), we have by construction|N+

T40
(u)| = |N−

T40
(u)| = 19. The graphT40 has remarkable

symmetry and some useful properties given below.

Proposition 1. (Marshall [10]) For any QRp, the graph Tr(QRp) is such that:

∀u∈V(Tr(QRp)) : N+(u) ∼= QRp and N−(u) ∼= QRp

Proposition 2. (Marshall [10]) For any QRp, if {a1,a2,a3} and{b1,b2,b3} span triangles t1
and t2 respectively in Tr(QRp) and the mapψ taking ai to bi (1 ≤ i ≤ 3) is an isomorphism
t1 → t2, thenψ can be extended to an automorphism of Tr(QRp).
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It is then clear thatTr(QRp) is vertex-transitive and arc-transitive.
For an oriented graphG and a vertexv, pushing vmeans reversing the orientation of every

arc incident withv.

Proposition 3. (Push Property)Let G be an oriented graph such that G→ Tr(QRp). Then,
for any vertex v of G, the graph G′ obtained from G by pushing v admits a homomorphism to
Tr(QRp).

Proof. Let ϕ be aTr(QRp)-coloring ofG. For everyw∈V(Tr(QRp)), we haveN+
Tr(QRp)

(w) =

N−
Tr(QRp)

(t(w)) andN−
Tr(QRp)

(w) = N+
Tr(QRp)

(t(w)). Therefore, the mappingϕ′ :V(G′)→V(Tr(QRp))

defined byϕ′(u) = ϕ(u) for all u ∈ V(G′) \ {v} and ϕ′(v) = t(ϕ(v)) is clearly aTr(QRp)-
coloring ofG′.

An orientation n-vectoris a sequenceα = (α1,α2, . . . ,αn) ∈ {0,1}n of n elements. LetS=
(v1,v2, . . . ,vn) be a sequence ofn (not necessarily distinct) vertices ofT40. The vertexu is
said to be anα-successor of Sif for any i, 1≤ i ≤ n, we have−→uvi ∈ A(T40) wheneverαi = 1
and−→viu ∈ A(T40) otherwise. For instance, the vertex 3′ of T40 is a (1,1,0,1,1,0)-successor of

(1,2,6′,1,∞′,2′) since the arcs
−→
3′1,

−→
3′2,

−→
6′3′,

−−→
3′∞′, and

−→
2′3′ belong toA(T40).

If, for a sequenceS= (v1,v2, . . . ,vn) of n vertices ofT40 and an orientationn-vectorα =
(α1,α2, . . . ,αn), there existi 6= j such thatvi = v j andαi 6= α j , then there does not exist any
α-successor ofS; indeed,T40 does not contain opposite arcs. In addition, if there existi 6= j such
thatvi = t(v j) andαi = α j , then there does not exist anyα-successor ofS; indeed, for any pair
of verticesx andy of T40 with x= t(y), we haveN+

T40
(x)∩N+

T40
(y) = /0 andN−

T40
(x)∩N−

T40
(y) = /0.

A sequenceS= (v1,v2, . . . ,vn) of n vertices ofT40 is said to becompatiblewith an orientation
n-vectorα = (α1,α2, . . . ,αn) if and only if for anyi 6= j, we haveαi 6= α j whenevervi = t(v j),
andαi = α j whenevervi = v j . Note that if then vertices ofSinduce ann-clique subgraph ofT40

(i.e. v1,v2, . . . ,vn are pairwise distinct and induce a complete graph), thenS is compatible with
any orientationn-vector since a vertexu and its twint(u) cannot belong together to the same
clique.

In the remainder, we say thatT40 hasProperty Pn,k if, for every sequenceSof n vertices of
T40 that form ann-clique and any orientationn-vectorα, there existk α-successors ofS.

Proposition 4. If, for a fixedα = (α1,α2, . . . ,αn), every n-clique S of T40 admits kα-successors,
then there exist kα′-successors of S for everyα′ = {0,1}n, that is T40 has property Pn,k.

Proof. Assume that everyn-clique admitsk α-successors. LetS= (u1,u2, . . . ,un) be an-clique
of T40 andα′ = (α′

1,α
′
2, . . . ,α

′
n) be an orientationn-vector. Then letS′ = (v1,v2, . . . ,vn) defined

such thatvi = ui if α′
i = αi andvi = t(ui) otherwise. Due to the structure ofT40 (i.e. if x ∼ y

belongs toA(T40), thent(x)∼ y, x∼ t(y) andt(x)∼ t(y) belongs toA(T40)), S′ is ann-clique of

T40. By hypothesis,S′ admitsk α-successorsw1,w2, . . . ,wk. Since
−−→
yt(x)∈ A(T40) if −→xy∈ A(T40),

we havewi ’s arek α′-successor ofS.

Proposition 5.The graph T40 has Properties P1,19, P2,9, P3,4, and P4,1.

Proof. By Proposition 1, we have|N+(u)| = |N−(u)| = 19 for every vertexu of T40; therefore
T40 has PropertyP1,19.

It is obvious thatQR19 has propertiesP1,9 (for every vertexu of QR19, we have|N+(u)| =
|N−(u)| = 9). Borodin et al. [5] proved thatQR19 has propertiesP2,4 andP3,1. We will show in
the remainder of this proof that ifQR19 has propertyPn−1,k, thenT40 has propertyPn,k; that will
complete the proof.
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Suppose thatQR19 has propertyPn−1,k and let α = (α1,α2, . . . ,αn) be a given orienta-
tion n-vector. LetS= (u1,u2, . . . ,un−1,w) be a inducedn-clique of T40. If αn = 0, we de-
fine S′ = (v1,v2, . . . ,vn−1,w) such thatvi = ui if −→uiw and vi = t(ui) if −→wui . Hence,S′ is an
n-clique of T40 such that

S

i vi ⊆ N−(w). By Proposition 1,N−(w) = K19
∼= QR19, and there-

fore the(n−1)-cliqueS′′ = (v1,v2, . . . ,vn−1) belongs toK19. Then by PropertyPn−1,k of QR19,
there existk (α′

1,α
′
2, . . . ,α

′
n−1)-successorsx1,x2, . . . ,xk of S′′ in K19, with α′

i = αi (resp.α′
i =

1−αi) if ui = vi (resp.ui = t(vi)). Thexi ’s are clearly in-neighbors ofw and hence, they are
(α′

1,α
′
2, . . . ,α

′
n−1,αn)-successorsS′, and thus there existk α-successors ofS. Proportion 4 al-

lows us to conclude.
The caseαn = 1 would be treated similarly: we would have chosenS′ = (v1,v2, . . . , vn−1,w)

is such a way that
S

i vi ⊆ N+(w).

3. Proof of Theorem 2

In this section, we prove Theorem 2, that is, every oriented triangle-free planar graphG admits
a homomorphism toT40.

Recall that Borodin and Ivanova [3] proved that every oriented triangle-free planar graph
G admits a homomorphism toQR47. This proof was only published in Russian. Our proof is
highly inspired by this paper. Indeed, our list of forbiddenconfigurations is designed to fit with
Borodin and Ivanova’s discharging procedure [3] up to a slight modification in Rule (R3).

Let us define the partial order�. Let n3(G) be the number of≥3-vertices inG. For any two
graphsG1 andG2, we haveG1 ≺ G2 if and only if at least one of the following conditions hold:

– |V(G1)| < |V(G2)| andn3(G1) ≤ n3(G2).
– n3(G1) < n3(G2).

Note that the partial order� is well-defined and is a partial linear extension of the induced
subgraph poset.

Let H be a hypothetical minimal counterexample to Theorem 2 according to ≺. We first
prove thatH does not contain a set of ten configurations listed in Lemma 1.Then, using a
discharging procedure, we show that each oriented triangle-free planar graph contains at least
one of these configurations of Lemma 1, contradicting the fact thatH is a triangle-free planar
graph.

3.1. Structural properties of H

In the following,H is a triangle-free planar graph given with its embedding in the plane. A
weak7-vertex uin H is a 7-vertex adjacent to four 2-verticesv1, . . . ,v4 and three≥3-vertices
w1,w2,w3 in such a way that the sequence of neighbors ofv appear asv1,w1,v2,w2,v3,w3,v4

(clockwise or counterclockwise).

Lemma 1.The graph H does not contain the following configurations:

(C1) a≤1-vertex;
(C2) a k-vertex adjacent to k2-vertices for2≤ k≤ 39;
(C3) a k-vertex adjacent to(k−1) 2-vertices for2≤ k≤ 19;
(C4) a k-vertex adjacent to(k−2) 2-vertices for3≤ k≤ 10;
(C5) a3-vertex;
(C6) a k-vertex adjacent to(k−3) 2-vertices for3≤ k≤ 6;
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1≤ k≤ 39

v′1

v′k

v

vk

v1

(a) C2

v′k

v1
vk

v
v2 v′2

2≤ k≤ 19

(b) C3

3≤ k≤ 10

v′k

v1
v

vk

v3

v2

v′3

(c) C4

v

v1

v3 v2

(d) C5

v1

v2

v3 v
v4 v′4

4≤ k≤ 6

vk v′k

(e) C6

Fig. 2. ConfigurationsC2–C6.

(C7) two vertices u and v linked by two distinct2-paths, both paths having a2-vertex as internal
vertex;

(C8) a 4-face wxyz such that x is 2-vertex, w and y are weak7-vertices, and z is a k-vertex
adjacent to(k−3) 2-vertices for3≤ k≤ 8;

(C9) a 4-face wxyz such that x is 2-vertex, w and y are weak7-vertices, and z is a k-vertex
adjacent to(k−4) 2-vertices for4≤ k≤ 7;

The drawing conventions for aconfiguration Ccontained in a graphG are the following.
If u andv are two vertices ofC, then they are adjacent inG if and only if they are adjacent
in C. Moreover, the neighbors of awhitevertex inG are exactly its neighbors inC, whereas a
black vertex may have neighbors outside ofC. Two or more black vertices inC may coincide
in a single vertex inG, provided they do not share a common white neighbor. Finally, an edge
will represent an arc with any of its two possible orientations. Configurations(C2)–(C9) are
depicted in Figures 2 and 3.

Let G be an oriented graph,v be ak-vertex withN(v) = {v1,v2, . . . ,vk} andα be an orien-
tation k-vector such thatαi = 0 whenever−→viv ∈ A(G) andαi = 1 otherwise. Letϕ be aT40-
coloring ofG\{v} andS= (ϕ(v1),ϕ(v2), . . . ,ϕ(vk)). Recall that a necessary condition to have
α-successors ofS is thatα must be compatible withS, that is for any pair of verticesvi andv j ,
ϕ(vi) 6= ϕ(v j) wheneverαi 6= α j andϕ(vi) 6= t(ϕ(v j)) wheneverαi = α j . Hence, every vertex
v j forbids one color for each vertexvi , i ∈ [1,k], i 6= j. We definef ϕ

vi (v j) to be the forbidden
color for vi by ϕ(v j) (i.e. f ϕ

vi (v j) = ϕ(v j) wheneverαi 6= α j and f ϕ
vi (v j) = t(ϕ(v j)) whenever

αi = α j ). Therefore,α is compatible withSif and only if we haveϕ(vi) 6= f ϕ
vi (v j) for every pair

i, j, 1≤ i < j ≤ k. Note that ifϕ(vi) 6= f ϕ
vi (v j), then we necessarily haveϕ(v j) 6= f ϕ

v j (vi).
For each configuration, we suppose thatH contains it and we consider a triangle-free reduc-

tion H ′ such thatH ′ ≺ H; therefore, by minimality ofH, H ′ admits aT40-coloringϕ. We will
then show that we can chooseϕ so that it can be extended toH by Proposition 5, contradicting
the fact thatH is a counterexample.

In the remainder, ifH contains a configuration, thenH∗ will denote the graph obtained from
H by removing all the white vertices from this configuration.

Proof of Configuration(C1). Trivial.

Proof of Configuration(C2). Suppose thatH contains the configuration depicted in Figure 2(a)
and letϕ be aT40-coloring ofH∗. Let F = { f ϕ

v (v′1), . . . , f ϕ
v (v′k)} be the set of forbidden colors

for v. Any T40-coloring ofH∗ can be extended toH since|F| ≤ 39.

Proof of Configuration(C3). Suppose thatH contains the configuration depicted in Figure 2(b)
and letϕ be aT40-coloring ofH∗. Let F = { f ϕ

v (v′1), . . . , f ϕ
v (v′k)} be the set of forbidden colors

for v. By PropertyP1,19, ϕ can be extended toH since|F| ≤ 18.

Proof of Configuration(C4). Suppose thatH contains the configuration depicted in Figure 2(c)
and letϕ be aT40-coloring of H ′ = H \ {v3, . . . ,vk}. Then, we clearly haveϕ(v1) 6= f ϕ

v1(v2)
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v

(a) C7

3≤ k≤ 8

v1

vk−3

(b) C8

4≤ k≤ 7

v1

vk−4
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Fig. 3. ConfigurationsC7–C9.

y
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u

v

w

Fig. 4. ConfigurationC7′.

sincev is colored inH ′. Therefore, by PropertyP2,9, there exists aT40-coloringϕ′ of H ′ such

thatϕ′(v) /∈ { f ϕ′

v (v′3), . . . , f ϕ′

v (v′k)}. The coloringϕ′ can be extended toH.

Proof of Configuration(C5). Suppose thatH contains the configuration depicted in Figure 2(d).
Let H ′ be the graph obtained fromH∗ by adding, for every 1≤ i < j ≤ 3, a 2-path joiningvi

to v j with the same orientation as the path[vi ,v,v j ] in H. Since Configurations(C1)–(C4) are
forbidden, we havedH(vi) ≥ 3 for 1≤ i ≤ 3; we thus haveH ′ ≺ H sincen3(H ′) = n3(H)−1,
andH ′ is clearly triangle-free. AnyT40-coloring ϕ of H ′ induces a coloring ofH∗ such that
ϕ(vi) 6= f ϕ

vi (v j) for any i, j, 1≤ i < j ≤ 3. Then PropertyP3,4 allows us to extendϕ to H.

Proof of Configuration(C6). Suppose thatH contains the configuration depicted in Figure 2(e).
Let ϕ be aT40-coloring ofH ′ = H \ {v4, . . . ,vk}. Then, we clearly haveϕ(vi) 6= f ϕ

vi (v j), for all
1≤ i ≤ j ≤ 3, sincev is colored inH ′. Therefore, by PropertyP3,4, there exists aT40-coloring

ϕ′ of H ′ such thatϕ′(v) /∈ { f ϕ′

v (v′4), . . . , f ϕ′

v (v′k)}.

Proof of Configuration(C7). Suppose first thatH contains the configuration(C7′) depicted
in Figure 4. LetH ′ be the graph obtained fromH∗ by adding a 2-pathuv′w betweenu and
w such thatuv′w is directed if and only ifuvw is not directed. We have thatH ′ ≺ H since
|V(H ′)|= |V(H)|−1 andn3(H ′) = n3(H). Due to the orientations of the 2-pathsuv′w anduvw,
anyT40-coloringϕ of H ′ ensures thatϕ(u) 6= ϕ(w) andϕ(u) 6= t(ϕ(w)). The coloringϕ can be
extended toH.

Suppose thatH contains the configuration depicted in Figure 3(a). LetH ′ be the graph ob-
tained fromH∗ by adding an edge betweenu andw. We have thatH ′ ≺ H since|V(H ′)| =
|V(H)| −2 andn3(H ′) = n3(H). Since Configuration(C7′) is forbidden, the verticesu andw
are at distance at least 3 inH∗ andH ′ is therefore triangle-free. AnyT40-coloringϕ of H ′ ensures
thatϕ(u) 6= ϕ(w) andϕ(u) 6= t(ϕ(w)). The coloringϕ can be extended toH.

Proof of Configurations(C8) and(C9). To prove that these two configurations are forbidden in
a minimal counterexample to Theorem 2, a computer check is needed. Indeed, PropertiesP1,19,
P2,9, P3,4 andP4,1 are not sufficient.

A computer check allows us to show that for any compatible color assignment on the black
vertices (i.e. any two black vertices at distance 2 in the configuration get compatible colors) and
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(a) R1

1

≥5-face

(b) R2

1
2

≥5-face

(c) R2

1
2

≥5-face

(d) R3

≥5-face

≥5-face

1

(e) R3

Fig. 5. Discharging rules

any orientation of the arcs, the white vertices can be colored. Our computer check runs in less
than two days. Therefore, that shows thatH does not contain any of these two configurations.

3.2. Discharging procedure

To complete the proof of Theorem 2, we use a discharging procedure. We define the weight
functionω by ω(x) = d(x)−4 for everyx∈V(H)∪F(H). SinceH is a plane graph, we have
by Euler’s formula (|V(H)|− |A(H)|+ |F(H)| = 2):

∑
v∈V(H)

ω(v)+ ∑
f∈F(H)

ω( f ) = ∑
v∈V(H)

(d(v)−4)+ ∑
f∈F(H)

(d( f )−4) = −8 < 0.

In what follows, we will define discharging rules (R1), (R2),and (R3) and redistribute weights
accordingly. Once the discharging is finished, a new weight function ω∗ is produced. How-
ever, the total sum of weights is fixed by the discharging rules. Nevertheless, we can show that
ω∗(v) ≥ 0 for everyx∈V(H)∪F(H). This leads to the following obvious contradiction:

0≤ ∑
v∈V(H)

ω∗(v)+ ∑
f∈F(H)

ω∗( f ) = ∑
v∈V(H)

ω(v)+ ∑
f∈F(H)

ω( f ) < 0.

Therefore, no such counterexampleH exists.
The discharging rules are defined as follows:

(R1) Each≥4-vertex gives 1 to each of its 2-neighbors.
(R2) Each≥5-face...axbsuch thata andb are 2-vertices gives 1 (resp.1

2) to x if x is a weak
7-vertex (resp. is not a weak 7-vertex).

(R3) Each≥5-face f = ...awxybsuch thata,b,x are 2-vertices andw,y are weak 7-vertices
either receives12 from the vertexz if wxyz is a 4-face, or receives 1 from the≥5-face
f ′ = ...cwxydif c,d are≥4-vertices.

The discharging rules are illustrated in Figure 5; white disks (resp. black disks, black squares)
are 2-vertices (resp.≥4-vertices, weak 7-vertices).

3.2.1. For all vertices v,ω∗(v) ≥ 0 In the following,d≥4(v) denotes the number of neighbors
of v with degree at least 4. In the same way,d2(v) denotes the number of neighbors ofv with
degree exactly 2. Then it is clear that, for every vertexv of H, we haved(v) = d≥4(v)+d2(v)
sinceH contains neither vertices of degree at most 1 by(C1), nor 3-vertices by(C5).
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Let v be ak-vertex ofH. Therefore,k = d≥4(v)+d2(v). Recall that the initial charge ofv is
ω(v) = k−4.

If k = 2, thenv receives 2×1 by (R1); hence,ω∗(v) = ω(v)+2 = 0.
Clearly, in the remainder of this section,k≥ 4.

– if d≥4(v) = 0, thend2(v) = k ≥ 40 by (C2). By (R1),v givesk×1. By (C7), v is incident
with k ≥5-faces, and thereforev receivesk× 1

2 by (R2). Hence,ω∗(v) = ω(v)−k+ k
2 ≥ 16.

– if d≥4(v) = 1, thend2(v) = k−1≥ 19 by(C3). By (R1),v gives(k−1)×1. By (C7), v is
incident with(k−2) ≥5-faces each of which gives12 to v by (R2). Moreover,v is adjacent to
at most one weak 7-vertex and therefore (R3) does not apply. Hence,ω∗(v) = ω(v)− (k−
1)+ k−2

2 ≥ 6.
– if d≥4(v) = 2, thend2(v) = k−2 ≥ 9 by (C4). By (R1), v gives(k−2)×1. By (C7), v is

incident with(k−4) ≥5-faces each of which gives12 to v by (R2). Moreover, by (R3),v gives
at most1

2 sincev is adjacent to at most two weak 7-vertices. Hence,ω∗(v) = ω(v)− (k−
2)+ k−4

2 − 1
2 ≥ 1.

– if d≥4(v) = 3, thend2(v) = k−3≥ 4 by (C6) and sok≥ 7. In each subcase, by (R1),v gives
(k−3)×1.
⊲ Suppose that the three≥4-neighbors are consecutive. By(C7), v is incident with(k−4)

≥5-faces of each of which gives12 to v by (R2). Moreover, by (R3),v gives at most
2× 1

2. If k≤ 8, thend2(v) < 6 and by(C8), v gives no charge. Hence, ifk≤ 8, ω∗(v) =

ω(v)− (k−3)+ k−4
2 ≥ 1

2; if k≥ 9, ω∗(v) = ω(v)− (k−3)+ k−4
2 −2 · 1

2 ≥ 1
2.

⊲ Suppose that two≥4-neighbors are consecutive. By(C7), v is incident with(k−5) ≥5-
faces each of which gives12 to v by (R2). Moreover, by (R3),v gives at most12 if and only
if d2(v)≥ 6, that impliesk≥ 9 by(C8). Hence, ifk≤ 8,ω∗(v) = ω(v)−(k−3)+ k−5

2 ≥ 0;
if k≥ 9, ω∗(v) = ω(v)− (k−3)+ k−5

2 − 1
2 ≥ 1

2.
⊲ Suppose that none of the≥4-neighbors are consecutive. By(C7), v is incident with(k−6)

≥5-faces each of which gives12 to v by (R2) if d(v)≥ 8, or give 1 tov by (R2) if d(v) = 7
(i.e. v is a weak 7-vertex). Moreover, (R3) does not apply. Hence, ifd(v) = 7, ω∗(v) =
ω(v)− (k−3)+1 = 0; if d(v) ≥ 8, ω∗(v) = ω(v)− (k−3)+ k−6

2 ≥ 0.
– If d≥4(v) = 4, thend2(v) = k−4. By (C1), v gives(k−4)×1.

Suppose that (R3) does not apply. Then,ω∗(v)≥ ω(v)−(k−4) = 0. Suppose now that (R3)
applies: it applies at most twice (otherwise there would be aweak 7-vertex with three con-
secutive 2-neighbors). Moreover, by(C9), we haved2(v) ≥ 4, that impliesk≥ 8.
⊲ Suppose first that (R3) applies only once; thenv gives 1

2 to the corresponding 4-face.
Moreover, by (R2),v receivesk−7

2 . Hence,ω∗(v) = ω(v)− (k−4)+ k−7
2 − 1

2 ≥ 0.
⊲ Suppose now that (R3) applies twice; thenv gives 2× 1

2 to the corresponding 4-faces.
Moreover, by (R2),v receivesk−6

2 . Hence,ω∗(v) = ω(v)− (k−4)+ k−6
2 −2× 1

2 ≥ 0.
– Suppose finally thatd≥4(v) ≥ 5. By (C1), v gives(k−d≥4(v))× 1. Moreover, by (R3),v

gives at most12 ×
⌊

d≥4(v)
2

⌋

. Hence,ω∗(v) ≥ ω(v)− (k−d≥4(v))− 1
2 ×

⌊

d≥4(v)
2

⌋

≥ 0.

Thus, for everyv∈V(H), we haveω∗(v) ≥ 0.

3.2.2. For all faces f ,ω∗( f ) ≥ 0 Let f be ak-face ofH. SinceH is triangle-free, we have
k≥ 4. Recall that the initial charge off is ω( f ) = k−4.

– If k = 4, then no rule applies. Hence,ω∗( f ) = ω( f ) = 0
– If k = 5, then f is incident with at most two 2-vertices by(C3).
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v3

u4

v1 v2

v4

u1

u2

u3

Fig. 6. Unavoidable configuration in a 2-outerplanar graph containing neither a≤3-vertex, nor two adja-
cent 4-vertices

⊲ If f has no incident 2-vertices, thenω∗(v) ≥ ω( f ) = 1.
⊲ If f is incident with one 2-vertex, then only (R3) may apply and henceω∗( f ) ≥ ω( f )−

1 = 0.
⊲ If f is adjacent to two 2-verticesx andz, then f gives at most 1 to the common neighbor

of x andz by (R2). Henceω∗(v) ≥ ω( f )−1 = 0.
– If k = 6, then f is incident with at most three 2-vertices by(C3).

⊲ If f has no incident 2-vertices, thenω∗(v) ≥ ω( f ) = 2.
⊲ If f is incident with one 2-vertex, then only (R3) may apply and henceω∗( f ) ≥ ω( f )−

1 = 1.
⊲ Suppose thatf is incident with two 2-verticesx andz. If x andzhas a common neighbor,

then f f gives at most 1 by (R2), and henceω∗(v) ≥ ω( f )− 1 = 0. If x andz has no
common neighbor, then only (R3) may apply at most twice. Hence,ω∗(v) ≥ ω( f )−2×
1 = 0.

⊲ Finally, suppose thatf is adjacent to three 2-vertices.
⋄ If f is incident with at most one weak 7-vertex, thenf gives at most 1×1+2× 1

2 = 2
by (R2). Hence,ω∗(v) ≥ ω( f )−2 = 0.

⋄ If f is incident with two weak 7-vertices, thenf gives 2×1+ 1× 1
2 = 5

2 by (R2).
Moreover, f receives at least12 by (R3). Hence,ω∗(v) ≥ ω( f )− 5

2 + 1
2 = 0.

⋄ If f is incident with three weak 7-vertices, thenf gives 3×1 by (R2). Moreover,f
receives at least 3× 1

2 by (R3). Hence,ω∗(v) ≥ ω( f )−3+3× 1
2 = 1

2.
– Suppose finally thatk ≥ 7, and assume that (R2) appliesn times and (R3) appliesm times.

It is clear thatf gives weights by (R2) to at most
⌊

k
2

⌋

vertices: hence,n≤
⌊

k
2

⌋

. Moreover,
we can easily check that 2n+3m≤ k. With these constraints, we haven+m= n+2n+3m

3 ≤
⌊ k

2 ⌋+k
3 , which implies thatn+m≤ k−4 whenk≥ 7. Hence,ω∗(v) ≥ ω( f )−n−m≥ 0.

Thus, for everyf ∈ F(H), we haveω∗(v) ≥ 0.

4. Proof of Theorem 4

In this section, we prove Theorem 4, which says that every oriented 2-outerplanar graphG
admits a homomorphism toT40.

Esperet and Ochem [7] proved the following structural theorem for 2-outerplanar graphs.

Theorem 5. (Esperet, Ochem [7])Let G be a2-outerplanar graph. Then G contains either a
≤3-vertex, or two adjacent4-vertices, or the configuration depicted in Figure 6.

Note that the class of 2-outerplanar graphs is minor closed.
To prove Theorem 4, we will consider a minimal counterexample and prove that it cannot

contain any of the configurations described in Theorem 5, to arrive at a contradiction.
Let H be a hypothetical minimal counterexample (with respect to the minor order) to Theo-

rem 4.
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v4

u1

u2

u3

u4

Fig. 7. Reduction of the configuration depicted in Figure 6

– It is trivial to show thatH does not contain a 1-vertex.
– Suppose thatH contains a 2-vertexv adjacent tou1 andu2. If u1 andu2 are not adjacent, let

H ′ be the graph obtained fromH by contracting the arcu1v; otherwise, letH ′ = H \{v}. By
minimality of H, the graphH ′ admits aT40-coloringϕ, and sinceu1 andu2 are adjacent in
H ′, ϕ(u1) 6= ϕ(u2) andϕ(u1) 6= t(ϕ(u2)). By P2,9, ϕ can be extended toH, a contradiction.

– Suppose thatH contains a 3-vertexv adjacent tou1, u2, andu3. If v is a sink, letH ′ =
H; otherwise, letH ′ be the graph obtained fromH by pushingu1 and/oru2 and/oru3 in
such a way thatv becomes a sink inH ′ (i.e. −→u1v,−→u2v,−→u3v ∈ A(H ′)). By the Push Property
(Proposition 3), the graphH ′ is clearly a minimal counterexample to Theorem 4 sinceH ′ is
T40-colorable if and only ofH does.
Suppose first that the subgraph induced byu1, u2, andu3 in H ′ contains a sink, sayu1. Then,
let H ′′ be the graph obtained fromH ′ by contracting−→u1v. By minimality of H ′, the graph
H ′′ admits aT40-coloringϕ. Since−−→u2u1,

−−→u3u1 ∈ A(H ′′), we have that either the three vertices
ϕ(u1),ϕ(u2),ϕ(u3) form a 3-clique inT40 or they form a 2-clique inT40 with ϕ(u2) = ϕ(u3)
(recall thatN+(u)∩N+(t(u))= /0 for everyu of T40). By P3,4, the coloringϕ can be extended
to H ′.
Suppose now that the subgraph induced byu1, u2, andu3 in H ′ does not contain a sink; then,
u1,u2,u3 form a directed cycle. LetH ′′ = H ′\{v}. By minimality ofH ′, the graphH ′′ admits
a T40-coloringϕ. It is clear thatϕ(u1),ϕ(u2) andϕ(u3) form a 3-clique inT40. By P3,4, the
coloringϕ can be extended toH ′.
Therefore,H admits aT40-coloring, a contradiction.

– Suppose thatH contains two adjacent 4-verticesu andv and letH ′ = H \{−→uv}. Letu1,u2,u3

(resp.v1,v2,v3) denote the three neighbors ofu (resp.v) distinct fromv (resp.u). By mini-
mality of H, H ′ admits aT40-coloringϕ. Then, erase the colors ofu andv. By P3,4, we can
color u to getϕ(u) /∈

S

i=1,2,3 f ϕ
u (vi). Then byP4,1, there exists a color to extendϕ to H, a

contradiction.
– Suppose thatH contains the configuration depicted in Figure 6. LetH ′ be the graph obtained

from H by contracting the arcsu1v1, u1v3, andu3v2: we get the graphH ′ depicted in Figure 7.
Note that if the edge-contractions create pairs of oppositearcs inH ′, then we just keep the
initial arc from each pair (i.e., one existing inH) and we delete the other one. By minimality
of H, H ′ admits aT40-coloring ϕ. Sinceu1,u3 andv4 form a triangle inH ′, we have that
ϕ(u1),ϕ(u3) andϕ(v4) are compatible so that byP3,4 we can choose one of the four available
colors forv3. At least two of these four colors are distinct fromf ϕ

v3(u2) and f ϕ
v3(u4). Then,

by P4,1, we can colorv1 andv2, a contradiction.

Therefore,H does not contain any of the configurations described in Theorem 5, a contra-
diction that proves

Theorem 4.
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