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Michaël Rao

CNRS, LIP, ENS Lyon
15 parvis R. Descartes BP 7000, 69342 Lyon Cedex 07, France

michael.rao@ens-lyon.fr

Abstract

Let Ω(n) and ω(n) denote respectively the total number of prime
factors and the number of distinct prime factors of the integer n.
Euler proved that an odd perfect number N is of the form N = pem2

where p ≡ e ≡ 1 (mod 4), p is prime, and p ∤ m. This implies that
Ω(N) ≥ 2ω(N) − 1. We prove that Ω(N) ≥ (18ω(N) − 31)/7 and
Ω(N) ≥ 2ω(N) + 51.

1 Introduction

A natural number N is said perfect if it is equal to the sum of its positive
divisors (excluding N). It is well known that an even natural number N is
perfect if and only if N = 2k−1(2k − 1) for an integer k such that 2k − 1 is
a Mersenne prime. On the other hand, it is a long-standing open question
whether an odd perfect number exists.

In order to investigate this question, several authors gave necessary con-
ditions for the existence of an odd perfect number N . Let Ω(n) and ω(n)
denote respectively the total number of prime factors and the number of dis-
tinct prime factors of the integer n. Euler proved that N = pem2 for a prime
p, with p ≡ e ≡ 1 (mod 4), p is prime, and p ∤ m. Moreover, recent results
showed that N > 101500 [4], ω(N) ≥ 9 [3], and Ω(N) ≥ 101 [4].
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In this paper, we study the relationship between Ω(N) and ω(N). By
Euler’s result, we have Ω(N) ≥ 2ω(N) − 1. Steuerwald [6] proved that m
is not square-free, that is, the exponents of the non-special primes cannot
be all equal to 2. This implies that Ω(N) ≥ 2ω(N) + 1. We improve this
inequality in two ways:

Theorem 1. If N is an odd perfect number, then Ω(N) ≥ (18ω(N)− 31)/7.

Theorem 2. If N is an odd perfect number, then Ω(N) ≥ 2ω(N) + 51.

We prove Theorem 1 in Section 3 using standard arguments. We prove
Theorem 2 in Section 4 via computations using the general method in [4].

To summarize the known results about Ω(N), we have

Ω(N) ≥ max {101, 2ω(N) + 51, (18ω(N)− 31)/7} .

2 Preliminaries

Let n be a natural number. Let σ(n) denote the sum of the positive divisors

of n, and let σ−1(n) =
σ(n)
n

be the abundancy of n. Clearly, n is perfect if and
only if σ−1(n) = 2. We first recall some easy results on the functions σ and

σ−1. If p is prime, σ(pq) = pq+1−1
p−1

, and σ−1(p
∞) = limq→+∞ σ−1(p

q) = p
p−1

. If

gcd(a, b) = 1, then σ(ab) = σ(a)σ(b) and σ−1(ab) = σ−1(a)σ−1(b).
Euler proved that if an odd perfect number N exists, then it is of the

form N = pem2 where p ≡ e ≡ 1 (mod 4), p is prime, and p ∤ m. The prime
p is said to be the special prime.

3 Proof of Ω(N) ≥ (18ω(N)− 31)/7

We want to obtain a result of the form Ω(N) ≥ aω(N) − c for some a > 2
using the following idea. If a is close to 2, then N has a large amount of
prime factors p such that both p2 ‖ N and p ‖ σ(q2) where q2 ‖ N . It is well
known (see [5]) that for primes t, r, and s such that t | σ(rs−1), either t = s
or t ≡ 1 mod s. In particular, this gives p ≡ 1 mod 3 and thus 3 | σ(p2). The
exponent of the prime 3 is then large, so that Ω(N) is significantly greater
than 2ω(N).

Now we detail the number of certain types of factors of N and obtain the
results by contradiction with the involved quantities.
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• p = ω(N): number of distinct prime factors,

• f = Ω(N): total number of prime factors,

• p2: number of distinct prime factors with exponent 2, distinct from 3,

• p2,1: number of distinct prime factors with exponent 2 congruent to 1
mod 3,

• p4: number of distinct prime factors with exponent at least 4, distinct
from 3 and the special prime,

• f4: total number of prime factors with exponent at least 4, distinct
from 3 and the special prime,

• e: exponent of the special prime,

• f3: exponent of the prime 3.

Now we obtain useful inequalities among these quantities. The special
exponent is at least 1:

1 ≤ e. (1)

By detailing the total number of prime factors, we have

e+ f3 + 2p2 + f4 = f. (2)

By considering the prime factors (distinct from 3 and the special prime)
with exponent at least 4, we have

4p4 ≤ f4. (3)

As already mentioned, if p ≡ 1 mod 3 and p2 ‖ N , then 3 | σ(p2), so that

p2,1 ≤ f3. (4)

Let us consider the number of distinct prime factors. We have the special
prime, the primes from p2 and p4, and maybe the prime 3. So it is 1+p2+p4
if f3 = 0 and 2 + p2 + p4 if f3 ≥ 2. We thus have

p ≤ f3/2 + 1 + p2 + p4 (5)

and
p ≤ 2 + p2 + p4. (6)
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For the sake of contradiction, we suppose that

7f ≤ 18p− 32. (7)

The following lemma is useful to obtain one last inequality:

Lemma 3. Let p, q, and r be positive integers. If p2 + p + 1 = r and

q2 + q + 1 = 3r, then p is not an odd prime.

Proof. Since q2 + q + 1 ≡ 0 mod 3, then q ≡ 1 mod 3 and we set q = 3s+ 1.
The equality q2+q+1 = 3(p2+p+1) reduces to 3s(s+1) = p(p+1). Notice
that p divides 3s(s+ 1), so that if p is an odd prime, then either p | 3, p | s,
or p | (s + 1). We have p = 3 in the first case, which gives no solution. We
have s ≥ p−1 in the other two cases, so that p(p+1) = 3s(s+1) ≥ 3(p−1)p.
This gives p+ 1 ≥ 3(p− 1), so that p ≤ 2, which is a contradiction.

Let K be the multiset of all the primes distinct from 3 produced by all the
components σ(p2) of N . The primes in K are 1 mod 3, so |K| ≤ e+2p2,1+f4.
For a prime u > 3, let α(u) be such that α(u) = σ(u2) if u ≡ 2 mod 3 and
α(u) = σ(u2)/3 if u ≡ 1 mod 3. By Lemma 3, α(u) = α(v) implies u = v.
So all primes from p2 produce at least two prime factors, except for at most
one per distinct prime from K. That is, 2p2 − 1− p2,1 − p4 ≤ |K|. We thus
have 2p2 − 1− p2,1 − p4 ≤ e + 2p2,1 + f4, which gives

2p2 ≤ 1 + e+ 3p2,1 + p4 + f4. (8)

The combination 5×(1)+7×(2)+5×(3)+6×(4)+2×(5)+16×(6)+
(7)+ 2× (8) gives 1 ≤ 0, a contradiction. This means that the assumption
(7) that 7f ≤ 18p− 32 is false, and thus Ω(N) ≥ (18ω(N)− 31)/7.

4 Proof of Ω(N) ≥ 2ω(N) + 51

We use the general method and the computer program discussed in [4].
We use the following contradictions:

- The abundancy of the current number is strictly greater than 2.

- The current number n satisfies Ω(n) ≥ 2ω(n) + 51.
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We forbid the factors in S = {3, 5, 7, 11, 13, 17, 19}, in this order. We
branch on the smallest available prime congruent to 1 mod 3. If there is no
such prime, we branch on the smallest available prime congruent to 2 mod 3.
We still use a combination of exact branchings and standard branchings, as
in [4]. We use exact branchings only for the special components p1 and for
all the even powers 32e of 3.

By-passing roadblocks

A roadblock is a situation such that there is no contradiction and no pos-
sibility to branch on a prime. This happens when we have already made
suppositions for the multiplicity of all the known primes and the other num-
bers are composites.

Given a roadblockM , we check that the composites involved are not divis-
ible by an already considered prime, are not perfect powers, have no factor
less than 1010, and are pairwise coprime. Then we compute the following
quantities:

• F : It is a lower bound on the number of distinct prime factors of M .
We count the number of known prime factors of M plus two primes per
composite number.

• A: It is an upper bound on the abundancy of M . For the abundancy of
a component pe, we use σ−1(p

e) for an exact branching and σ−1(p
∞) =

p/(p− 1) for a standard branching.

For a composite C, we know that C has at most
⌊

lnC
10 ln 10

⌋

prime factors
since C has no factor less than 1010. So, the abundancy due to C is at

most (1 + 10−10)⌊
lnC

10 ln 10⌋.

• T : It is the target lower bound on Ω(N)−2ω(N), thus an odd integer.
We use T = 51 in the proof of Theorem 2.

For the sake of contradiction, we suppose that Ω(N)−2ω(N) ≤ T−2. By
Theorem 1, we have Ω(N) ≥ (18ω(N)−31)/7. So (18ω(N)−31)/7−2ω(N) ≤
Ω(N) − 2ω(N) ≤ T − 2, which gives ω(N) ≤ (7T + 17)/4. Thus, N has at
most ω(N) ≤ (7T +17)/4−F prime factors that do not divide M . Let p be
the smallest of these extra factors. We see that if

A(p/(p− 1))(7T+17)/4−F < 2 (9)
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then N cannot reach abundancy 2. This gives an upper bound on p. To get
around the roadblock, we branch on every prime number p (except those that
divide M or are already forbidden) in increasing order until (9) is satisfied.

Example:
34 =⇒ 112

1118 =⇒ 6115909044841454629
611590904484145462916 =⇒ σ (611590904484145462916) Roadblock 1
51 =⇒ 2× 3 Roadblock 2

We first branch on the components 34, 1118, and σ (1118)
16

and hit a first

roadblock, as no factors of C1 = σ
(

σ (1118)
16
)

are known. When trying to

get around this roadblock, we first branch on 51 and hit a second roadblock.
Consider this second roadblock:

• F = 6: We have the four primes 3, 5, 11, σ (1118), and at least two
primes from C1.

• A = σ−1

(

34 × 5× 11∞ × σ (1118)
∞
)

×(1 + 10−10)⌊
lnC1

10 ln 10⌋ = 1.9718518 · · ·

• T = 51.

Equation 9 is satisfied for p ≥ 6174, so to circumvent M , we branch on every
prime p between 7 and 6173, except 11.

When N has no factors in S.

If N has no factor in S, then it must have at least 115 distinct prime factors.
We obtain this by considering the product Π23≤p≤673

p
p−1

= 1.99807632 . . .
over the first 114 primes p greater than 19, which is an upper bound on the
abundancy and is smaller than 2.

Using Theorem 1, we obtain

Ω(N)− 2ω(N) ≥ (18ω(N)− 31)/7− 2ω(N)

= (4ω(N)− 31)/7

≥ (4× 115− 31)/7

= 61 + 2/7.

So, we have Ω(N) ≥ 2ω(N)+62, which concludes the proof of Theorem 2.
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