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a b s t r a c t

The interval number i(G) of a graph G is the least integer i such that G is the intersection
graph of sets of at most i intervals of the real line. The local track number l(G) is the least
integer l such thatG is the intersection graph of sets of atmost l intervals of the real line and
such that two intervals of the same vertex belong to different components of the interval
representation. The track number t(G) is the least integer t such that E(G) is the union of t
interval graphs. We show that the local track number of a planar graph with girth at least
7 is at most 2. We also answer a question of West and Shmoys in 1984 by showing that the
recognition of 2-degenerate planar graphs with maximum degree 5 and interval number
at most 2 is NP-complete.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph. A d-interval representation of G is a mapping that assigns a set of at most d intervals of the real line
to every vertex of G, such two vertices u and v are adjacent if and only if some interval for u intersects some interval for
v. The interval number i(G) of a graph G is the least integer d such that G has a d-interval representation. A component of
a d-interval representation is a maximal subset S of the real line such that every point in S is contained in an interval of
the representation. A d-local representation of G is a d-interval representation of Gwith the additional requirement that two
intervals for the same vertex belong to distinct components. The local track number l(G) has been recently introduced by
Knauer and Ueckerdt [9] as the least integer d such that G has a d-local representation. The track number t(G) is the least
integer t such that there exist t interval graphs Gj on the same vertex set as G that satisfy E(g) =


16j6t E(Gj). such that

E(G) is the union of. If t(G) 6 d, then a d-track representation of G is given by the union of the d (1-interval) representations
of the graphs Gj for 1 6 j 6 d. The d real lines supporting the representations of the graphs Gj are called tracks. Obviously,
we have i(G) 6 l(G) 6 t(G). We say that G is d-interval (resp. d-local, d-track) if i(G) 6 d (resp. l(G) 6 d, t(G) 6 d).

For every planar graph G, Scheinerman and West [10] obtained that i(G) 6 3 and Gonçalves [5] obtained that t(G) 6 4.
Both bounds are best possible [10,6].

The girth of a graph is the length of a shortest cycle. We denote by Pg the class of planar graphs with girth at least g (note
that P3 is simply the class of planar graphs). In this paper, we obtain the following results (see Fig. 1).

Theorem 1. The local track number of a graph in P7 is at most 2.

West and Shmoys [11] have shown that recognizing d-interval graphs is NP-complete for every fixed d > 2. Gyárfás and
West [7] obtained that recognizing 2-track graphs is NP-complete. This result has been extended by Jiang [8] who proved
that recognizing d-track graphs is NP-complete for every fixed d > 2. We generalize these results as follows.
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Fig. 1. Table of results.

Theorem 2. Let d > 2 be a fixed integer. Given a graph G such that t(G) 6 d if and only if i(G) 6 d, determining whether
t(G) 6 d is NP-complete, even if G is (K4, 2K3)-free, alternately orientable, a Meyniel graph, and a string graph.

Recall that i(G) 6 l(G) 6 t(G) holds unconditionally. Since Theorem 2 holds for graphs such that t(G) 6 d if and only
if i(G) 6 d, it uses only one reduction to show that recognizing d-track graphs, d-local graphs, and d-interval graphs is
NP-complete for every fixed d > 2.

West and Shmoys [11] asked in 1984 whether it is NP-complete to determine the interval number of a planar graph.
The following result implies that both the interval number and the local track number of a planar graph are NP-complete to
determine.

Theorem 3. Given a 2-degenerate planar graph Gwithmaximumdegree 5 such that l(G) 6 2 if and only if i(G) 6 2, determining
whether l(G) 6 2 is NP-complete.

Concerning the track number of planar graphs, Gonçalves and Ochem [6] have proved that recognizing d-track bipartite
planar graphs is NP-complete for d = 2 and d = 3.

2. Preliminaries

A k-vertex is a vertex of degree k. A k-clause is a clause of size k. A pair of adjacent vertices x and y are true twins if
N[x] = N[y]. Non-adjacent vertices x and y are false twins if N(x) = N(y). In an interval representation, we say that an
interval is displayed if some part of this interval intersects no other interval. Similarly, the extremity of an interval is displayed
if it intersects no other interval. By convention, an interval representation does not contain an interval that does not intersect
another interval. A vertex is displayed if it is represented by strictly less intervals than what is allowed by the considered
representation, or if one of its interval is displayed. We also say that an interval a covers an interval b if b is contained in
a. The maximum average degree mad(G) of a graph G is defined by mad(G) = maxH⊆G {2|E(H)|/|V (H)|}. It is well-known
that for every graph G ∈ Pg , we have mad(G) 6 2g/(g − 2) [2].

3. Proof of Theorem 1

We define a good representation as a 2-local representation such that every vertex is displayed. We prove that every
graph with girth at least 7 and maximum average degree strictly smaller than 14

5 admits a good representation. Let G be a
hypothetical counter-example to this statement that is minimal for the subgraph order. That is, G has girth at least 7 and
maximum average degree strictly smaller than 14

5 , G does not admit a good representation, and every proper subgraph of G
admits a good representation. The graph Gmust be connected, since otherwise we would obtain a good representation of G
by gathering the good representations of its connected components.

First, suppose for contradiction that G contains a 1-vertex a adjacent to a vertex b. By minimality, G\a admits a good
representation. In this representation, b is represented by atmost one interval or one interval of b is displayed. In both cases,
we can extend the representation into a good representation of G. In the former case, we add two new intersecting intervals
in a new component: one interval for a and one interval for b. In the latter case, we add a new interval for a intersecting only
an existing displayed interval of b. This contradicts the fact that G has no good representation, thus G contains no 1-vertex.

A vertex is said weak if it is a 2-vertex or a 3-vertex adjacent to a 2-vertex.
Now, suppose for contradiction that G contains an induced path P = {v1, . . . , vk} on k > 2 vertices such that every

vi has exactly one neighbor in G\P . Consider a good representation of the graph G′ obtained from G by deleting the edges
contained in P . Every vertex vi has degree 1 in G′ and is thus represented by only one interval. So we can extend the good
representation of G′ to G by representing the edges of P on a new component, which is a contradiction. The case k = 2means
that G does not contain two adjacent 2-vertices. The case 3 6 k 6 5 means that a 3-vertex in G is adjacent to at most one
weak vertex.

Finally, suppose for contradiction that G contains a 4-vertex u3 adjacent to four weak vertices as shown in Fig. 2(a). The
vertex v1 (resp. w1, v5, w5) exists if and only if v2 (resp. w2, v4, w4) is a weak 3-vertex. The fact that the girth of G is at
least 7 ensures that no two of the vertices depicted in Fig. 2(a) can be identified, that is, Fig. 2(a) describes all the possible
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(a) Neighborhood of the
4-vertex.

(b) Good representation of P ′ and P ′′ .

Fig. 2. A 4-vertex adjacent to four weak vertices.

cases such that a 4-vertex is adjacent to four weak vertices. We consider only the case such that u3 is adjacent to four weak
3-vertices, since the other cases are similar. Let P ′

= {v1, v2, u3, v4, v5} and P ′′
= {w1, w2, u3, w4, w5} be induced paths of

G. Consider a good representation of the graph G′ obtained from G by deleting the edges contained in P ′ and P ′′. The vertices
vi and wi (for i ∈ {1, 2, 4, 5}) have degree 1 in G′ and are thus represented by only one interval. So we can extend the good
representation of G′ to G by representing the edges of P ′ and P ′′ on two new components, as shown in Fig. 2(b), which is a
contradiction.

We show that the maximum average degree of G is at least 14
5 using the following discharging procedure. The initial

charge of every vertex is its degree and we apply the following rules:

R1: Every 3+-vertex gives 2
5 to each adjacent 2-vertex.

R2: Every non-weak vertex gives 1
5 to each adjacent weak 3-vertex.

Let us check that the final charge ch(v) of every vertex v is at least 14
5 .

• if d(v) = 2 then ch(v) = 2 + 2 ×
2
5 =

14
5 by R1.

• if d(v) = 3 and v is weak, then v has two non-weak neighbors and one 2-neighbor, so ch(v) = 3+ 2×
1
5 −

2
5 = 3 by R2

and R1.
• if d(v) = 3 and v is not weak, then v is adjacent to at most one weak 3-vertex, so ch(v) > 3 −

1
5 =

14
5 by R2.

• if d(v) = 4 then v is adjacent to at most three weak vertices, so ch(v) > 4 − 3 ×
2
5 =

14
5 .

• if d(v) = k > 5 then ch(v) > k − k ×
2
5 =

3k
5 > 3.

We have shown that every graph with girth at least 7 and maximum average degree strictly smaller than 14
5 admits a

good representation. Since graphs in Pg have maximum average degree strictly smaller than 2g/(g − 2), every graph in P7
has a good representation.

4. NP-completeness results

4.1. Proof of Theorem 2

We consider the graph Q obtained from Kd,2d2 by adding a 1-vertex adjacent to every d-vertex. In a d-interval
representation of Q , there are at most 2d2 extremities for the intervals corresponding to the 2d2-vertices, since there are d
such vertices, each represented by at most d intervals. Each of the d-vertices must have an interval that is not covered by an
interval of a 2d2-vertex since otherwise we cannot represent the adjacent 1-vertex. This means that all the 2d2 mentioned
extremities are covered, and none of the 2d2-vertices has a displayed extremity. On the other hand, it is easy to see that Q
admits a d-track representation.

We reduce the NP-complete problem [6] of determining whether the track number of a bipartite planar graph with girth
6 is at most 2. Let H be an instance of this problem. We construct an instance G of the problem in Theorem 2 from H as
follows. We take H and two copies Qa and Qb of Q . We pick a 2d2-vertex a in Qa and a 2d2-vertex b in Qb. For every vertex vi
of H , we add the edges via and vib. Also, for every vertex vi in H , we add d − 2 copies Qi,j of Q , with 3 6 j 6 d. Finally, for
every Qi,j, we pick a 2d2-vertex vi,j in Qi,j and add the edge vivi,j.

Suppose that H has a 2-track representation. To obtain a d-track representation of G, we put the representation of one
track of H on track 1 of G and cover it by an interval of a. Also, we put the representation of the other track of H on track 2
of G and cover it by an interval of b. Then we can complete the d-track representation of Qa and Qb. For every vertex vi of H ,
we put an interval of vi on each track j, for 3 6 j 6 d, such that all of these intervals are disjoint. We cover the interval of vi
on track j by an interval of the vertex vi,j. Then we can complete the d-track representation of Qi,j.

Now, suppose that G has a d-interval representation. Notice that d − 2 intervals of a vertex vi are covered by an interval
of the vertices vi,j, for 1 6 i 6 |V (H)| and 3 6 j 6 d. Thus, only 2 intervals of vi can be used to represent an edge of H .
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(a) Variable. (b) 2-clause. (c) 3-clause.

Fig. 3. The variable and clause gadgets.

Since vi is adjacent to a and b and since all the extremities of the intervals of a and b are covered by vertices in Qa and Qb,
one of the two remaining intervals of vi is covered by an interval of a and the other remaining interval of vi is covered by
an interval of b. By putting on one track the representation of the intervals of the vertices of H covered by the intervals of a
and on another track the representation of the intervals of the vertices of H covered by the intervals of b, all the edges of H
are represented and we obtain a 2-track representation of H .

Let us verify that G has the claimed properties. We recall the definition of the considered graph classes [4]. A graph is
Meyniel if every cycle of odd length at least 5 has at least 2 chords. A graph is alternately orientable if and only if it admits
an orientation in which no chordless cycle of length at least 4 contains a directed P3. A graph is a string graph if it is the
intersection graph of curves in the plane. These classes, as well as K4-free graphs, are closed under 1-sum. We have to
show that G is in the class C of graphs that are (K4, 2K3)-free, alternately orientable, Meyniel, and string. The 2-connected
components of G are isomorphic to either K2, Kd,2d2 , or a bipartite planar graph dominated by two non-adjacent vertices.
Since K2 and Kd,2d2 are complete bipartite graphs, they are in C. We denote by BP++ the last 2-connected component. Every
bipartite planar graph is in C. Notice that the graph obtained by adding a universal vertex to a bipartite graph in C is also
in C. Moreover, C is closed under the operation of adding a false twin to a vertex. Thus, BP++ is in C. Now, notice that C
is almost closed under 1-sum, except that the resulting graph may contain an induced 2K3. However, since G has only one
2-connected component that contains triangles, then G is 2K3-free and thus G is in C. Finally, notice that G is perfect since it
is Meyniel, and that we get a bipartite graph by removing the vertices a and b from G.

4.2. Proof of Theorem 3

We reduce the NP-complete problem [3] restricted planar 3-sat. This variant of sat is such that:

• each clause has size 2 or 3,
• each variable appears exactly twice positively and once negatively, and
• the variable–clause incidence graph is planar.

We consider an instance I of restricted planar 3-sat and construct a graph G corresponding to I as follows. For every
variable (resp. 2-clause, 3-clause) of I , we take a copy of the graph depicted in Fig. 3(a) (resp. Fig. 3(b), Fig. 3(c)). The gray
diamond shape used in the construction of the variable gadget and the 3-clause gadget is the graph F depicted in Fig. 4.
The vertex n in a variable gadget corresponds to the negative literal and the vertices p and q correspond to the two positive
literals of the corresponding variable. Also, the vertices ℓi in a clause gadget correspond to the literals of the corresponding
clause. To obtain G, we consider every literal ℓ of I and identify the vertex corresponding to ℓ in the variable gadget with the
vertex corresponding to ℓ in the clause gadget.

Let us describe the properties of F . Consider a 2-interval representation of F . The graph F has eight 5-vertices, so at most
32 interval extremities correspond to the 5-vertices. Since F is triangle-free, each of these extremities intersects at most one
other interval. Every representation of an edge linking 5-vertices is such that either one interval is contained in the other
or two intervals overlap. In both cases, two extremities are covered. Since every edge is represented at least once and the
graph induced by the 5-vertices has 12 edges, there are at most 32−12×2 = 8 such extremities that are not covered by an
interval corresponding to a 5-vertex. Moreover, F has eight 3-vertices that are each adjacent to two 5-vertices. A 3-vertex
covers at least one extremity of a 5-vertex, since otherwise it would not be possible to represent its adjacent 1-vertex. Thus,
every 3-vertex covers exactly one extremity of a 5-vertex. That is, for every 3-vertex, one of its intervals is contained in the
interval of a 5-vertex and its other interval has one covered extremity, so that at most one extremity is displayed. A 2-local
representation of F is given by the coloring of the edges in Fig. 4: each color class induces a caterpillar and corresponds to a
component, and every vertex is incident to at most 2 colors.

Now, consider any 2-interval representation of the variable gadget. The copies of F force that for every vertex in {n, p, q},
one interval is completely covered and the other has a displayed extremity in F . Suppose for contradiction that there exists a
2-interval representation of the variable gadget that both n and p have a displayed extremity. Then a is not displayed, since
one interval of a is covered by an interval of n and the other is covered by an interval of p. So we cannot representm, which
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Fig. 4. The forcing graph F . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. 2-local representations of the variable gadget.

is adjacent to a but is adjacent neither to n nor p. Thus, no 2-interval representation of the variable gadget is such that both
n and p (resp. n and q) have a displayed extremity. On the other hand, there exist 2-local representations of the variable
gadget such that:

• both p and q have a displayed extremity (and thus n has no displayed extremity).
• n has a displayed extremity (and thus neither p nor q has a displayed extremity).

These two representations are given at the top and at the bottom of Fig. 5. The interval of n, p, or q that is covered by an
interval of a vertex in F is not represented. The displayed interval of n, p, or q has one extremity that is covered by an
interval of a vertex in F , which is represented by a dashed interval. In both representations, the 6 intervals for n, p, and q lie
on different components.

In the reduction, a literal is true if and only if the corresponding vertex has a displayed extremity in the representation
of the variable gadget. A variable is false if and only if its vertex n has a displayed extremity in the representation of the
variable gadget. Let us show that a clause gadget has a 2-local representation if the corresponding clause is satisfied, and
has no 2-interval representation otherwise. The case of a 2-clause is easy: the displayed intervals of the literals ℓ1 and ℓ2
lie on distinct components, so we can extend the 2-local representation to the vertices x and y of the 2-clause gadget if at
least one of these intervals has a displayed extremity, and otherwise we cannot extend it into a 2-interval representation.
Let us consider a 3-clause. One of the four extremities of the intervals of a vertex ri is covered by its attached copy of F . If
the literal ℓi is false, then an interval of ri is completely covered by an interval of ℓi, so that there remains only one displayed
extremity for ri. If the literal ℓi is true, then we can represent ri such that one interval of ri has an extremity covered by F
in one component and the other interval of ri has an extremity covered by ℓi in another component, so that there remain
two displayed extremities in distinct components for ri. If the clause is not satisfied, then there remain three displayed
extremities for r1, r2, and r3, and thus we cannot extend a 2-local representation to the four 3-vertices of the clause gadget
in order to get a 2-interval representation. If the clause is satisfied, then there remain at least 4 displayed extremities for r1,
r2, and r3 that all lie in distinct components, and it is easy to check that we can indeed extend a 2-local representation to the
3-vertices of the clause in every case.

Let us summarize the reduction.

1. Given an assignment satisfying I , we obtain a 2-local representation of G using the constructions described above.
2. Given a 2-interval representation of G, we obtain an assignment satisfying I by setting a variable to false if and only if the

corresponding vertex n has a displayed extremity in the representation induced by the vertices of the variable gadget.

To finish the proof, observe that G is planar, 2-degenerate, with maximum degree 5, and can be constructed from I in
polynomial time.

5. 2-track graphs vs edge-disjoint interval graphs

Gyárfás and West [7] ask whether there exist d-track graphs that are not the union of d pairwise edge-disjoint interval
graphs. In this section, we give a positive answer with d = 2. Let W be the graph depicted in Fig. 6.

Theorem 4. The graph W is a 2-track graph and the edge AA′ is represented twice in every 2-interval representation.
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Fig. 6. The graphW .

Fig. 7. The graphW has no 2-interval representation such that AA′ appears only once.

Proof. Notice thatW \

A′


corresponds to the graph Q for d = 2 in the construction of Theorem 2. SoW \


A′


is a 2-track

graph. Moreover, 2-track graphs are closed by the addition of a true twin. SoW is a 2-track graph.
Now, assume for contradiction that there exists a 2-interval representation of W such that the edge AA′ is represented

once. For every vertex x, we denote by x1 and x2 the intervals representing x. Without loss of generality we assume that A1
intersects A′

1. Since AA′ is already represented and B is adjacent to neither A nor A′, then the intervals A1 ∪ A′

1, A2, A′

2, B1, and
B2 do not intersect.

Let I be the set of intervals representing vertices of degree at least 2. Every 4-vertex x intersects at least two disjoint
intervals in I . Due to the 1-vertex adjacent to x, we assume without loss of generality that x1 is displayed in I . This implies
that x1 covers an extremity of an interval in I . If both intervals of x are displayed, then we can assume that at most one of
them intersects A1 ∪ A′

1. If both intervals of x are displayed and one of them intersects A1 ∪ A′

1, then we assume without loss
of generality that x1 intersects A1∪A′

1. We partition the sets of 4-vertices into the set V1 of 4-vertices x such that x1 intersects
A1 ∩ A′

1, B1 or B2 and the set V2 of 4-vertices x such that x1 intersects neither A1 ∩ A′

1, B1, nor B2. We define n1 = |V1| and
n2 = |V2|. Each of the intervals A1 ∪ A′

1, B1, and B2 has two extremities, so there are at most six vertices in V1.

n1 6 6. (1)

The sets V1 and V2 form a partition of the eight 4-vertices.

n1 + n2 = 8. (2)

Every vertex x in V1 is such that x1 covers at least one extremity of I since x1 is displayed. Every vertex x in V2 covers at least
2 extremities of distinct intervals in I since x1 and x2 have to intersect three disjoint intervals. Moreover, the 5 intervals
A1 ∪ A′

1, A2, A′

2, B1, and B2 have 10 extremities in total, so we have:

n1 + 2n2 6 10. (3)

From Eqs. (1) to (2), we have that n2 > 2. From Eqs. (2) to (3), we have that n2 6 2. Hence n2 = 2 and n1 = 6. Therefore, all
the extremities of A1 ∪ A′

1, B1, and B2 are covered by the vertices in V1. Recall that a vertex in V2 has to cover the extremities
of two distinct intervals of I . Hence, both vertices in V2 must cover one extremity of A2 and one extremity of A′

2. Since this is
impossible, we have a contradiction (see Fig. 7). �

6. Conclusion

Balogh et al. [1] proved that the interval number of a planar graph with maximum degree at most 4 is at most 2. The
degree bound is optimal because Theorem 3 implies that there exist 2-degenerate planar graphs with maximum degree 5
and interval number 3. By taking two copies of F \{v} and identifying their vertex u, we even obtain a bipartite 2-degenerate
planar graph with maximum degree 5 and interval number 3. However, we have not been able to restrict Theorem 3 to
bipartite graphs, and maybe it is impossible to do so. Indeed, the complexity of recognizing triangle-free 2-interval graphs
has been asked in [7,8,11] and remains an open problem.
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