$\rm N^o$ d'ordre : 3083

THÈSE

PRÉSENTÉE À

L'UNIVERSITÉ BORDEAUX I

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET D'INFORMATIQUE

Par Pascal Ochem

POUR OBTENIR LE GRADE DE

DOCTEUR

SPÉCIALITÉ : INFORMATIQUE

Graph coloring and combinatorics on words

Soutenue le : 24 novembre 2005

Après avis des rapporteurs :

Jean Berstel Professeur Jan Kratochvíl Professeur

Devant la commission d'examen composée de :

Jean Berstel	Professeur	Rapporteur
Robert Cori	Professeur	Président
Jan Kratochvíl	Professeur	Rapporteur
André Raspaud	Professeur	Examinateur
Gwénaël Richomme	Maître de Conférences HDR	Examinateur
Éric Sopena	Professeur	Directeur de thèse

-2005 -

Remerciements

Je tiens tout d'abord à remercier Éric Sopena, mon directeur de thèse, pour avoir fait confiance à Dieter Kratsch, pour ses conseils toujours avisés, et pour m'avoir permis et même encouragé à travailler aussi sur les mots.

I warmly thank Jan Kratochvíl who reviewed my thesis and came from Prague to attend to the defense.

Je remercie Jean Berstel d'avoir été rapporteur et pour ses conseils concernant les exposés oraux.

J'ai apprécié que André Raspaud et Gwénaël Richomme, avec qui j'ai eu l'occasion de travailler, aient participé à mon jury. Je les remercie, ainsi que Robert Cori pour avoir présidé ce jury.

Je n'oublie pas les doctorants et parfois co-auteurs du LaBRI, notamment Daniel, Mickaël, Alexandre, Ismaïl, Abdelaziz, Fabrice et Jérémie.

Enfin, je remercie mes parents et Marie-Thérèse.

First part

Graph coloring

Chapter 1

Preliminaries

1.1 Graphs

A simple graph is a set of vertices and a set of edges. An edge is a subset of the vertex set of size two. An oriented graph is an orientation of an undirected graph, obtained by assigning to every edge one of the two possible orientations. An oriented edge is called an arc. If G is a graph, V(G) denotes its vertex set, E(G) denotes its set of edges (or arcs if G is an oriented graph). A graph is planar if it can be drawn in the plane without edges (or arcs) crossing. A plane graph is particular planar embedding of a planar graph. The set of faces of a plane graph G is denoted F(G). The girth of a graph is the length of its shortest cycle.

Let us now introduce other well-known graph classes. A graph is outerplanar or 1outerplanar if it has a planar embedding such that every vertex belongs to the outerface. For $k \ge 2$, a graph is k-outerplanar if it has a planar embedding such that the vertices not contained in the outerface induce a (k-1)-outerplanar graph. A complete graph on k vertices is called a clique on k vertices or a k-clique. Partial k-trees are the subgraphs of k-trees, which are defined as follows: the k-clique is a k-tree and every other k-tree G contains a vertex v whose neighborhood induces a k-clique and is such that $G \setminus v$ is a k-tree. Finally, a graph is k-degenerate if all of its non-empty subgraphs contain a vertex of degree at most k. We use in this thesis the following notations:

 \mathcal{P}_k denotes the class of planar graphs with girth at least k.

out(k) denotes the class of k-outerplanar graphs.

 \mathcal{S}_k denotes the class of graphs with maximum degree at most k.

 \mathcal{T}_k denotes the class of partial k-trees.

 \mathcal{D}_k denotes the class of k-degenerate graphs.

bip denotes the class of bipartite graphs.

A proper vertex coloring of a simple graph G is an assignment c of colors to the vertices of G such that $c(u) \neq c(v)$ if the vertices u and v are adjacent in G. A k-coloring is a proper vertex coloring using k colors. The chromatic number $\chi(G)$ is the smallest integer k such that G has a k-coloring. A graph is bipartite if it has 2-coloring. In the next sections, we introduce other types of coloring and the corresponding chromatic numbers, if it is defined. For any type of chromatic number $\chi_{\mathbf{x}}$ of a graph, we also define the (possibly infinite) chromatic number $\chi_{\mathbf{x}}(\mathcal{C})$ of a graph class \mathcal{C} as the maximum of $\chi_{\mathbf{x}}(G)$ taken over every graph $G \in \mathcal{C}$.

The four color Theorem and Grötzsch's Theorem state respectively that planar graphs are 4-colorable and triangle-free planar graphs are 3-colorable.

Theorem 1.1.

1. $\chi(\mathcal{P}_3) = 4 [2, 3].$

2. $\chi(\mathcal{P}_4) = 3$ [31].

1.2 Oriented colorings

A homomorphism from an oriented graph G to an oriented graph H is a mapping φ from V(G) to V(H) which preserves the arcs, that is $(x, y) \in E(G) \Longrightarrow (\varphi(x), \varphi(y)) \in E(H)$. We say that H is a *target graph* of G if there exists a homomorphism from G to H. The oriented chromatic number $\chi_o(G)$ of an oriented graph G is defined as the smallest order of a target graph of G. The oriented chromatic number $\chi_o(G)$ of an undirected graph G is then defined as the maximum oriented chromatic number of its orientations. We will say that a graph G is H-colorable if H is a target graph of G and the vertices of H will be called colors.

Raspaud and Nešetřil introduced in [55] the strong oriented chromatic number of an oriented graph G (denoted $\chi_s(G)$), which definition differs from that of $\chi_o(G)$ by requiring that the target graph is an oriented Cayley graph. Various bounds on the (strong) oriented chromatic number have been found for subclasses of planar graphs:

Theorem 1.2.

- 1. $\chi_o(\mathcal{P}_3) \leq 80 \ [64].$
- 2. $\chi_s(\mathcal{P}_3) \leq 271 \ [50].$
- 3. $\chi_o(\mathcal{P}_3) \ge 17$ [49].
- 4. $\chi_s(\mathcal{P}_5) \leq 19 \ [10].$
- 5. $\chi_s(\mathcal{P}_6) \leq 11 \ [10].$
- 6. $\chi_s(\mathcal{P}_8) \leqslant 7$ [10].
- 7. $\chi_s(\mathcal{P}_{14}) = 5 [10, 56].$
- 8. $\chi_o(out(1)) = \chi_s(\mathcal{T}_2) = 7$ [70].

1.3. ACYCLIC IMPROPER COLORINGS

1.3 Acyclic improper colorings

A vertex coloring c of a graph G is *acyclic* if for every two distinct colors i and j, the edges uv such that c(u) = i and c(v) = j induce a forest. A cycle or a path is said to be *alternating* if it is properly colored with two colors. Notice that only even cycles can be alternating and that a coloring is acyclic if and only if there exists no alternating cycle. The acyclic chromatic number $\chi_a(G)$ is the smallest number of colors needed in an acyclic proper coloring of the graph G. The next theorem summarizes the known bounds on the acyclic chromatic number of planar graphs with given girth.

Theorem 1.3.

- 1. $\chi_a(\mathcal{P}_3) = 5 [8].$
- 2. $\chi_a(\mathcal{P}_4 \cap bip \cap \mathcal{D}_2) = 5$ [41].
- 3. $\chi_a(\mathcal{P}_5) \leq 4$ [11].
- 4. $\chi_a(\mathcal{P}_7) \leq 3$ [11].

Raspaud and Sopena showed that the oriented chromatic number of a graph is bounded in terms of its acyclic chromatic number:

Proposition 1.1. [64] For every graph G such that $\chi_a(G) = k$, $\chi_o(G) \leq k2^{k-1}$.

Kostochka, Sopena, and Zhu then proved that the acyclic chromatic number of a graph is bounded in terms of its oriented chromatic number :

Proposition 1.2. [42] For every graph G such that $\chi_o(G) = k \ge 4$, $\chi_a(G) \le k^2 + k^{3+\lceil \log_2 \log_2 k \rceil}$.

The result of Borodin that planar graphs are acyclically 5-colorable (i.e. $\chi_a(\mathcal{P}_3) = 5$) thus implies that the oriented chromatic number of a planar graph is at most 80 (i.e. $\chi_o(\mathcal{P}_3) \leq 80$), which is yet the best known upper bound. In order to get a better upper bound on $\chi_o(\mathcal{P}_3)$, if possible, it is interesting to study the tightness of Proposition 1.1, in particular for k = 5. The previously best known lower bound on the maximum value of $\chi_o(G)$ in terms of $\chi_a(G)$ was given in Vignal's thesis [77] with a family of graphs G_k , $k \ge 1$ such that $\chi_a(G_k) = k$ and $\chi_o(G_k) = 2^k - 1$.

Improper colorings are defined as follows: A graph G belongs to the class $\mathcal{C}_0 \circ \cdots \circ \mathcal{C}_{k-1}$ if and only if G has a k-coloring such that the i^{th} color class induces a graph in \mathcal{C}_i , for $0 \leq i \leq k-1$. Boiron, Sopena, and Vignal introduced the notion of acyclic improper coloring [7]. Let $\mathcal{C}_0, \ldots, \mathcal{C}_{k-1}$ be graph classes. A graph G belongs to the class $\mathcal{C}_0 \odot \cdots \odot \mathcal{C}_{k-1}$ if and only if G has an acyclic k-coloring such that the i^{th} color class induces a graph in \mathcal{C}_i , for $0 \leq i \leq k-1$. For brevity, if $\mathcal{C}_0 = \cdots = \mathcal{C}_{k-1} = \mathcal{C}$ we will denote by \mathcal{C}^k the class $\mathcal{C}_0 \circ \cdots \circ \mathcal{C}_{k-1}$ and by $\mathcal{C}^{(k)}$ the class $\mathcal{C}_0 \odot \cdots \odot \mathcal{C}_{k-1}$.

The main motivation in the study of acyclic improper colorings is the following generalization of Proposition 1.1.

Proposition 1.3. [7] Let C_0, \ldots, C_{k-1} be graph classes such that $\chi_o(C_i) = n_i$, for $0 \leq i < k$. Every graph $G \in C_0 \odot \cdots \odot C_{k-1}$ satisfies $\chi_o(G) \leq 2^{k-1} \sum_{i=0}^{i < k} n_i$. The bound of Proposition 1.3 is shown to be tight for $k \ge 3$ under mild assumptions in Section 2.1.

We know from [69, 71] that $\chi_o(\mathcal{T}_3) = \chi_o(\mathcal{T}_3 \cap \mathcal{P}_3) = 16$. Thus, Boiron et al. [7] pointed out that:

- 1. $\mathcal{P}_3 \subset \mathcal{T}_3 \odot \mathcal{S}_0 \odot \mathcal{S}_0$ would imply that $\chi_o(\mathcal{P}_3) \leq 72$,
- 2. $\mathcal{P}_3 \subset \mathcal{T}_3 \odot \mathcal{S}_1 \odot \mathcal{S}_0$ would imply that $\chi_o(\mathcal{P}_3) \leq 76$.

We will see that the second point is meaningless. Indeed, we have that $\mathcal{P}_3 \subset \mathcal{T}_3 \odot \mathcal{S}_1 \odot \mathcal{S}_0 \iff \mathcal{P}_3 \subset \mathcal{T}_3 \odot \mathcal{S}_0 \odot \mathcal{S}_0$ from a general result on acyclic improper colorings of planar graphs given in Section 2.2.

An acyclic improper coloring is interesting with respect to Proposition 1.3 if every color class has bounded oriented chromatic number. That is why we often use as color classes the graph classes S_0 , S_1 , and \mathcal{D}_1 : We have that $\chi_o(S_0) = 1$, $\chi_o(S_1) = 2$, and $\chi_o(\mathcal{D}_1) = 3$.

1.4 List colorings

For any type **x** of vertex coloring with a notion of chromatic number, we can define a list-version of **x** coloring. A graph G is **x** L-colorable if for a given list assignment $L = \{L(v) : v \in V(G)\}$ there exists a coloring c of G such that $c(v) \in L(v)$ for every vertex $v \in V(G)$ and c is an **x** coloring of G. If G is **x** L-colorable for every list assignment with $|L(v)| \ge k$ for all $v \in V(G)$, then G is said **x** k-choosable. The parameter $\chi^l_{\mathbf{x}}(G)$ is the smallest integer k such that G is **x** L-colorable.

For any type of chromatic number $\chi_{\mathbf{x}}$ of a graph, we also define the (possibly infinite) chromatic number $\chi_{\mathbf{x}}(\mathcal{C})$ of a graph class \mathcal{C} as the maximum of $\chi_{\mathbf{x}}(G)$ taken over every graph $G \in \mathcal{C}$.

Thomassen proved that every planar graph is properly 5-choosable [74] and Voigt proved that there exist planar graphs which are not properly 4-choosable [79], thus $\chi^l(\mathcal{P}_3) = 5$. Borodin et al. studied the acyclic choosability of planar graphs and obtained $\chi^l_a(\mathcal{P}_3) \leq 7$ [9], they also conjectured that every planar graph is acyclically 5-choosable. The following Proposition provides two examples of coloring results that easily extend to their list-version.

Proposition 1.4.

$$\chi_a^l(\mathcal{T}_k) = k + 1.$$

$$\chi^l(\mathcal{D}_k) = k + 1.$$

In Section 2.6, we investigate the acyclic choosability of some sparse graphs.

1.5 Edge colorings

Many graph parameters in the litterature are defined as the minimum size of a partition of the edges of the graph such that each part belongs to some graph class C. The most common

1.5. EDGE COLORINGS

is the chromatic index $\chi'(G)$, in this case C is the class of graphs with maximum degree one. Vizing [78] proved that $\chi'(G)$ either equals $\Delta(G)$ or $\Delta(G) + 1$. Deciding whether $\chi'(G) = 3$ is shown to be NP-complete for general graphs in [36]. The arboricity a(G) is another well studied parameter, for which C is the class of forests. In [54], Nash-Williams proved that:

$$a(G) = \max_{H \subseteq G} \left\lceil \frac{|E_H|}{|V_H| - 1} \right\rceil \tag{1.1}$$

with the maximum being over all the subgraphs of G. Even with this nice formula, the polynomial algorithm computing the arboricity of a graph is not trivial [35]. Other similar parameters have been studied. A star is a tree of diameter at most two. A caterpillar is a tree whose non-leaf vertices form a path. For the star arboricity sa(G) (resp. linear arboricity la(G), caterpillar arboricity ca(G)), the corresponding class C is the class of star forests (resp. linear forests, caterpillar forests). Since paths are caterpillars and since stars are caterpillars which are trees, we have the following two inequalities for any graph G.

$$la(G) \geqslant ca(G) \tag{1.2}$$

$$sa(G) \ge ca(G) \ge a(G) \tag{1.3}$$

Since trees are easily partitionable into two forests of stars we have that:

$$2 \times a(G) \geqslant sa(G) \tag{1.4}$$

Hakimi et al. [34] showed the following inequality.

$$\chi_a(G) \geqslant sa(G) \tag{1.5}$$

Other interesting graph parameters include the track number t(G) [33, 43] and the subchromatic index $\chi'_{sub}(G)$ [23], for which C is respectively the class of interval graphs and the class of forests of stars and triangles. Notice that the class of triangle-free interval graphs is equivalent to the class of caterpillar forests. Thus, if G is triangle-free, then t(G) = ca(G) and $\chi'_{sub}(G) = sa(G)$.

A *T*-free forest is a forest without subgraphs isomorphic to *T*. For example, the P_n -free forests and the $K_{1,n}$ -free forests correspond to, respectively, the forests with diameter at most n-2 and to the forests with degree at most n-1. We define the *T*-free arboricity T-fa(G) of a graph *G* as the minimum number of *T*-free forests needed to cover the edges of *G*. Using this terminology, we can redefine some of the parameters we introduced. The chromatic index, the star arboricity, the linear arboricity, and the caterpillar arboricity correspond to, respectively, the P_3 -free arboricity, the P_4 -free arboricity, the $K_{1,3}$ -free arboricity, and the S_3 -free arboricity.

Figure 1.1: The path P_4 and the tree S_n .

If a tree T_1 is a subtree of a tree T_2 , then T_1 - $fa(G) \ge T_2$ -fa(G). So, the poset of trees produces a poset of arboricities. In this thesis, we focus on the chain $P_4 \subset S_2 \subset S_3 \subset S_n$, for $n \ge 4$. We study the maximum value of these parameters, taken over the graphs of a class \mathcal{C} , $T \cdot fa(\mathcal{C}) = \max\{T \cdot fa(G), G \in \mathcal{C}\}$. We mainly consider the classes of planar graphs with girth at least g (i.e. \mathcal{P}_g). Since $\mathcal{P}_{g+1} \subset \mathcal{P}_g$, we have $T \cdot fa(\mathcal{P}_g) \ge T \cdot fa(\mathcal{P}_{g+1})$ for any tree T. For a graph class \mathcal{C} , we define $U \cdot fa(\mathcal{C})$ as the minimum value of $T \cdot fa(\mathcal{C})$, taken over every finite tree T. Thus, for every tree T and every class \mathcal{C} , we have that:

$$T - fa(\mathcal{C}) \ge U - fa(\mathcal{C}) \ge a(\mathcal{C})$$
 (1.6)

Theorem 3.2 shows in particular that \mathcal{P}_4 and \mathcal{T}_2 are examples of graph classes \mathcal{C} such that the strict inequality U- $fa(\mathcal{C}) > a(\mathcal{C})$ holds. By the above relations, for any class \mathcal{C} , the parameters listed in Table 3.4 are ordered as follows:

$$\chi_a(\mathcal{C}) \ge P_4 - fa(\mathcal{C}) \ge S_2 - fa(\mathcal{C}) \ge S_3 - fa(\mathcal{C}) \ge S_4 - fa(\mathcal{C}) \ge U - fa(\mathcal{C}) \ge a(\mathcal{C})$$
(1.7)

1.6 Forbidden configurations and maximum average degree

Let us explain in general the method we use to prove coloring results. Such a result has the form "every graph $G \in \mathcal{C}$ has a coloring c". We define a partial order \prec on the set of graphs that extends the subgraph partial order. Then we consider a potential counter-example $G \in \mathcal{C}$ which is not colorable and is minimal with this property according to \prec . This means that if $H \in \mathcal{C}, H \neq G$, and $H \prec G$, then H is colorable. Now, we provide a set S of configurations that G cannot contain due to its minimality property. To show that a configuration $C \in S$ is forbidden, we suppose that G contains C and proceed as follows:

- 1. We find a suitable graph H such that $H \in \mathcal{C}, H \neq G$, and $H \prec G$.
- 2. We show that any coloring of H induces a coloring of a proper subgraph G' of G that can be extended in a coloring of G.

This is a contradiction because H is supposed to be colorable but not G. Thus G cannot contain the forbidden configuration C. To finish the proof, we show that no counter-example exists because every graph in C contains at least one configuration in S.

There are several ways to do this last step, i.e. the unavoidability of S, most often using a *discharging method*. We now present the discharging method used by Borodin et al. [10] to obtain Theorems 1.2.(4) to 1.2.(7). It uses the following graph parameter.

Definition 1.1. Let G be a graph, the maximum average degree of G, denoted by mad(G), is:

$$mad(G) = \max\{2|E(H)|/|V(H)|, \ H \subseteq G\}$$

We assign to every vertex v of the counter-example G an initial charge equal to its degree d(v) and define a *discharging procedure* that preserves the total charge. Then, we show that if the discharging procedure is applied to a graph K avoiding S, then the final charge $d^*(v)$ of every vertex $v \in V(K)$ satisfies $d^*(v) \ge q$. We thus have

$$mad(K) \ge \frac{2|E(K)|}{|V(K)|} = \frac{\sum_{v \in V(K)} d(v)}{|V(K)|} = \frac{\sum_{v \in V(K)} d^*(v)}{|V(K)|} \ge \frac{q|V(K)|}{|V(K)|} = q.$$

This implies a statement of the form "every graph G such that mad(G) < q has a coloring c". We can get a corollary of such a statement for planar graphs thanks to the following well known observation:

Observation 1.1. $G \in \mathcal{P}_g \Longrightarrow mad(G) < \frac{2g}{g-2}$.

Proof. If a planar graph G has girth g, then $|F(G)| \leq \frac{2|E(G)|}{g}$. By Euler's formula we get that $mad(G) = \frac{2|E(H)|}{|V(H)|} \leq \frac{2g|E(H)|}{2g+(g-2)|E(H)|} < \frac{2g}{g-2}$, for some graph $H \subseteq G$.

Let us finish this part with some conventions. We call respectively k-vertex, $\geq k$ -vertex, and $\leq k$ -vertex a vertex of degree $k, \geq k$, and $\leq k$. We also define k-neighbor, $\geq k$ -neighbor, and $\leq k$ -neighbor in the same way. In a figure representing a forbidden configuration, all the neighbors of "white" vertices are drawn, whereas "black" vertices may have other neighbors in the graph. Two or more black vertices may coincide in a single vertex, provided they do not share a common white neighbor.

CHAPTER 1. PRELIMINARIES

Chapter 2

Vertex colorings

This chapter is devoted to various positive and negative results in graph coloring. We consider oriented coloring and acyclic coloring, which are closely related, and two variants of the latter, namely acyclic improper colorings and acyclic list coloring.

2.1 Acyclic improper coloring versus oriented coloring

The following theorem shows that the upper bound of Proposition 1.3 is best possible in many cases.

Theorem 2.1. Let $k \ge 3$. Let C_0, \ldots, C_{k-1} be hereditary graph classes closed under disjoint union, and such that $\chi_o(C_i) = n_i$. Then $\chi_o(C_0 \odot \cdots \odot C_{k-1}) = 2^{k-1} \sum_{i=0}^{i < k} n_i$.

Proof. We construct an oriented graph $G \in \mathcal{C}_0 \odot \cdots \odot \mathcal{C}_{k-1}$ such that $\chi_o(G) = 2^{k-1} \sum_{i=0}^{i < k} n_i$. Let u_1, u_2, u_3 be a directed 2-path with arcs u_1u_2 and u_2u_3 , or u_3u_2 and u_2u_1 . We say that u_1 and u_3 are the *endpoints* of the directed 2-path. By definition, the endpoints of the directed 2-path get distinct colors in any oriented coloring. Since $\chi_o(\mathcal{C}_i) = n_i$, there exists a witness oriented graph W^i such that $\chi_o(W^i) = n_i$. The graph G_i contains k-1 independent vertices v_j^i , $0 \leq j < k-1$ and 2^{k-1} disjoint copies W_l^i , $0 \leq l < 2^{k-1}$ of W^i . We consider the binary representation $l = \sum_{n=0}^{n < k-1} 2^n x_n(l)$ of l. For every two vertices v_j^i and $u_l^i \in W_l^i$, we put the arc $v_j^i u_l^i$ (resp. $u_l^i v_j^i$) if $x_j(l) = 1$ (resp. $x_j(l) = 0$). If $l \neq l'$, their binary representations differ at the n^{th} digit, thus $u_l^i \in W_l^i$ and $u_{l'}^i \in W_{l'}^i$ are the endpoints of a directed 2-path $u_l^i, v_n^i, u_{l'}^i$. So the same color cannot be used in distinct copies of W^i , which means that at least $2^{k-1}n_i$ colors are needed to color the copies of W^i in any oriented coloring of G_i . To show that $G_i \in \mathcal{C}_0 \odot \cdots \odot \mathcal{C}_{k-1}$, we acyclically color G_i as follows. The k-1 vertices v_i^i get pairwise distinct colors in $\{0, \ldots, k-1\} \setminus \{i\}$ and every vertex u_l^i get color i (that is why we need the "closed under disjoint union" assumption). Let S_i denote the set of colors in some oriented coloring of the vertices u_l^i of G_i . Now we take one copy of each graph G_i and finish the construction of G. For every two vertices $u_l^i \in W_l^i$ and $u_{l'}^{i'} \in W_{l'}^{i'}$, such that $i \neq i'$, we add a new vertex l and create a directed 2-path $u_l^i, l, u_{l'}^{i'}$. So, for $i \neq i'$, we have $S_i \cap S_{i'} = \emptyset$, which means that at least $2^{k-1} \sum_{i=0}^{i < k} n_i$ colors are needed in any oriented coloring of G. To obtain an acyclic coloring of G, the new vertex l adjacent to u_l^i and $u_{l'}^{i'}$ gets a color in $\{0, \ldots, k-1\} \setminus \{i, i'\}$, which is non-empty if $k \ge 3$. Notice that Theorem 2.1 cannot be extended to the case k = 2 in general. By setting k = 2 and $C_0 = C_1 = S_0$, we obtain the class of forests $S_0^{(2)} = \mathcal{D}_1$. Proposition 1.3 provides the bound $\chi_o(\mathcal{S}_0^{(2)}) \leq 4$. This is not a tight bound, since oriented forests have a homomorphism to the oriented triangle, and thus $\chi_o(\mathcal{S}_0^{(2)}) = 3$.

The proof of Theorem 2.1 is constructive, but it does not help for the problem of determining $\chi_o(\mathcal{P}_3)$. Indeed, the graph corresponding to the proper 5-acyclic coloring (i.e. k = 5and $\mathcal{C}_0 = \cdots = \mathcal{C}_4 = \mathcal{S}_0$) is highly non-planar (it contains e.g. $K_{32,48}$ as a minor).

2.2 Acyclic improper colorings of planar graphs

In this section, we study which acyclic improper colorings may be able to color every planar graph. The next result implies that in such colorings, a "too small" class is not more useful than an independent set.

Theorem 2.2. Let $2 \leq k \leq 4$. Suppose that $\chi_o(\mathcal{C}_{k-1}) \leq 14$, then $\mathcal{P}_3 \subset \mathcal{C}_0 \odot \cdots \odot \mathcal{C}_{k-2} \odot \mathcal{C}_{k-1} \iff \mathcal{P}_3 \subset \mathcal{C}_0 \odot \cdots \odot \mathcal{C}_{k-2} \odot S_0$.

Figure 2.1: The graph we add to an arc.

Proof. Let G be an oriented graph. The oriented graph f(G) is obtained from G by adding to every arc 12 vertices as described in Figure 2.1. We also define $f_n(G)$ such that $f_0(G) =$ G and $f_{n+1}(G) = f(f_n(G))$. Notice that if G is planar, then f(G) is also planar. We consider the family G_k from [77] mentioned in Section 1.1, and in particular the oriented planar graph G_4 whose oriented chromatic number is 15. It is easy to check that G_4 is a subgraph of $f_2(K_2)$. Let us consider now any acyclic improper k-coloring c of $f_n(K_2)$ such that c(v) = c(w) = 0. To avoid an alternating cycle vxwy for some vertices x and y, $f_k(K_2)$ must contain a monochromatic copy of $f_1(K_2)$ colored 0. By induction, $f_{i\times k}(K_2)$ must contain a monochromatic copy of $f_i(K_2)$ for $i \ge 1$. The " \Leftarrow " implication of Theorem 2.2 holds by definition. We now prove the " \Longrightarrow " implication by contradiction. Suppose there exists an oriented planar witness graph W such that $W \in C_0 \odot \cdots \odot C_{k-2} \odot C_{k-1}$ and $W \notin C_0 \odot \cdots \odot C_{k-2} \odot S_0$. This means that any $C_0 \odot \cdots \odot C_{k-2} \odot C_{k-1}$ -coloring of W contains a monochromatic copy of G_4 colored k-1. So, by previous discussions, the graph $f_8(W)$ contains a monochromatic copy of G_4 colored k-1, which contradicts the requirement $\chi_o(C_{k-1}) \le 14$. \Box

Theorem 2.2 allows us to study which statement of the form "every planar graph belongs to $\mathcal{C}_0 \odot \cdots \odot \mathcal{C}_{k-1}$ " may improve the upper bound $\chi_o(\mathcal{P}_3) \leq 80$. If k = 4, the "least" candidate class would be $\mathcal{C}_0 \odot S_0 \odot S_0 \odot S_0$ with $\chi_o(\mathcal{C}_0) = 15$, but the corresponding bound is too large: $2^{4-1}(15+1+1+1) = 144 > 80$. If k = 3, there must be exactly one improper color, otherwise the least candidate, $\mathcal{C}_0 \odot \mathcal{C}_1 \odot \mathcal{S}_0$ with $\chi_o(\mathcal{C}_0) = \chi_o(\mathcal{C}_1) = 15$, provides a too large bound: $2^{3-1}(15+15+1) = 124 > 80$.

The constant 14 in Theorem 2.2 can be improved to 15 using ideas in [71].

We have not been able to get similar results for planar graphs with larger girth.

2.3 Acyclic improper colorings and k-outerplanar graphs

A theorem of Boiron et al. [7] states that some planar graphs have no acyclic $\mathcal{T}_3^{(2)}$ -coloring, actually they even showed that $out(3) \not\subset \mathcal{D}_3^{(2)}$. This result on acyclic improper colorings of planar graphs still holds with larger color classes.

Theorem 2.3. $out(3) \not\subset \mathcal{F}_1 \odot \mathcal{F}_2$, where for $1 \leq i \leq 2$, $\mathcal{F}_i = \mathcal{D}_3$, \mathcal{T}_4 , or out(2).

Figure 2.2: The graph I (the icosahedron) and the graph I^- .

Let I denote the icosahedron graph depicted in Figure 2.2 (left). The next lemma considers improper acyclic 2-colorings of I without restriction on the color classes. Let \mathcal{G} denote the class of all simple graphs.

Lemma 2.1. Up to symmetries, there are only two types of $\mathcal{G}^{(2)}$ -coloring of the icosahedron:

- (i) At most one vertex is colored 1 and all others are colored 2.
- (ii) Two vertices at distance 3 are colored 1 and all others are colored 2.

Figure 2.3: Small graphs.

Proof. We can assume w.l.o.g. that at most 6 vertices are colored 1. Suppose first that two adjacent vertices are colored 1. They have two common neighbors, so at least one of them must be colored 1 to avoid an alternating C_4 . Thus we have a 1-monochromatic K_3 . Three vertices outside of this K_3 are adjacent to two vertices of the K_3 , so at least one of them must be colored 1 to avoid an alternating C_6 . Thus we have a 1-monochromatic K_4^- . Four vertices outside of this K_4^- are adjacent to two vertices of the K_4^- , and at least one of them must be colored 1 to avoid an alternating C_8 . Thus we have a 1-monochromatic gem (see Figure 2.3). Four vertices outside of this gem are adjacent to at least two vertices of the gem, and at least one of them must be colored 1 to avoid an alternating C_8 . Thus we have a 1-monochromatic gem (see Figure 2.3). Four vertices outside of this gem are adjacent to at least two vertices of the gem, and at least one of them must be colored 1 to avoid an alternating C_8 . Thus we have a 1-monochromatic gem (see Figure 2.3). Four vertices outside of this gem are adjacent to at least two vertices of the gem, and at least one of them must be colored 1 to avoid an alternating C_8 . Thus we have a 1-monochromatic subgraph S, which is either S_3 , W_5 , or \overline{A}) (see Figure 2.3). Since |S| = 6, $I \setminus S$ must be 2-monochromatic. We easily verify that for each possible S there exists an alternating cycle in I. Suppose now that two vertices at distance two are colored 1. They have two common neighbors, and at least one of them must be colored 1 to avoid an alternating C_4 . Thus we have a 1-monochromatic P_3 and we fall in the previous case.

Let us denote by I^- the graph obtained by deleting one vertex from I (see Figure 2.2 (right)).

Lemma 2.2. I^- is neither 3-degenerate, 2-outerplanar, nor a partial 4-tree.

Proof. Since the minimum degree of I^- is four, it is not 3-degenerate. The graph I^- is 3connected, so it has a unique embedding on the sphere. Notice that I^- contains four distinct non-equivalent types of faces: one of degree five and three types of triangles. For every face F, the graph obtained by removing the vertices incident to F is not outerplanar, thus I^- is not 2-outerplanar. Finally, to prove that I^- is not a partial 4-tree, we show that we cannot obtain the empty graph from I^- by repeatedly deleting a \leq 4-vertex and placing a clique on its neighbors [67]. Any such vertex elimination ordering must start with one of the 4-vertices of the outerface of I^- , which all play the same role. Deleting a 4-vertex of I^- and placing a clique on its neighbors gives a graph J. Now J has two \leq 4-vertices playing the same role. Deleting one of them and placing a clique on its neighbors gives a graph K. Since K has minimum degree five, I^- has no elimination ordering and thus is not a partial 4-tree.

Lemmas 2.1 and 2.2 proves that the only improper acyclic colorings of I with the color classes of Theorem 2.3 are of type (ii).

Remark 2.1. If I has a coloring of type (ii), then for every 2-monochromatic triangle t, there is a vertex colored 1 adjacent to two vertices of t.

Consider now the graph G depicted in Fig 2.4 (left) obtained from K_4 by identifying each of the 3 marked faces with the outerface of a copy of an icosahedron.

Lemma 2.3. If G is acyclically 2-colored such that every copy of I has a coloring of type (ii), then the outer-face is monochromatic and there is an alternating path between a_0 and a_1 .

Proof. Suppose the first part of statement is false and assume that $c(a_0) = c(a_1) = 2$ and $c(a_2) = 1$ (see Fig 2.4 (middle)). We must have c(m) = 2 to avoid an alternating cycle a_2, a_0, m, a_1 . By remark 2.1, one u_i must be colored 1, and this creates an alternating C_4 , a contradiction. Now we check the last part of statement (see Fig 2.4 (right)). By the previous

Figure 2.4: The graph G considered in Lemma 2.3.

discussion, the vertices a_i are colored 2, and $c(m) = c(u_2) = 2$ to avoid an alternating path beetwen a_0 and a_1 . By remark 2.1, one of the u_i 's must be colored 1 and we suppose w.l.o.g. that $u_1 = 1$. This forces $c(w_1) = 2$ to avoid an alternating C_4 and $u_0 = v_0 = 2$ to avoid an alternating path beetwen a_0 and a_1 . By remark 2.1, either v_1 or v_2 (resp. w_1 or w_0) must be colored 1. In these 4 cases we have either an alternating cycle or an alternating path beetwen a_0 and a_1 .

To finish the proof of Theorem 2.3, we take two copies G' and G'' of G and we identify a'_0 and a''_0 (resp. a'_1 and a''_1) to obtain the 3-outerplanar graph G^* . By the previous lemmas, if G' and G'' are both colored as in Lemma 2.3, then there exist one alternating path between a'_0 and a'_1 in G' and another one in G'', which create an alternating cycle in G^* .

We now consider acyclic improper colorings of partial k-trees and show that the equality $\chi_a(\mathcal{T}_k) = k + 1$ is best possible in this context.

Theorem 2.4. For every $k \in \mathbb{N}^*$ and for every $G \in \mathcal{T}_k$, $\mathcal{T}_k \not\subset (G\text{-}free)^{(k)}$.

Proof. The case k = 1 is obvious, so assume $k \ge 2$ is a fixed integer in the following. Let us call *good* a clique c such that $2 \le |c| \le k$. Now we define the graphs $U_{k,n}$, $n \ge 1$, such that:

- 1. $U_{k,1} = K_2$.
- 2. For each good clique c of $U_{k,n}$, we add a new vertex adjacent to every vertex of c to obtain $U_{k,n+1}$.

Clearly, every graph in \mathcal{T}_k is a subgraph of $U_{k,n}$ for some n. To finish the proof, we will show that in any improper acyclic k-coloring, $U_{k,n\times k}$ contains a monochromatic copy of $U_{k,n}$. For n = 1, we have that $U_{k,k}$ contains a clique K_{k+1} , and thus contains a monochromatic K_2 . Now assume that $U_{k,n\times k}$ contains a monochromatic copy of $U_{k,n}$. For every good clique c of that copy there are k new vertices adjacent to c in $U_{k,n\times k+k}$, and one of these k new vertices must get the same color as c. This implies that $U_{k,(n+1)\times k}$ contains a monochromatic copy of $U_{k,n+1}$.

Finally, we obtain the following result on acyclic improper colorings of k-outerplanar graphs.

Theorem 2.5. $out(k+1) \subset S_0 \odot S_0 \odot S_0 \odot out(k)$

Proof. We show that there always exists a coloring of a (k+1)-outerplanar graph such that any vertex of the outerface gets one of the first three colors and all other vertices are colored with the last color. Let us characterize a counter-example T for the specified coloring with minimal number of vertices. The special type of coloration considered allows us to assume w.l.o.g. that the non outer-vertices of T induce an indepedent set, as a potential alternating cycle contains no monochromatic edge. We can also add a maximal number of edges connecting outer-vertices of T inside the outerface. This way, the neighborhood of any non outer-vertex induces a single vertex, a K_2 , or a cycle of the outerface. The outerface cannot contain a vertex cut of size two. These two vertices would be adjacent, therefore they would get different colors in a valid coloring of "one part" of T. We could extend this coloring to the whole graph, as a potential minimal alternating cycle cannot lie on both parts. The only remaining possibility is that T is a wheel, and a wheel has the specified coloring.

2.4 Paley tournaments and $S_{k,n}$ properties

For a prime power $q \equiv 3 \pmod{4}$, the vertices of the Paley tournament QR_q are the elements of the finite field \mathbb{F}_q and (i, j) is an arc in QR_q if and only if j - i is a non-zero quadratic residue of \mathbb{F}_q . The condition $q \equiv 3 \pmod{4}$ ensures that for every $i \neq 0$, i is a quadratic residue if and only if -i is a quadratic non-residue. Paley tournaments are oriented Cayley graphs with addition in \mathbb{F}_q as operation and non-zero quadratic residues as generators. An interesting property of Paley tournaments is the arc-transitivity. For any arc $(i, j) \in E(QR_q)$, the mapping $x \to \frac{x-i}{i-i}$ is an automorphism of QR_q which maps (i,j) to (0,1). So every arc in QR_a plays the same role. If K is an oriented graph, let K^R be the graph obtain by reversing every arc in K. The tournament QR_q is self-reverse in the sense that is QR_q automorphic to QR_q^R by the mapping $x \to -x$. Notice that $q = p^r \equiv 3 \pmod{4}$ if and only if $p \equiv 3 \pmod{4}$ and $r \equiv 1 \pmod{2}$. An orientation vector of size k is a sequence $\alpha = \{\alpha_1, \alpha_2, \ldots, \alpha_k\}$ in $\{0,1\}^k$. let G be an oriented graph and $X = (x_1, x_2, \ldots, x_k)$ be a sequence of pairwise distinct vertices of G. A vertex y of G is said to be an α -successor of X if for every i, $1 \leq i \leq k$, we have $\alpha_i = 1 \Longrightarrow (x_i, y) \in E(G)$ and $\alpha_i = 0 \Longrightarrow (y, x_i) \in E(G)$. The graph G satisfies property $S_{k,n}$ if for every sequence $X = (s_1, s_2, \ldots, s_k)$ of k pairwise distinct vertices of G, and for every orientation vector α of size k, there exist at least n vertices in V(G) which are α -successors of X. The next lemma provides some useful $S_{k,n}$ properties of Paley tournaments.

Lemma 2.4.

- 1. The Paley tournament QR_q satisfies $S_{1,\lfloor \frac{q}{2} \rfloor}$.
- 2. The Paley tournament QR_q satisfies $S_{2,\lfloor \frac{q}{4} \rfloor}$.
- 3. The Paley tournament QR_{27} satisfies $S_{3,2}$.
- 4. The Paley tournament QR_{59} satisfies $S_{3,5}$.

Proof. We easily check that QR_q satisfies property $S_{1,\lfloor \frac{q}{2} \rfloor}$, which simply means that every vertex has $\lfloor \frac{q}{2} \rfloor$ successors and $\lfloor \frac{q}{2} \rfloor$ predecessors. Proposition 1 in [10] means that QR_q also

satisfies property $S_{2,\lfloor\frac{q}{4}\rfloor}$. We now prove the two statements of the form " QR_q satisfies $S_{3,n}$ ". Note that the order of the vertices in a sequence does not matter. Thus, since any oriented triangle contains a directed 2-path, we only have to consider sequences (s_1, s_2, s_3) in which (s_1, s_2) and (s_2, s_3) are arcs of QR_q . Now, by the arc-transitivity of QR_q , we only need to check the property on sequences of the form (0, 1, v) such that $v \in \mathbb{F} \setminus \{0, 1\}$ and v - 1 is a quadratic residue of \mathbb{F} . Let us write $\langle v_1, v_2, v_3 \rangle$ if and only if $v_1 \neq v_2$ and there are automorphisms of QR_q mapping $(0, 1, v_1)$ to $(v_2, 0, 1)$ and $(1, v_3, 0)$. We easily see that if $\langle v_1, v_2, v_3 \rangle$ and $(0, 1, v_1)$ is checked, then $(0, 1, v_2)$ and $(0, 1, v_3)$ need no check. In the case of QR_{27} , we have $\langle x^5, x^{19}, x^{15} \rangle$ and $\langle x^7, x^{21}, x^{11} \rangle$ (see Figure 2.5 for the elements of \mathbb{F}_{27}). For every remaining sequence and for every orientation vector, two α -successors are listed in Figure 2.6. In the case of QR_{59} , we have $\langle 2, 58, 30 \rangle$, $\langle 6, 47, 50 \rangle$, $\langle 8, 42, 23 \rangle$, $\langle 10, 13, 54 \rangle$, and $\langle 18, 52, 37 \rangle$ (see Figure 2.7 for quadratic residues). For every remaining sequence and for every orientation vector, five α -successors are listed in Figure 2.8.

element	$(\mod 3, x^3 - x + 1)$	element	$(\mod 3, x^3 - x + 1)$
0	0		
1	1	x^{13}	-1
x	x	x^{14}	-x
x^2	x^2	x^{15}	$-x^{2}$
x^3	-1 + x	x^{16}	1-x
x^4	$-x + x^2$	x^{17}	$x - x^2$
x^5	$-1 + x - x^2$	x^{18}	$1 - x + x^2$
x^6	$1 + x + x^2$	x^{19}	$-1 - x - x^2$
x^7	$-1 - x + x^2$	x^{20}	$1 + x - x^2$
x^8	$-1 - x^2$	x^{21}	$1 + x^2$
x^9	1+x	x^{22}	-1 - x
x^{10}	$x + x^2$	x^{23}	$-x - x^2$
x^{11}	$-1 + x + x^2$	x^{24}	$1 - x - x^2$
x^{12}	$-1+x^2$	x^{25}	$1 - x^2$

Figure 2.5: Multiplicative and additive representations of the elements of \mathbb{F}_{27} .

(0,1,v)	$\{0,0,0\}$	$\{0,0,1\}$	$\{0,1,0\}$	$\{0,1,1\}$	$\{1,0,0\}$	$\{1,0,1\}$	$\{1,1,0\}$	$\{1,1,1\}$
$(0,1,x^2)$	x, x^3	x^9, x^{17}	x^5, x^{11}	x^7, x^{13}	x^{10}, x^{12}	x^4, x^8	x^6, x^{14}	x^{16}, x^{18}
$(0,1,x^5)$	x, x^{23}	x^{3}, x^{9}	x^7, x^{11}	x^{13}, x^{15}	x^{10}, x^{12}	x^4, x^8	x^{16}, x^{18}	x^2, x^6
$(0,1,x^6)$	x^{3}, x^{9}	x, x^{17}	x^5, x^7	x^{11}, x^{13}	x^4, x^{10}	x^8, x^{12}	x^{14}, x^{16}	x^2, x^{22}
$(0,1,x^7)$	x^{3}, x^{9}	x, x^{17}	x^{13}, x^{21}	x^5, x^{11}	x^{12}, x^{20}	x^4, x^8	x^2, x^{14}	x^6, x^{16}
$(0,1,x^{13})$	x, x^3	x^{17}, x^{23}	x^5, x^{15}	x^7, x^{11}	x^8, x^{20}	x^4, x^{10}	x^2, x^6	x^{14}, x^{16}
$(0,1,x^{14})$	x^{17}, x^{23}	x, x^3	x^5, x^{11}	x^7, x^{19}	x^8, x^{12}	x^4, x^{10}	x^{18}, x^{22}	x^{2}, x^{6}
$(0,1,x^{16})$	x^{17}, x^{27}	x, x^3	x^7, x^{13}	x^5, x^{11}	x^{10}, x^{20}	x^4, x^8	x^2, x^{14}	x^{6}, x^{18}
$(0,1,x^{18})$	x, x^9	x^3, x^{23}	x^{15}, x^{19}	x^5, x^7	x^4, x^{12}	x^{8}, x^{10}	x^2, x^{16}	x^{6}, x^{14}
$(0,1,x^{22})$	x^{23}, x^{27}	x, x^3	x^5, x^{13}	x^7, x^{11}	x^4, x^8	x^{10}, x^{12}	x^{6}, x^{16}	x^2, x^{14}

Figure 2.6: The table of α -successors in QR_{27} .

0 1 3 4 5 7 9 12 15 16 17 19 20 21 22 25 26 27 28 29 35 36 41 45 46 48 49 51 53 57

Figure 2.7: The quadratic residues modulo 59.

(0,1,v)	$\{0,0,0\}$	$\{0,0,1\}$	$\{0,1,0\}$	$\{0,1,1\}$
	${1,0,0}$	$\{1,0,1\}$	$_{\{1,1,0\}}$	$\{1, 1, 1\}$
(0,1,2)	32.33.34.39.40	11.14.24.31.38	8.10.13.42.52	6.18.23.30.37
	12.15.25.35.41	3.7.9.19.48	4.16.20.26.36	5.17.21.22.27
(0,1,4)	14.34.38.43.44	11.24.31.32.33	6.10.18.37.42	2.8.13.23.30
	3.12.15.35.41	7.9.19.25.45	17.22.27.28.36	5.16.20.21.26
(0,1,5)	11.38.39.43.44	14.24.31.32.33	2.13.18.23.37	6.8.10.30.50
	7.15.19.35.45	3.9.12.25.41	4.16.28.29.36	17.20.21.22.26
(0,1,6)	14.24.38.39.40	11.31.32.33.34	2.8.30.37.50	10.13.18.23.42
	3.12.19.45.48	7.9.15.25.35	5.16.17.20.29	4.21.22.26.27
(0,1,8)	14.31.32.38.39	11.24.33.34.43	10.18.42.47.50	2.6.13.23.30
	3.7.19.41.45	9.12.15.25.35	4.5.16.21.22	17.20.27.28.29
(0,1,10)	24.33.34.40.43	11.14.31.32.38	6.18.23.42.47	2.8.13.30.37
	3.7.9.12.41	15.19.25.35.45	5.16.20.21.28	4.17.22.26.27
(0,1,16)	11.24.34.39.40	14.31.32.33.38	13.18.30.47.50	2.6.8.10.23
	7.9.12.15.48	3.19.25.35.41	4.22.26.27.29	5.17.20.21.28
(0,1,17)	14.31.40.55.56	11.24.32.33.34	2.8.10.13.23	6.18.37.42.52
	12.19.25.35.41	3.7.9.15.45	5.16.27.28.49	4.20.21.22.26
(0,1,18)	11.14.24.31.32	33.34.38.39.40	2.6.13.42.50	8.10.23.30.37
	3.9.15.41.48	7.12.19.25.35	17.20.26.28.29	4.5.16.21.22
(0,1,20)	11.31.33.34.38	14.24.32.39.40	8.13.30.50.52	2.6.10.18.23
	3.15.19.51.53	7.9.12.25.35	4.5.16.17.22	21.27.29.36.46
(0,1,21)	14.31.32.34.39	11.24.33.38.40	2.6.18.23.52	8.10.13.30.37
	9.12.35.45.51	3.7.15.19.25	4.5.16.17.20	22.26.28.36.46
(0,1,22)	24.32.33.40.55	11.14.31.34.38	2.6.10.13.18	8.23.37.42.47
	3.7.15.19.35	9.12.25.41.48	5.17.21.28.36	4.16.20.26.27
(0,1,26)	11.14.32.34.39	24.31.33.38.43	6.10.23.37.50	2.8.13.18.30
	7.9.19.25.57	3.12.15.35.41	4.5.17.21.22	16.20.27.29.46
(0,1,27)	11.24.33.38.40	14.31.32.34.39	2.6.8.10.18	13.30.42.47.52
	7.12.15.35.41	3.9.19.25.48	5.20.22.26.29	4.16.17.21.28
(0,1,28)	11.24.34.38.39	14.31.32.33.40	2.6.8.13.23	10.18.37.47.50
	3.7.9.12.19	15.35.45.48.53	16.21.27.36.46	4.5.17.20.22
(0,1,29)	14.24.31.39.40	11.32.33.34.38	2.8.10.13.37	6.18.23.30.50
	3.7.9.12.25	15.19.41.45.48	4.17.20.22.26	5.16.21.27.36
(0,1,36)	11.14.24.31.32	34.39.40.43.55	8.10.42.47.50	2.6.13.18.23
	7.9.15.19.35	3.12.25.41.45	16.17.20.21.27	4.5.22.26.28
(0,1,46)	11.24.31.34.39	14.32.33.38.40	10.18.30.37.42	2.6.8.13.23
	19.25.41.45.48	3.7.9.12.15	5.17.20.21.26	4.16.22.28.36
(0,1,49)	14.24.32.33.34	11.31.38.39.43	$8.13.23.30.\overline{37}$	$2.6.10.18.\overline{47}$
	3.45.48.51.57	7.9.12.15.19	4.20.21.22.27	5.16.17.26.36
(0,1,50)	14.24.31.33.34	11.32.39.40.44	2.23.30.47.52	6.8.10.13.18
	9.15.25.35.41	3.7.12.19.48	4.5.21.22.28	16.17.20.26.27

Figure 2.8: The table of α -successors in QR_{59} .

2.5 Oriented colorings of triangle-free planar graphs

In this section, we focus on triangle-free planar graphs and prove the following theorem: **Theorem 2.6.**

- 1. $\chi_o(\mathcal{P}_4 \cap bip \cap out(2) \cap \mathcal{D}_2) \ge 11.$
- 2. $\chi_s(\mathcal{P}_4) \leq 59.$
- 3. $\chi_s(\mathcal{P}_4 \cap out(2)) \leq 27.$

2.5.1 The lower bound

Figure 2.9: How to force a good pair in a target graph.

Let $N^+(x)$ and $N^-(x)$ be respectively the out-neighborhood and in-neighborhood of the vertex x. We say that a pair (x, y) of distinct vertices forms a good pair if the sets $N^+(x) \cap N^+(y)$, $N^+(x) \cap N^-(y)$, $N^-(x) \cap N^+(y)$ and $N^-(x) \cap N^-(y)$ are all of size at least 2. A triplet (x, y, z) is a good triplet if (x, y), (y, z) and (z, x) are all good pairs. Consider the graph G in Figure 2.9. We remark that every two distinct ≥ 3 -vertices are joined by an arc or a directed 2-path. Therefore every two ≥ 3 -vertices must be assigned distinct colors in any oriented coloring of G. This provides a simple proof that $\chi_o(G) = 10$. It also implies that the colors of a and b form a good pair in any target graph of G. We now construct the graph G^* by taking 3 copies G_1, G_2, G_3 of G and identifying a_1 and b_2, a_2 and b_3, a_3 and b_1 . Similarly, the colors of a_1, a_2, a_3 form a good triplet in any target graph of G^* . A computer check shows that no tournament of order 10 contains a good triplet. We can see that G^* has a homomorphism to QR_{11} . First, we give pairwise distinct colors to a_1, a_2, a_3 . Notice that QR_{11} satisfies $S_{2,2}$ by Lemma 2.4.(2). Thus, in each copy of G, we can give pairwise distinct colors to the eight 3-vertices. Then we can easily color the 2-vertices. So G^* is a 2-degenerate 2-outerplanar bipartite graph such that $\chi_o(G^*) = 11$, which proves Theorem 2.6.(1).

2.5.2 Triangle-free planar graphs

We use the method of reducible configurations to show that every triangle-free planar graph is QR_{59} -colorable. We define the partial order \prec for the set of all graphs. Let $n_3(G)$ be the number of ≥ 3 -vertices in G. For any two graphs G_1 and G_2 , we have $G_1 \prec G_2$ if and only if at least one of the following conditions hold:

- G_1 is a proper subgraph of G_2 .
- $n_3(G_1) < n_3(G_2)$.

Note that this partial order is well-defined, since if G_1 is a proper subgraph of G_2 , then $n_3(G_1) \leq n_3(G_2)$. So \prec is a partial linear extension of the subgraph poset.

Lemma 2.5. Let QR_q be a Paley tournament satisfying $S_{3,n}$ for some $n \ge 1$. Let G be a graph having no homomorphism to QR_q which is minimal with this property according to \prec .

- 1. The graph G is 2-connected and its cut sets of size two consist of non-adjacent vertices.
- 2. For every 2-cut $\{u, v\}$ of G, the graph $G \setminus \{u, v\}$ has exactly two connected components, and one of them is a single vertex.
- 3. The graph G contains no vertex adjacent to at most (n-1) 2-vertices and at most three other vertices.
- 4. The graph G contains no 3-vertex.

Figure 2.10: Forbidden configurations for Lemma 2.5.

Proof.

- 1. If G is not 2-connected, then we can obtain a QR_q -coloring of G from the coloring of its 2-connected components since QR_q is a circular tournament. Moreover G cannot contain a cut set consisting of two adjacent vertices since QR_q is an arc-transitive tournament.
- Suppose that G contains a 2-cut {u, v} contradicting Lemma 2.5. Let A₁,... A_n denote the connected components of G \ {u, v} of size at least two. For 1 ≤ i ≤ n, we construct the graph B_i from the graph induced by V(A_i) ∪ {u, v} by adding a directed 2-path between u and v. Notice that if G is triangle-free and planar (resp. 2-outerplanar), then A_i is triangle-free and planar (resp. 2-outerplanar). Moreover G' ≺ G since n₃(A_i) < n₃(G). Since QR_q is arc transitive and self-reverse, A_i has a QR_q-coloring f such that f(u) = 0 and f(v) = 1. These colorings of the A_i's induce a coloring of the B_i's that can be extended to G.

- 3. Consider configuration (i) in Figure 2.10. Let f be any QR_q -coloring of $G \setminus \{x_1, \ldots, x_m\}$. By property $S_{3,n}$, we can choose f such that $f(c) \notin \{f(v_1), \ldots, f(v_m)\}$ and extend this coloring to G.
- 4. Consider configuration (ii) in Figure 2.10. Notice that u₁, u₂, and u₃ are ≥3-vertices since configuration (i) with l = 2, m = 1 is forbidden. Since QR_q is self-reverse, we assume w.l.o.g. that d⁻(c) ≤ d⁺(c) by considering either G or G^R. We have d⁻(c) ≠ 0 since otherwise we can extend any QR_q-coloring of G \ {c} to G. Suppose now d⁻(c) = 1, which is the only remaining case. Let us set N⁻(c) = {u₁}, N⁺(c) = {u₂, u₃}. We now consider the graph G' obtained from G \ {c} by adding directed 2-paths joining respectively u₁ and u₂, and u₁ and u₃. Notice that if G is triangle-free and planar (resp. 2-outerplanar), then G' is triangle-free and planar (resp. 2-outerplanar). Moreover G' ≺ G since n₃(G') = n₃(G) 1. Any QR_q-coloring f of G' induces a coloring of G \ {c} such that f(u₁) ≠ f(u₂) and f(u₁) ≠ f(u₃), which can be extended to G.

Euler's formula |V(G)| + |F(G)| = |E(G)| + 2 and

$$\sum_{v\in V(G)}d(v)=\sum_{f\in F(G)}d(f)=2|E(G)|$$

show that

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8.$$

We set an *initial charge ch* to every vertex and every face:

$$\forall x \in V(G) \cup F(G), \ ch(x) = d(x) - 4$$

Then we use a discharging procedure consisting of the following two rules, and we get a *final* charge ch^* .

Rule 1. Every ≥ 4 -vertex v gives $\frac{1}{2}$ to each face f incident to both v and a 2-neighbor of v. **Rule 2.** Every face f gives 1 to each 2-vertex incident to f.

Since the above procedure preserves the total charge, we have:

$$\sum_{x \in V(G) \cup F(G)} ch(x) = \sum_{x \in V(G) \cup F(G)} ch^*(x) = -8.$$

We now prove the following to get a contradiction:

$$\forall x \in V(G) \cup F(G), \ ch^*(x) \ge 0.$$

case $x \in V(G)$

d(x) = 2: By **Rule 2**, x receives exactly 1 from each of the two faces incident to x and thus $ch^*(x) = -2 + 2 \times 1 = 0$.

d(x) = 3: G contains no 3-vertex by Lemma 2.5.(4).

 $d(x) = k, 4 \leq k \leq 7$: By Lemma 2.5.(3) with l = 3, m = k - 3, x has at most (k - 4) 2-neighbors, so x gives $\frac{1}{2}$ to at most $2 \times (k - 4)$ faces and thus $ch^*(x) \geq k - 4 - 2 \times (k - 4) \times \frac{1}{2} = 0$.

 $d(x) = k \ge 8$: x gives $\frac{1}{2}$ to at most k faces and thus $ch^*(x) \ge k - 4 - k \times \frac{1}{2} \ge 0$.

case $x \in F(G)$

d(x) = 3: G is triangle-free, so it contains no face of degree 3.

d(x) = 4: By Lemma 2.5.(3) with l = m = 1, x is not incident two adjacent 2-vertices. The face x cannot be incident to two non-adjacent 2-vertices, since otherwise the >2-vertices incident to x would create a 2-cut that would contradict Lemma 2.5.(2). Thus x is incident to at most one 2-vertex. If x is incident to a 2-vertex then $ch^*(x) = 0 + 2 \times \frac{1}{2} - 1 = 0$, otherwise $ch^*(x) = ch(x) = 0$.

 $d(x) = k \ge 5$: Let *n* be the number of 2-vertices incident to *x*. Since *x* is not incident two adjacent 2-vertices, we have $n \le \lfloor \frac{k}{2} \rfloor$ and *x* receives $\frac{1}{2}$ from at least *n* vertices, thus $ch^*(x) \ge k - 4 + n \times \frac{1}{2} - n \times 1 = k - 4 - \frac{n}{2} \ge k - 4 - \lfloor \frac{k}{4} \rfloor = \lfloor \frac{3k}{4} \rceil - 4 \ge 0$.

This proves Theorem 2.6.(3).

2.5.3 Triangle-free 2-outerplanar graphs

Lemma 2.6. Let G be a connected triangle-free outerplanar graph on at least three vertices. Then G contains at least one of the following:

- 1. A \geq 2-vertex adjacent to at least (d(u) 1) 1-vertices.
- 2. $A \ge 3$ -vertex contained in a cycle adjacent to (d(u) 2) 1-vertices.
- 3. Two adjacent 2-vertices which are contained in a cycle.

Proof. Suppose G does not contain any of the two first items. Since G is outerplanar, its 2-connected components form a tree-like structure. A 2-connected triangle-free outerplanar contains at least two times two adjacent 2-vertices. Thus a 2-connected component of G which is a leaf in the tree-like structure contains at least one time two adjacent 2-vertices, which is the third item.

We consider a potential counter-example G to Theorem 2.6.(3) which is minimal according to the partial order \prec . Let us fix a 2-outerplanar embedding of G. Lemma 2.5.(1) implies that the outerface induces a chordless cycle. Let C denote the outerface of G. The graph $H = G \setminus C$ is thus an outerplanar triangle-free graph. Moreover, H must be connected, otherwise G would contain a 2-cut in C that contradicts Lemma 2.5.(2). In what follows we consider C and H together with their embeddings, as implied by the embedding of G.

A vertex $v \in H$ is very special if and only if $d_H(v) = 1$. A vertex $v \in G$ is special if and only if either v is very special or $v \in C$.

Lemma 2.7. Every very special vertex v satisfies $d_G(v) = 2$.

Proof. By Lemma 2.5.(4), $d_G(v) \neq 3$. Now, if $d_G(v) \geq 4$, then $d_C(v) \geq 3$ thus there exists a vertex $x \in N_C(v)$ such that $d_G(x) = d_C(x) + d_H(x) = 2 + 1 = 3$, which contradicts Lemma 2.5.(4).

Lemma 2.8. A vertex $v \in H$ has no three consecutive special neighbors.

Proof. We suppose that H contains such a vertex v and we note v_1, v_2, v_3 its three consecutive special neighbors. We consider the vertices w_1, w_2, w_3 defined as follows: For i = 1, 2, 3, $w_i = v_i$ if $v_i \in C$ and w_i is the neighbor of v_i which belongs to H if is v_i very special. Since G does not contain triangles nor configuration (iii), we have $w_1 \neq w_2 \neq w_3 \neq w_1$. This implies that $d_G(w_2) = 3$, which contradicts Lemma 2.5.(4).

Let u be a vertex in H and $N_H^1(u) = \{x \in N_H(u) \mid d_H(x) = 1\}$ (i.e. $N_H^1(u)$ is the set of very special neighbors of u). We consider now four cases:

- 1. H is an isolated vertex. In this case we have clearly a 3-vertex v in G, which is a contradiction.
- 2. *H* contains a vertex *u* such that $|N_H^1(u)| \ge d_H(u) 1 \ge 1$. Let *v* be a vertex in $N_H^1(u)$. Since *v* is a very special vertex then according to Lemma 2.7, $d_G(v) = 2$. Now, if $d_G(u) \le 4$, then we have a 2-vertex *v* adjacent to a ≤ 4 -vertex, which contradicts Lemma 2.5.(3). If $d_G(u) \ge 5$, then *u* has at least three consecutive special neighbors, which contradicts Lemma 2.8.
- 3. *H* contains a vertex *u* such that $|N_H^1(u)| = d_H(u) 2 \ge 1$ and *u* is contained in a cycle in *H*. Let *v* be a vertex in $N_H^1(u)$. Since *v* is a very special vertex in *H* then $d_G(v) = 2$ according to Lemma 2.7. Now, if $d_G(u) \le 4$, then we have a 2-vertex *v* adjacent to a ≤ 4 -vertex, which contradicts Lemma 2.5.(3). If $d_G(u) \ge 5$, then *u* has at least three consecutive special neighbors, which contradicts Lemma 2.8.
- 4. *H* contains two adjacent 2-vertices *u* and *v* which are contained in a cycle in *H*. We assume w.l.o.g. that $d_G(u) \leq d_G(v)$ and consider the following subcases:
 - (a) If $d_G(v) \ge 5$, then v has at least three consecutive special neighbors and this contradicts Lemma 2.8. So, we have $d_H(u) \le d_H(v) \le 4$.
 - (b) If $d_G(u) = 2$, we have a 2-vertex adjacent to a ≤ 4 -vertex, which is forbidden by Lemma 2.5.(3).
 - (c) The case $d_G(u) = 3$ is forbidden by Lemma 2.5.(4).
 - (d) If $d_G(u) = d_G(v) = 4$, there exists a vertex $x \in N_C(u)$ such that $d_G(x) = 3$.

This proves Theorem 2.6.(3).

Concerning 2-outerplanar graphs in general, we know from Theorem 2.5 that $out(2) \subset S_0 \odot S_0 \odot S_0 \odot out(1)$. By Proposition 1.3, the oriented chromatic number of a 2-outerplanar graph is thus at most $2^{4-1} \times (1+1+1+7) = 80$. This is not an improvement over the bound $\chi_o(out(2)) \leq \chi_o(\mathcal{P}_3) \leq 80$, but it provides another target graph of size 80 for 2-outerplanar graphs.

2.6 Acyclic choosability

In this section, we study the list version of (proper) acyclic coloring on graphs with bounded maximum average degree.

Theorem 2.7.

- 1. Every graph G with $mad(G) < \frac{8}{3}$ is acyclically 3-choosable.
- 2. Every graph G with $mad(G) < \frac{19}{6}$ is acyclically 4-choosable.
- 3. Every graph G with $mad(G) < \frac{24}{7}$ is acyclically 5-choosable.

For planar graphs, thanks to Observation 1.1, we get:

Corollary 2.1.

- 1. $\chi_a^l(\mathcal{P}_8) = 3.$
- 2. $\chi_a^l(\mathcal{P}_6) \leqslant 4.$
- 3. $\chi_a^l(\mathcal{P}_5) \leqslant 5.$

A d(k)-vertex is a *d*-vertex adjacent to at least k 2-vertices. Every item of Theorem 2.6 is proved using the method described in Section 1.6. The partial order on graphs considered here is the subgraph partial order. Let H be graph that is not acyclically *n*-choosable and is minimal with this property. To prove that a configuration C is forbidden, we suppose that H contains C and show that an acyclic coloring c chosen from L of some proper subgraph of H can be extended in a acyclic coloring chosen from L of the whole graph H, for every L.

2.6.1 Proof of Theorem 2.7.(1)

We prove now that every graph G with mad(G) < 8/3 is acyclically 3-choosable.

Lemma 2.9. Let $n \ge 3$ and let H be a minimal graph such that $\chi_a^l(H) > n$. Then H does not contain

- 1. a d-vertex adjacent to the vertices a d-clique $(0 \leq d \leq n-1)$,
- 2. a d(d)-vertex $(2 \leq d \leq n^2 1)$,
- 3. $a \ d(d-1)$ -vertex $(2 \le d \le (n-1)^2)$,
- 4. a d(2)-vertex $(2 \leq d \leq n)$,
- 5. $a \ d(1)$ -vertex $(2 \le d \le n-1)$.

Proof.

1. Suppose that H contains such a vertex w. Any coloring c of $H \setminus \{w\}$ can be extended to H by giving w a color distinct from those of its neighbors.

Figure 2.11: (i): A d(d)-vertex. (ii): A d(d-1)-vertex. (iii): A d(2)-vertex.

- 2. Suppose that H contains a d(d)-vertex w adjacent to d 2-vertices v_1, \ldots, v_d . Each vertex v_i is adjacent to w and to another vertex u_i , $1 \leq i \leq d$ (see Figure 2.11(i)). Let c be a coloring of $H \setminus \{w, v_1, \ldots, v_d\}$. Since $d \leq n^2 1$ and |L(w)| = n, the pigeonhole principle ensures that some $j \in L(w)$ is used at most n 1 times to color the u_i 's. We set c(w) = j. If $c(u_i) \neq j$, we can choose $c(v_i)$ in $L(v_i) \setminus \{c(u_i), j\}$ since $|L(v_i)| = n \geq 3$. The number of v_i such that $c(u_i) = j$ is at most n 1, so we can give these v_i distinct colors different from j.
- 3. Suppose that H contains a d(d-1)-vertex w adjacent to (d-1) 2-vertices v_1, \ldots, v_{d-1} and to another vertex z. Each vertex v_i is adjacent to w and to another vertex u_i , $1 \leq i \leq d-1$ (see Figure 2.11(ii)). Let c be a coloring of $H \setminus \{w, v_1, \ldots, v_{d-1}\}$. Note that we have $|L(w) \setminus \{c(z)\}| \geq n-1$ and $d-1 \leq (n-1)^2 - 1$. We set c(w) = j where $j \in L(w) \setminus \{c(z)\}$ is used at most n-2 times to color the u_i 's. If $c(u_i) \neq j$, we can choose $c(v_i)$ in $L(v_i) \setminus \{c(u_i), j\}$ since $L(v_i) = n \geq 3$. The number of v_i such that $c(u_i) = j$ is at most n-2, so we can give these v_i distinct colors different from j and c(z).
- 4. Suppose that H contains a d(2)-vertex w adjacent to z_1, \ldots, z_{d-2} , and to two 2-vertices v_1, v_2 that are adjacent respectively to u_1, u_2 (see Figure 2.11(iii)). We assume $n \ge 4$ since the case n = 3 is implied by Lemma 2.9.(3). Let c be a coloring of $H \setminus \{w, v_1, v_2\}$.
 - 4.1 If the $c(z_i)$ are pairwise distinct, we choose $c(w) \in L(w) \setminus \{c(z_1), \ldots, c(z_{d-2}), c(u_1)\}$ and $c(v_1) \in L(v_1) \setminus \{c(w), c(u_1)\}$. If $c(w) = c(u_2)$, we choose $c(v_2) \in L(v_2) \setminus \{c(z_1), \ldots, c(z_{d-2}), c(w)\}$; otherwise we choose $c(v_2) \in L(v_2) \setminus \{c(w), c(u_2)\}$.
 - 4.2 If the $c(z_i)$ are not pairwise distinct, we consider a coloring c of $H \setminus \{v_1, v_2\}$ and assume w.l.o.g. that $c(z_1) = c(z_2)$. If $c(w) = c(u_1)$, we choose $c(v_1) \in L(v_1) \setminus \{c(z_2), \ldots, c(z_{d-2}), c(w)\}$, otherwise we choose $c(v_1) \in L(v_1) \setminus \{c(u_1), c(w)\}$. If $c(w) = c(u_2)$, we choose $c(v_2) \in L(v_2) \setminus \{c(z_2), \ldots, c(z_{d-2}), c(v_1), c(w)\}$, otherwise we choose $c(v_2) \in L(v_2) \setminus \{c(u_2), c(w)\}$.
- 5. The proof is similar (and simpler) to that of Lemma 2.9.(4).

It follows that the minimum degree of H is at least 2 and that no 2-vertex is in a triangle.

We use the following discharging rule: Each vertex gives $\frac{1}{3}$ to each of its 2-neighbors. Let us check that for every $v \in V(H)$, $d^*(v) \geq \frac{8}{3}$:

- If d(v) = 2, then $d^*(v) = 2 + 2\frac{1}{3} = \frac{8}{3}$, since v has no 2-neighbor by Lemma 2.9.(3) and v receives $\frac{1}{3}$ from each neighbor.
- If d(v) = 3, then $d^*(v) \ge 3 \frac{1}{3} = \frac{8}{3}$, since v has at most one 2-neighbor by Lemma 2.9.(3), so it gives at most $\frac{1}{3}$.
- If $d(v) = k \ge 4$, then $d^*(v) \ge k k\frac{1}{3} = \frac{2k}{3} \ge \frac{8}{3}$ because v gives at most k times $\frac{1}{3}$.

2.6.2 Proof of Theorem 2.7.(2)

We prove now that every graph G with mad(G) < 19/6 is acyclically 4-choosable.

Lemma 2.10. Let $n \ge 4$ and let H be a minimal graph such that $\chi_a^l(H) > n$. Then H does not contain

- 1. a 5(3)-vertex adjacent to a 3-vertex,
- 2. a 3-vertex adjacent to two 3-vertices.

Figure 2.12: A 5(3)-vertex adjacent to a 3-vertex.

- *Proof.* 1. Suppose that H contains a 5(3)-vertex w adjacent to three 2-vertices v_1, v_2, v_3 (each adjacent to another vertex u_i), a 3-vertex z_1 (adjacent to z'_1 and z''_1) and another vertex z_2 (see Figure 2.12). Let c be a coloring of $H \setminus \{v_1\}$. If $c(u_1) \neq c(w)$, we give a proper color to v_1 . Now, we assume that $c(u_1) = c(w) = 1$:
 - 1.1 If $c(z_1) \neq c(z_2)$, we erase the colors of v_2, v_3 and we modify the color of w: In $L(w) \setminus \{c(z_1), c(z_2)\}$, there is a color which appears on at most one of u_1, u_2, u_3 ; we choose this color for w. Then, we give a color different from $c(z_1), c(z_2), c(w)$ to the vertex v_j (if it exists) whose neighbors have the same color (c(w)) and we give a proper color to the other v_i .
 - 1.2 If $c(z_1) = c(z_2)$ and w.l.o.g., $c(z_1) = 2$. Observe that $L(v_1)$ contains 1 and 2; otherwise, we can color v_1 with a color different from 1,2 and $c(v_2), c(v_3)$. We assume w.l.o.g. that $L(v_1) = \{1, 2, 3, 4\}$. If we cannot color v_1 this implies that $c(u_1) = c(u_2) = c(u_3) = 1$, $c(v_2) = 3$, $c(v_3) = 4$ and $c(z_1) = 2$.
 - 1.2.1 If $c(z'_1) \neq c(z''_1)$, we modify the colors of z_1 , w and give a proper color to v_1, v_2, v_3 : $c(z_1) \in L(z_1) \setminus \{c(z'_1), c(z''_1), 2\}, c(w) \in L(w) \setminus \{c(z_1), c(z_2), 1\}.$
 - 1.2.2 If $c(z'_1) = c(z''_1)$, we modify the color of w with a color different from 1, 2, $c(z'_1)$ and give proper colors to v_1, v_2, v_3 .

Figure 2.13: A 3-vertex having two 3-neighbors.

- 2. First suppose that H contains a 3-vertex adjacent to two adjacent 3-vertices (see Figure 2.13, left). Let c be a coloring of $H \setminus \{v_1, v_2, v_3\}$. We can choose $c(v_1)$ in $L(v_1) \setminus \{c(u_1), c(u_2), c(u_3)\}, c(v_2)$ in $L(v_2) \setminus \{c(v_1), c(u_2), c(u_3)\}$, and then $c(v_3)$ in $L(v_3) \setminus \{c(v_1), c(v_2), c(u_3)\}$. Now suppose that H contains a 3-vertex w adjacent to two 3-vertices v_1, v_2 (each adjacent to u_1, u'_1 and u_2, u'_2) and to another vertex z (see Figure 2.13, right). Let c be a coloring of $H \setminus \{w\}$. We have to consider the following cases:
 - 2.1 $c(v_1), c(v_2)$ and c(z) are pairwise distinct. We color w with a proper color.
 - 2.2 $c(v_1) = c(v_2) \neq c(z)$. W.l.o.g., suppose that $c(v_1) = c(v_2) = 2$ and c(z) = 1. Observe that L(w) contains 1 and 2; otherwise, we color w with a color different from 1 or 2 and different from $c(u_1), c(u'_1)$. Assume that $L(w) = \{1, 2, 3, 4\}$. If we cannot color w, this implies that $\{c(u_1), c(u'_1)\} = \{c(u_2), c(u'_2)\} = \{3, 4\}$. As well, observe that $L(v_1) = L(v_2) = \{1, 2, 3, 4\}$; otherwise, we modify the color of v_1 (or v_2) with a color different from 1,2,3,4 to get case 2.1. Hence, we recolor v_1 and v_2 with 1 and color w with 2.
 - 2.3 $c(v_1) = c(z) \neq c(v_2)$. W.l.o.g., suppose that $c(v_1) = c(z) = 1$ and $c(v_2) = 2$. With the same argument as above, we can assume that $L(w) = \{1, 2, 3, 4\}$ and $L(v_1) = \{1, 2, 3, 4\}$ (for the same reasons). We recolor v_1 with 2 to get case 2.2.
 - 2.4 $c(v_1) = c(v_2) = c(z)$. Observe that $c(u_1) = c(u'_1)$; otherwise, we modify the color of v_1 to get a previous case. We have $c(u_2) = c(u'_2)$ for the same reason and we can choose $c(w) \in L(w) \setminus \{c(u_1), c(u_2), c(z)\}$.

We use the following discharging rule: Each ≥ 4 -vertex gives $\frac{7}{12}$ to each of its 2-neighbors and $\frac{1}{12}$ to each of its 3-neighbors. Let us check that for every $v \in V(H)$, $d^*(v) \geq \frac{19}{6}$:

- If d(v) = 2, then v has two ≥ 4 -neighbors by Lemma 2.9.(5), so $d^*(v) = 2 + 2\frac{7}{12} = \frac{19}{6}$.
- If d(v) = 3, then v has at least two ≥ 4 -neighbors by Lemma 2.9.(5) and Lemma 2.10.(2), so $d^*(v) \geq 3 + 2\frac{1}{12} = \frac{19}{6}$.
- If d(v) = 4, then v has at most one 2-neighbor by Lemma 2.9.(4), so $d^*(v) \ge 4 \frac{7}{12} 3\frac{1}{12} = \frac{19}{6}$.
- If d(v) = 5, then v has at most three 2-neighbors by Lemma 2.9.(3). If v is a 5(3)-vertex, then it has no 3-neighbor by Lemma 2.10.(1), so $d^*(v) = 5 3\frac{7}{12} = \frac{13}{4} > \frac{19}{6}$. Otherwise, $d^*(v) \ge 5 2\frac{7}{12} 3\frac{1}{12} = \frac{43}{12} > \frac{19}{6}$.

- If $d(v) = k, 6 \leq k \leq 7$, then v has at most (k-2) 2-neighbors by Lemma 2.9.(3), so $d^*(v) \geq k (k-2)\frac{7}{12} 2\frac{1}{12} = \frac{5k}{12} + 1 \geq \frac{7}{2} > \frac{19}{6}$.
- If $d(v) = k \ge 8$, then $d^*(v) \ge k k\frac{7}{12} = \frac{5k}{12} \ge \frac{10}{3} > \frac{19}{6}$.

2.6.3 **Proof of Theorem 2.7.(3)**

We prove now that every graph G with mad(G) < 19/6 is acyclically 5-choosable. A vertex is said *weak* if it is either a 3-vertex or a 6(4)-vertex.

Lemma 2.11. Let $n \ge 5$ and let H be a minimal graph such that $\chi_a^l(H) > n$. Then H does not contain

- 1. a d(d-2)-vertex adjacent to a weak vertex, $3 \leq d \leq 10$,
- 2. a 6(3)-vertex adjacent to three weak vertices,
- 3. a 6(4)-vertex adjacent to a \leq 4-vertex,
- 4. a 4-vertex adjacent to three 3-vertices.
- *Proof.* 1. Suppose that H contains a d(d-2)-vertex w adjacent to (d-2) 2-vertices v_i , $1 \leq i \leq d-2$ (each adjacent to another vertex u_i), a 3-vertex z (adjacent to two other vertices z_1, z_2) and a vertex $y, 3 \leq d \leq 10$ (see Figure 2.14).

Figure 2.14: A d(d-2)-vertex adjacent to a weak vertex.

Let c be a coloring of $H \setminus \{v_i, 1 \leq i \leq d-2\}$.

- $c(z) \neq c(y)$. We recolor w with a color, different from c(z), c(y), which appears on at most two of the u_i 's, $1 \leq i \leq d-2$. If $c(u_i) \neq c(w)$, we color v_i with a proper color. At most two of the u_i 's (say u_1, u_2) satisfy $c(u_i) = c(w)$. We can choose $c(v_1) \in L(v_1) \setminus \{c(w), c(y), c(z)\}$ and $c(v_2) \in L(v_2) \setminus \{c(w), c(y), c(z), c(v_1)\}$.
- c(z) = c(y). Observe that $c(z_1) = c(z_2)$; otherwise, we replace the color of z with a color different from $c(z_1), c(z_2), c(y), c(w)$ and we are in the previous case. Now, we recolor w with a color, different from $c(z), c(z_1)$, which appears on at most wo of the u_i 's, $1 \leq i \leq d-2$. As above, it is easy then to color v_i , $1 \leq i \leq d-2$.

Now, we consider the case where the d(d-2)-vertex w is adjacent to a 6(4)-vertex z adjacent to four 2-vertices x_j , $1 \leq j \leq 4$ and another vertex s (see Figure 2.14). Observe

that $x_i \neq u_j$ for all i, j since there is no 2(1)-vertex by Lemma 2.9.(3). Let c be a coloring of $H \setminus \{x_1\}$.

- $c(w) \neq c(s)$. We erase the colors of the vertices z, x_2, x_3, x_4 . We recolor z with a color, different from c(s), c(w), which appears on at most one of $x'_i, 1 \leq i \leq 4$. Then, we give a proper color to x_i for each index i such that $c(x'_i) \neq c(z)$ and give a color different from c(z), c(w), c(s) to the vertex x_i such that $c(z) = c(x'_i)$.
- c(w) = c(s). If $c(x'_1) \neq c(z)$, we color x properly, which suffices. If $c(z) \neq c(x'_i)$ for some i, we color x_1 avoiding c(w), c(z), and all $c(x_j)$ for $j \neq i, j > 1$, which suffices.

Thus we may assume that $c(x'_1) = c(x'_2) = c(x'_3) = c(x'_4) = c(z) = 1$ and c(s) = c(w) = 2. Now, we erase the colors of the vertices x_i $(1 \le i \le 4)$, v_j $(1 \le j \le d-2)$, w and z. We recolor w with a color different from c(y) and 2, which appears on at most 2 of the u_j 's. So, $c(s) \ne c(w)$ and we recolor z with a color different from 1, 2, c(w), c(y), then we color each x_i with a proper color. Finally, we recolor the v_i 's as in the case $c(z) \ne c(y)$.

2. Suppose that H contains a 6(3)-vertex w adjacent to three 2-vertices v_1, v_2, v_3 (each adjacent to another vertex u_i) and three weak vertices z_1, z_2, z_3 . Let c be a coloring of $H \setminus \{v_1, v_2, v_3\}$.

Figure 2.15: A 6(3)-vertex w adjacent to three 3-vertices.

First, observe that if $c(z_1), c(z_2), c(z_3)$ are all different, we can color v_1, v_2, v_3 : We recolor w with a color different from $c(z_1), c(z_2), c(z_3)$, which appears on at most one of u_1, u_2, u_3 . Then, we give proper color to v_i for each index i for which $c(u_i) \neq c(w)$ and a color different from $c(w), c(z_1), c(z_2), c(z_3)$ otherwise.

Second, observe that if $c(z_1) = c(z_2) = c(z_3)$, we can color v_1, v_2, v_3 : If $c(u_i) \neq c(w)$, we give a proper color to v_i . In the worst case, we have $c(u_1) = c(u_2) = c(u_3) = c(w)$ and we color v_1 with $c(v_1) \in L(v_1) \setminus \{c(w), c(z_1)\}, v_2$ with $c(v_2) \in L(v_2) \setminus \{c(w), c(z_1), c(v_1)\}$ and v_3 with $c(v_3) \in L(v_3) \setminus \{c(w), c(z_1), c(v_1), c(v_2)\}$.

Consider now the case where two of z_1, z_2, z_3 have the same color. W.l.o.g., we assume that $c(w) = 1, c(z_1) = c(z_2) = 2, c(z_3) = 3$.

Third, observe that if $c(u_1) \neq 1$, we can color v_1, v_2, v_3 : We color v_1 and v_2 such that $c(v_1) \in L(v_1) \setminus \{1, c(u_1)\}$ and $c(v_2) \in L(v_2) \setminus \{1, 2, 3, c(u_2)\}$. Then if $c(u_3) = 1$, we choose $c(v_3)$ in $L(v_3) \setminus \{1, 2, 3, c(v_2)\}$ and otherwise we choose $c(v_3)$ in $L(v_3) \setminus \{1, c(u_3)\}$.

So, suppose now that $c(u_1) = c(u_2) = c(u_3) = c(w) = 1$, $c(z_1) = c(z_2) = 2$, $c(z_3) = 3$. The idea is to consider the neighborhood of the two vertices of z_1, z_2, z_3 which have the same color $(z_1, z_2$ in our case) and modify if necessary the color of one of these two vertices to get a previous case.

By permuting indices, we have only two cases to study:

- 2.1 z_1 is a 6(4)-vertex. The 6(4)-vertex z_1 is adjacent to w, to four 2-vertices x_i (each adjacent to another vertex x'_i) and another vertex s. Observe that since there is no 2(1)-vertex by Lemma 2.9.(3), $x_i \neq u_j$ for all i, j. We erase the colors of $w, z_1, x_1, x_2, x_3, x_4$. We recolor z_1 with a color, different from 2, 3, c(s), which appears on at most two of x'_i , $1 \leq i \leq 4$. We recolor now w with a color different from 1, 2, 3, $c(z_1)$ and give proper colors to v_1, v_2, v_3 . Finally, we color the x_i , $1 \leq i \leq 4$: For the two or fewer vertices whose neighbors have the same color, we give distinct colors different from $c(s), c(w), c(z_1)$ and give proper colors to the other vertices x_i .
- 2.2 z_1 and z_2 are 3-vertices. The vertex z_1 is adjacent to w and two other vertices z'_1, z''_1 and the vertex z_2 is adjacent to w and two other vertices z'_2, z''_2 (see Figure 2.15). It may be that z_i, z'_j, z''_k are not distinct, but it will not matter. If $c(z'_1) \neq c(z''_1)$ we can recolor z_1 and w such that $c(z_1) \in L(z_1) \setminus \{2, 3, c(z'_1), c(z''_1)\}$ and $c(w) \in L(w) \setminus \{1, 2, 3, c(z_1)\}$, and then give proper colors to the v_i 's, $1 \leq i \leq 3$. Thus $c(z'_1) = c(z''_1)$ and, for the same reason, $c(z'_2) = c(z''_2)$. Now we can recolor w with a color different from 1, 2, 3, $c(z'_1)$ and we give proper colors to the v_i 's, $1 \leq i \leq 3$.
- 3. Suppose that H contains a 6-vertex w adjacent to four 2-vertices v_1, v_2, v_3, v_4 (each adjacent to another vertex u_i), a ≤ 4 -vertex z and another vertex y (see Figure 2.16). Notice that if d(z) < 4 then the configuration is forbidden by Lemma 2.10.(1) and Lemma 2.9.(3). So suppose z is a 4-vertex adjacent to z_1, z_2, z_3 (see Figure 2.16).

Figure 2.16: A 6(4)-vertex adjacent to a 4-vertex

Let c be a coloring of $H \setminus \{v_1, v_2, v_3, v_4\}$. If $c(y) \neq c(z)$, we recolor w with a color from $L(w) \setminus \{c(z), c(y)\}$ that appears on at most one u_i , then properly color each v_i avoiding $c(u_i), c(w), c(z)$, and c(y). Suppose that c(y) = c(z). If $c(u_i) \neq c(w)$, we properly color v_i and then may ignore it, so the worst case is $c(u_1) = c(u_2) = c(u_3) = c(u_4) = c(w)$. Assume that $c(u_1) = 1$ and c(z) = 2. Consider the following three cases:

- 3.1 If $c(z_1) \neq c(z_2) \neq c(z_3) \neq c(z_1)$, we modify the color of z, then we recolor w with a color different from 1, c(z), c(y), then we color v_i (i = 1, ..., 4) with proper colors.
- 3.2 If $c(z_1) = c(z_2) \neq c(z_3)$, we recolor w such that $c(w) \in L(w) \setminus \{1, 2, c(z_1), c(z_3)\}$ and give proper colors to v_i .

2.6. ACYCLIC CHOOSABILITY

- 3.3 If $c(z_1) = c(z_2) = c(z_3)$. We modify the color of w. We color w with $c(w) \in L(w) \setminus \{1, 2, c(z_1)\}$ and give proper colors to v_i .
- 4. Suppose that H contains a 4-vertex w adjacent to three 3-vertices x_1, x_2, x_3 (each adjacent to x'_i, x''_i) and to another vertex z (see Figure 2.17). Although x_i, x'_j, x''_k may not all be distinct, it will not matter.

Figure 2.17: A 4-vertex adjacent to three 3-vertices

Let c be a coloring of $H \setminus \{w\}$. We consider the following cases:

- 4.1 If $c(x_1), c(x_2), c(x_3), c(z)$ are all different, then we color w with a proper color.
- 4.2 Suppose that two neighbors of w have the same color, and no color is shared by three neighbors of w.
 - 4.2.1 Suppose that $c(x_1) = c(x_2) \neq c(x_3)$. W.l.o.g. we assume that $c(x_1) = 1$.
 - 4.2.1.1 If $c(x_3)$ \neq c(z) and $c(x_3)$ ¥ 1, c(z) \neq 1, we assume 3. Necessarly, L(w) contains = 2 and c(z) =that $c(x_3)$ 1, 2, 3; otherwise, we can color w with a color different from 1, 2, 3, $c(x'_1)$ and $c(x''_1)$. W.l.o.g., we suppose that L(w) = $\{1, 2, 3, 4, 5\}$. If we cannot color w, this implies that $\{c(x'_1), c(x''_1)\} =$ $\{c(x'_2), c(x''_2)\} = \{4, 5\}.$ Observe now that $L(x_1) = L(x_2) = \{1, 2, 3, 4, 5\};$ otherwise, we can recolor x_1 with a color different from 1, 2, 3, 4, 5 to get case 4.1. So, we recolor x_1 and x_2 with 3 and color w with 1.
 - 4.2.1.2 If $c(x_3) = c(z)$ and $c(x_3) \neq 1$, we assume that $c(x_3) = 2$. Observe first that $c(x'_3) = c(x''_3)$; otherwise, we can recolor x_3 with a color different from $1, 2, c(x'_3), c(x''_3)$ to get case 4.2.1.1. So, suppose that $c(x'_3) = c(x''_3) = 3$ $(c(x'_3) = c(x''_3) = 1$ is an easier case). Necessarily, L(w) contains 1, 2, 3; otherwise, we can color w with a color different from 1, 2, 3, $c(x'_1)$ and $c(x''_1)$. W.l.o.g., $L(w) = \{1, 2, 3, 4, 5\}$, and $\{c(x'_1), c(x''_1)\} = \{c(x'_2), c(x''_2)\} = \{4, 5\}$. So, we recolor x_1 and x_2 with a color different from 1, 2, 4, 5 and we color w with 1.
 - 4.2.2 Suppose that $c(x_1) = c(z)$. W.l.o.g. we assume that $c(x_1) = 1$. Observe that $c(x_2) \neq c(x_3)$; otherwise, we get case 4.2.1.2. We assume that $c(x_2) = 2$ and $c(x_3) = 3$. Observe that $c(x'_1) = c(x''_1)$; otherwise we can recolor x_1 with a color different from $1, c(x'_1), c(x''_1)$ to get case 4.1 or 4.2.1.1. Hence, we color w with a color different from $1, 2, 3, c(x'_1)$.

- 4.3 Suppose that exactly three neighbors of w have the same color.
 - 4.3.1 We assume that $c(x_1) = c(x_2) = c(x_3) = 1$ and c(z) = 2. Observe that $c(x'_1) = c(x''_1)$; otherwise, we can recolor x_1 with a color different from 1, 2, $c(x'_1), c(x''_1)$ to get case 4.2.1.1. by the same way, $c(x'_i) = c(x''_i)$, i = 1, 2, 3. Then $L(w) = \{1, 2, c(x'_1), c(x'_2), c(x'_3)\}$ with $c(x'_1) \neq c(x'_2) \neq c(x'_3) \neq c(x'_1)$; otherwise, we color w with a color different from $1, 2, c(x'_1), c(x'_2), c(x'_3)\}$ we color w with $c(x'_1), c(x'_1), c(x'_2), c(x'_3)$. So, we color w with $c(x'_1)$.
 - 4.3.2 We assume that $c(z) = c(x_1) = c(x_2) = 1$ and $c(x_3) = 2$. As above, observe that $c(x'_1) = c(x''_1)$ and $c(x'_2) = c(x''_2)$; otherwise we can recolor x_1 or x_2 to obtain a previous case. Hence, we color w with a color different from 1, 2, $c(x'_1), c(x'_2)$.
- 4.4 All the neighbors of w have the same color. Suppose that $c(x_1) = c(x_2) = c(x_3) = c(z) = 1$. As above, for $i = 1, 2, 3, c(x'_i) = c(x''_i)$ (otherwise we can get a previous case). We color w with a color different from $1, c(x'_1), c(x'_2), c(x'_3)$.

We use the following discharging rule: Each ≥ 4 -vertex gives $\frac{5}{7}$ to each of its 2-neighbors, $\frac{3}{14}$ to each of its 3-neighbors and $\frac{1}{7}$ to each of its 6(4)-neighbors. Let us check that for every $v \in V(H)$, $d^*(v) \geq \frac{24}{7}$:

- If d(v) = 2, then v has two ≥ 5 -neighbors by Lemma 2.9.(5), so $d^*(v) = 2 + 2\frac{5}{7} = \frac{24}{7}$.
- If d(v) = 3, then v has at least two ≥ 4 -neighbor by Lemma 2.9.(5) and Lemma 2.10.(1), so $d^*(v) \geq 3 + 2\frac{3}{14} = \frac{24}{7}$.
- If d(v) = 4, then v has no 2-neighbor by Lemma 2.9.(5), no 6(4)-neighbor by Lemma 2.11.(3), and at most two 3-neighbors by Lemma 2.11.(4), so $d^*(v) \ge 4 2\frac{3}{14} = \frac{25}{7} > \frac{24}{7}$.
- If d(v) = 5, then v has at most one 2-neighbor by Lemma 2.9.(4), so $d^*(v) \ge 5 \frac{5}{7} 4\frac{3}{14} = \frac{24}{7}$.
- If d(v) = 6, by Lemma 2.9.(3), v has at most four 2-neighbors. If v is a 6(4)-vertex, then it has no weak neighbor by Lemma 2.11.(1), so $d^*(v) = 6 4\frac{5}{7} + 2\frac{1}{7} = \frac{24}{7}$. If v has three 2-neighbors, then it has at most two weak neighbors by Lemma 2.11.(2), so $d^*(v) \ge 6 3\frac{5}{7} 2\frac{3}{14} = \frac{24}{7}$. Otherwise, v has at most two 2-neighbors, so $d^*(v) \ge 6 2\frac{5}{7} 4\frac{3}{14} = \frac{26}{7} > \frac{24}{7}$.
- If $d(v) = k, 7 \le k \le 10$, then v has at most (k-2) 2-neighbors by Lemma 2.9.(3). If v is a k(k-2)-vertex, then it has no weak neighbor by Lemma 2.11.(1) and $d^*(v) = k (k-2)\frac{5}{7} = \frac{2k+10}{7} \ge \frac{24}{7}$. Otherwise, $d^*(v) \ge k (k-3)\frac{5}{7} 3\frac{3}{14} = \frac{4k+21}{14} \ge \frac{7}{2} > \frac{24}{7}$.
- If d(v) = 11, then v has at most nine 2-neighbors by Lemma 2.9.(3), so $d^*(v) \ge 11 9\frac{5}{7} 2\frac{3}{14} = \frac{29}{7} > \frac{24}{7}$.
- If $d(v) = k \ge 12$, then $d^*(v) \ge k k\frac{5}{7} = \frac{2k}{7} \ge \frac{24}{7}$.

2.6.4 Optimality of Theorem 2.7

In order to study the tightness of Theorem 2.7, we introduce two measuring functions.

Definition 2.1. Let $f : \mathbb{N} \to \mathbb{R}$ be the function defined by $f(n) = \inf\{mad(H) \mid \chi_a(H) > n\}$. **Definition 2.2.** Let $f^l : \mathbb{N} \to \mathbb{R}$ be the function defined by $f^l(n) = \inf\{mad(H) \mid \chi_a^l(H) > n\}$.

It is easy to check that $f^l(2) = f(2) = 2$. By Theorem 2.7, we have lower bounds on $f^l(n)$ for $3 \leq n \leq 5$, namely $f^l(3) \geq \frac{8}{3}$, $f^l(4) \geq \frac{19}{6}$, and $f^l(5) \geq \frac{24}{7}$. We now give graphs that provide upper bounds on these quantities.

Figure 2.18: A graph G with $mad(G) = \frac{8}{3}$ such that $\chi_a(G) = \chi_a^l(G) = 4$.

The graph G with $mad(G) = \frac{8}{3}$ depicted in Figure 2.18 is acyclically 4-choosable by Theorem 2.7.(2). To see that G is not acyclically 3-colorable, consider its four 3-vertices: Any two of them are either adjacent or have three common neighbors. Thus, different colors must be assigned to four vertices in any acyclic 3-coloring of G. This contradiction shows that:

Figure 2.19: A graph G with $mad(G) = \frac{13}{4}$ such that $\chi_a(G) = \chi_a^l(G) = 5$.

The graph G with $mad(G) = \frac{13}{4}$ depicted in Figure 2.19 is acyclically 5-choosable: First, we assign five distinct colors to the four 4-vertices and to one of the 3-vertex, then we assign proper colors to the other vertices. To see that G is not acyclically 4-colorable, consider its four 4-vertices: Any two of them are either adjacent or have four common neighbors. Thus, different colors are assigned to the 4-vertices in any acyclic 4-coloring of G. Now, observe that properly coloring the 3-vertices produces a bicolored C_4 in every case. This contradiction shows that:

$$\frac{19}{6} \leqslant f^l(4) \leqslant f(4) \leqslant \frac{13}{4}$$

The graph G with $mad(G) = \frac{11}{3}$ depicted in Figure 2.20 is acyclically 6-choosable: First, we assign distinct colors to the six 7-vertices, then we assign proper colors to the 2-vertices. To see that G is not acyclically 5-colorable, consider its six 7-vertices: Any two of them are

Figure 2.20: A graph G with $mad(G) = \frac{11}{3}$ such that $\chi_a(G) = \chi_a^l(G) = 6$.

either adjacent or have five common neighbors. Thus, different colors must be assigned to six vertices in any acyclic 5-coloring of G. This contradiction shows that:

Figure 2.21: The graph G_n is such that $mad(G_n) = 4 - \frac{8}{n^2+2}$ and $\chi_a(G_n) = \chi_a^l(G_n) = n + 1$.

We now use the construction proposed in [41] to obtain an asymptotic upper bound on f(n). Let G_n be the graph defined as follows: G_n is a (n + 1)-clique in which each edge is replaced by n paths with length 2 (see the graph G_3 depicted in Figure 2.21). It is easy to see that $mad(G_n) = 4 - \frac{8}{n^2+2}$. The graph G_n is acyclically (n + 1)-choosable: First, we assign distinct colors to the >2-vertices, then we assign proper colors to the 2-vertices. To see that G_n is not acyclically n-colorable, consider its >2-vertices: Any two of them have n common neighbors. Thus, different colors must be assigned to n + 1 vertices in any acyclic n-coloring of G_n . This contradiction shows that:

$$f(n) \leqslant 4 - \frac{8}{n^2 + 2}.$$

Problem 2.1.

- What are the values of $f^{l}(n)$ and f(n) for n > 3?
- Does the equality $f^{l}(n) = f(n)$ hold also for every n > 3?

We remark that we cannot reach the results of [11] applied to the acyclic choosability without using some contraints of planarity: Indeed, to imply Theorem 1.3.(4), we should have proven that every graph G with $mad(G) < \frac{10}{3}$ is acyclically 4-choosable, which is false since there exists a graph G with $mad(G) = \frac{13}{4} < \frac{10}{3}$ which is not acyclically 4-colorable (see Figure

2.19). Similarly, it is impossible to prove that every graph G with $mad(G) < \frac{14}{5}$ is acyclically 3-choosable to imply Theorem 1.3.(3), since there exists a graph G with $mad(G) = \frac{8}{3} < \frac{14}{5}$ which is not acyclically 3-colorable (see Figure 2.18).

2.7 Relationship between χ_a , χ^l and χ^l_a

We first consider the relationship between χ_a and χ^l . The graph G_n above satisfies $\chi_a(G_n) = \chi_a^l(G_n) = n + 1$ (we assign n + 1 distinct colors to the n + 1 vertices of the initial (n + 1)clique; then we color the remaining vertices with proper colors) and $\chi^l(G_n) = 3$, thus we cannot bound $\chi_a(G)$ by a function of $\chi^l(G)$ for a general graph G. On the other hand, we can show that $\chi^l(G) \leq 2\chi_a(G) - 2$ by using the following lemma:

Lemma 2.12. [82] Every maximal acyclically k-colorable graph with n vertices has exactly $(k-1)(n-\frac{k}{2})$ edges.

Suppose $k \ge 2$: Lemma 2.12 implies that if a graph G is acyclically k-colorable, then G has arboricity k-1, so G is (2k-3)-degenerate, and thus G is (2k-2)-choosable. The previous result is best possible for k=2 since $\chi_a(K_2) = \chi^l(K_2) = 2$.

We now consider the relationship between χ_a and χ_a^l .

Lemma 2.13. Let G be a graph which is not l-choosable. Let G' be the graph obtained by replacing every edge uv of G by l 2-vertices, each adjacent to u and v. Then G' is bipartite and 2-degenerate, but not acyclically l-choosable. Moreover, if G is bipartite then G' belongs to $\mathcal{S}_0 \odot \mathcal{D}_1$, otherwise we have $\chi_a(G') = \chi(G)$.

Proof. The graph G' is clearly bipartite and 2-degenerate. A vertex of G' that is also in G is called *old*, and for each edge uv of G, the non-old vertices of G' adjacent to u and v are called (u, v)-vertices. If G is bipartite, we have a bipartition $V(G) = V_0 \cup V_1$. In G', we color an old vertex v with c(v) = i if and only if v belongs to V_i in G, and we color 1 the non old vertices. This gives a $S_0 \odot \mathcal{D}_1$ -coloring of G'. If $\chi(G) = p \ge 3$, we can get an acyclic p-coloring of G' as follows: The colors of the old vertices of G' are induced by a proper p-coloring of G. To color the (u, v)-vertices, we use a color in S distinct from c(u) and c(v): Such a color exists since $p \ge 3$. We check easily that this coloring is acyclic. Finally we have to show that $\chi_a^l(G') > l$. Let L be a list assignment of the old vertices with lists of size l. For each edge uv of G, pick one endpoint u, and assign the list L(u) to every (u, v)-vertex. Suppose c(u) = c(v). To avoid a bicolored C_4 , no two (u, v)-vertices can get the same color. There are l such vertices but only l - 1 colors in the set $L(u) \setminus c(u)$. This contradiction shows that $c(u) \neq c(v)$. Given a non-colorable list assignment of V(G) with lists of size l, we can thus produce a list assignment of V(G') with lists of size l that is not acyclically colorable.

It is well known that, for any fixed k, there exist bipartite graphs which are not k-choosable. There also exist 3-colorable non-4-choosable planar graphs, see [53, 81]. We can use Lemma 2.13 with these graphs to obtain the following corollary.

Corollary 2.2.

- 1. For any fixed k, there exist bipartite 2-degenerate graphs in $S_0 \odot D_1$ which are not acyclically k-choosable.
- 2. There exist bipartite 2-degenerate planar graphs which are acyclically 3-colorable but not acyclically 4-choosable.

Chapter 3

Edge colorings

Recall that a T-fa coloring is an improper coloring of the edges such that every color class induces a forest which does not contain the tree T. In this chapter, we consider certain T-fa colorings of some subclasses of planar graphs.

3.1 Introduction

A foot is an edge of a tree T incident to a leaf of T.

If we remove zero or more leaves from a tree T, we obtain a *skeleton* T' of T. If we remove every leaf of a tree T, we obtain the *basic skeleton* T' of T.

Lemma 3.1. For any tree P with basic skeleton P' and any tree T with skeleton T', if T' is P'-free then T is P-free.

Proof. We show the contraposition. If T contains P, then every leaf of T is either a leaf of P or does not belong to P. So, by removing some leaves of T, we do not remove non-leaves of P. Thus any skeleton T' contains the basic skeleton P'.

Definition 3.1. For any tree P with basic skeleton P', a k-P-fa coloring of G is a k-coloring and a partial orientation of its edges such that:

- The graph induced by a color class is a P-free forest.
- If the edge uv is colored i and is oriented towards v, then v is a leaf in the i^{th} forest.
- The graph induced by the unoriented edges of a color class is a P'-free forest.

By Lemma 3.1, a graph G has $P \cdot fa(G) \leq k$ if and only if it has a $k \cdot P \cdot fa$ coloring. Notice that the basic skeletons of the trees P_4 and S_n , with n > 1, are respectively K_2 and $K_{1,n}$. This implies that the forest induced by the unoriented edges in a $k \cdot P_4 \cdot fa$ coloring (resp. $k \cdot S_n \cdot fa$ coloring) has maximum degree 0 (resp. n - 1). If the graph G is $k \cdot P \cdot fa$ colored, for each of its k forests, we distinguish two types of vertices: The *leaves*, which have an incident arc in this forest oriented toward them, and the *inner vertices*. A $k \cdot P \cdot fa$ coloring is said to be *suitable* if every vertex is an inner vertex in at least k - 1 forests. **Theorem 3.1.** *Positive results:*

- 1. Every graph G of girth at least 5 with $mad(G) < \frac{10}{3}$ has a suitable 3-S₄-fa coloring.
- 2. Every graph G of girth at least 6 with mad(G) < 3 has a suitable 3-S₃-fa coloring.
- 3. Every graph G of girth at least 10 with $mad(G) < \frac{5}{2}$ has a suitable 2-S₃-fa coloring.
- 4. Every graph G of girth at least 14 with $mad(G) < \frac{7}{3}$ has a suitable 2-S₂-fa coloring.

By Observation 1.1, we get:

Corollary 3.1.

- 1. If $G \in \mathcal{P}_5$, then S_4 -fa $(G) \leq 3$.
- 2. If $G \in \mathcal{P}_6$, then S_3 -fa $(G) \leq 3$.
- 3. If $G \in \mathcal{P}_{10}$, then S_3 - $fa(G) \leq 2$.
- 4. If $G \in \mathcal{P}_{14}$, then S_2 - $fa(G) \leq 2$.

Theorem 3.2. Negative results:

- 1. For every tree T, there exist 2-degenerate planar bipartite graphs having no edge partition into a forest and a T-free forest.
- 2. For every tree T, there exist partial 2-trees having no edge partition into a forest and a T-free forest.

3.2 Proofs of the positive results

Every item of Theorem 3.1 is proved using the method described in Section 1.6. The partial order on graphs considered here is the subgraph partial order. Let us first present a general lemma which is used in the next subsections.

Lemma 3.2. Let $n \ge 2$, $k \ge 2$ and let H be a minimal graph having no suitable k- S_n -fa coloring. Then H does not contain

- 1. $a \leq 1$ -vertex (for $n \geq 2$, $k \geq 2$),
- 2. a 2-vertex adjacent to a (2n-1)-vertex (for $n \ge 2$, k = 3).

Figure 3.1: Forbidden configurations for Lemma 3.2.

3.2. PROOFS OF THE POSITIVE RESULTS

Proof.

- 1. Suppose H contains the configuration depicted in Figure 3.1 (left). Consider a suitable k- S_n -fa coloring of $H \setminus \{v\}$. Since $k 1 \ge 1$, u is an inner vertex in at least one S_n -free forest, say F_i . We can extend this coloring to a suitable k- S_n -fa of H by orienting the edge uv towards v and coloring uv with i.
- 2. Suppose H contains the configuration depicted in Figure 3.1 (right). Consider a suitable coloring of $H \setminus \{w\}$ into three forests F_1 , F_2 , F_3 . If v is an inner vertex in all three forests, then there is a forest F_i such that v is incident to at most $\lfloor \frac{2n-2}{3} \rfloor \leq n-2$ edges in F_i . If v is an inner vertex in two forests, say F_2 , F_3 , then exactly one edge, say u_1v , is a foot edge for F_1 . So there is an edge forest F_i such that v is incident to at most $\lfloor \frac{2n-3}{3} \rfloor \leq n-2$ unoriented edges in F_i . The vertex x is an inner vertex in at least two forests, say F_j , F_k , and thus either j or k is distinct from i (say j). Now we can color vw with i and wx with j. We check that the coloring is suitable: w may not be an inner vertex in F_j but is an inner vertex in both F_i and the third forest.

3.2.1 Proof of Theorem 3.1.(1)

Lemma 3.3. Let H be a minimal graph of girth at least 5 having no suitable 3-S₄-fa coloring. Then H does not contain

- 1. a 3-vertex adjacent to two 3-vertices,
- 2. a d-vertex adjacent to (d-1) 2-vertices and one ≤ 3 -vertex (for $d \leq 9$).

Figure 3.2: Forbidden configurations for Lemma 3.3.

Proof.

1. Suppose H contains the configuration depicted in Figure 3.2 (left). Consider a suitable $3-S_4$ -fa coloring of $H \setminus \{v\}$ into three forests F_1 , F_2 , F_3 . Let w be an inner vertex in the forests F_1 and F_2 . If u is an inner vertex in F_3 , let uv be unoriented and colored 3, and let yv be oriented toward v and colored 1 or 2 (according to the status of v in F_1 and F_2), say 1. Now, we just let vw be unoriented and colored 2, and obtain a suitable $3-S_4$ -fa coloring of H. If u is a leaf in F_3 , one of its incident edges, say x_1u , is oriented

toward u and colored 3. If the edge x_2u is colored 1 (resp. 2), let the edges uv and vw be unoriented and colored 2 (resp. 1). We orient yv toward v and color it 1 or 3 (resp. 2 or 3), thus we obtain a suitable $3-S_4$ -fa coloring of H.

2. Suppose H contains the configuration depicted in Figure 3.2 (right). Consider a suitable 3- S_4 -fa coloring of $H \setminus \{v, u_2, \ldots, u_d\}$ into three forests F_1 , F_2 , F_3 . W.l.o.g. consider that u_1 is an inner vertex in the forests F_1 . Let all the edges vu_i , for $1 \leq i \leq d$, be unoriented and color them 1 if $1 \leq i \leq 3$, 2 if $4 \leq i \leq 6$, and 3 if $7 \leq i \leq 9$. We orient edges x_iu_i toward u_i and color them with a color distinct from the color of vu_i . Thus, we obtain H has a suitable 3- S_4 -fa coloring of H.

We use the following discharging rule: each ≥ 4 -vertex gives $\frac{2}{3}$ to each of its 2-neighbors and $\frac{1}{6}$ to each of its 3-neighbors. Let us check that for every $v \in V(H)$, $d^*(v) \geq \frac{10}{3}$:

- d(v) = 2: v has two ≥ 8 -neighbors by Lemma 3.2.(2), so $d^*(v) = 2 + 2\frac{2}{3} = \frac{10}{3}$.
- d(v) = 3: v has no 2-neighbor and at least two \geq 4-neighbor by Lemma 3.3.(1), so $d^*(v) \geq 3 + 2\frac{1}{6} = \frac{10}{3}$.
- $d(v) = k, 4 \leq k \leq 7$: v has no 2-neighbor so $d^*(v) \geq k k\frac{1}{6} = k\frac{5}{6} \geq \frac{10}{3}$.
- $d(v) = k, 8 \leq k \leq 9$, then v has at most (k-1) 2-neighbors by Lemma 3.3.(2), so $d^*(v) \geq k (k-1)\frac{2}{3} = \frac{k+2}{3} \geq \frac{10}{3}$.

•
$$d(v) = k \ge 10$$
: $d^*(v) \ge k - k\frac{2}{3} = \frac{k}{3} \ge \frac{10}{3}$.

г		1
		L
		L
		L

3.2.2 Proof of Theorem 3.1.(2)

We use the following discharging rule: each vertex gives $\frac{1}{2}$ to each of its 2-neighbors. Let us check that for every $v \in V(H)$, $d^*(v) \ge 3$:

- d(v) = 2: v has two ≥ 6 -neighbors by Lemma 3.2.(2), so $d^*(v) = 2 + 2\frac{1}{2} = 3$.
- $d(v) = k, 3 \leq k \leq 5$: v has no 2-neighbor by Lemma 3.2.(2), so $d^*(v) = k \geq 3$.
- $d(v) = k \ge 6$: $d^*(v) \ge k k\frac{1}{2} = \frac{k}{2} \ge 3$.

3.2.3 Proof of Theorem **3.1.(3)**

Lemma 3.4. Let H be a minimal graph of girth at least 10 having no suitable 2-S₃-fa coloring. Then H does not contain any of the configurations depicted in Figure 3.3.

Figure 3.3: Forbidden configurations for Lemma 3.3.

- (i) Suppose H contains the configuration (i) depicted in Figure 3.3. Consider a suitable 2-S₃-fa coloring of H\{y}. In every case, z is an inner vertex in some forest F_i such that z is incident to at most one non-oriented edge colored i. We can extend this coloring to H such that xy and yz are non-oriented, vx and xy get different colors, and yz gets color i.
- (ii) Suppose H contains the configuration (ii) depicted in Figure 3.3. Consider a suitable 2-S₃-fa coloring of the graph H' obtained from H by deleting the edge yz, we can always modify this coloring into a suitable 2-S₃-fa coloring of H' such that xy is non-oriented and there exist no monochromatic path connecting y to any u_i . In every case, z is an inner vertex in some forest F_i such that z is incident to at most one non-oriented edge colored i. We can extend this coloring to H such that yz is non-oriented and gets color i.

A 3-vertex is weak if it has three 2-neighbors. A 2-vertex is weak if is adjacent to a 2-vertex or a weak 3-vertex. We use the following discharging rule: each ≥ 4 -vertex gives $\frac{1}{2}$ to its weak 2-neighbors and $\frac{1}{4}$ to its non-weak 2-neighbors, each non-weak 3-vertex gives $\frac{1}{4}$ to its 2-neighbors. Let us check that for every $v \in V(H)$, $d^*(v) \geq 3$:

- d(v) = 2: if v is weak, then v has a ≥ 4 -neighbor (see Figure 3.3.(i) and Figure 3.3.(ii) with m = 2), so $d^*(v) = 2 + \frac{1}{2} = \frac{5}{2}$. Otherwise v receives $\frac{1}{4}$ from each neighbor, so $d^*(v) \geq 2 + 2\frac{1}{4} = \frac{5}{2}$.
- d(v) = 3: if v is weak, then $d^*(v) = d(v) = 3 > \frac{5}{2}$. Otherwise v has at most two 2-neighbors, so $d^*(v) \ge 3 2\frac{1}{4} = \frac{5}{2}$.
- d(v) = 4: if v has four 2-neighbors, then its 2-neighbors are not weak (see Figure 3.3.(ii)with m = 3), so $d^*(v) \ge k k\frac{1}{4} = \frac{3k}{4} \ge 3 > \frac{5}{2}$. Otherwise v has at most three 2-neighbors, so $d^*(v) \ge 4 3\frac{1}{2} = \frac{5}{2}$.
- $d(v) = k \ge 5$: $d^*(v) \ge k k\frac{1}{2} = \frac{k}{2} \ge \frac{5}{2}$.

3.2.4 Proof of Theorem **3.1.**(4)

Lemma 3.5. Let H be a minimal graph of girth at least 14 having no suitable 2- S_2 -fa coloring. Then H does not contain the configuration depicted in Figure 3.4.

Figure 3.4: Forbidden configuration for Lemma 3.5.

Proof. Suppose that a H contains this configuration. The graph H' is obtained from H by removing the white vertices of the configuration, except those inside the circle. The condition $m+p+r \ge 1$ ensures that H' is a proper subgraph of H. Consider a suitable $2-S_2$ -fa coloring of H'. If necessary, we can always modify this coloring into a suitable $2-S_2$ -fa coloring of H' such that v is an inner vertex in both forests. Then this modified coloring can be extended in a suitable $2-S_2$ -fa coloring of the whole graph H.

A q-chain is a path of q consecutive 2-vertices. The configuration in Figure 3.4 with n = m = 1, p = r = 0 ensures that H contains no 4-chain. A 3-vertex is *very weak* if is adjacent to a 3-chain and a \geq 2-chain. A 3-vertex is *weak* if is adjacent to a 3-chain and a very weak vertex. A \geq 4-vertex or 3-vertex which is neither very weak nor weak is said to be *non-weak*. We use the following discharging rule: each \geq 3-vertex v gives:

- $\frac{1}{6}$ to each 2-vertex that belong to a *q*-chain adjacent to *v*.
- $\frac{1}{6}$ to each weak vertex adjacent to v.
- $\frac{1}{3}$ to each very weak vertex adjacent to v.

Let us check that for every $v \in V(H)$, $d^*(v) \ge \frac{7}{3}$:

- d(v) = 2: v gets $\frac{1}{6}$ from the two ≥ 3 -vertices adjacent to the q-chain containing v, so $d^*(v) = 2 + 2\frac{1}{6} = \frac{7}{3}$.
- d(v) = 3 and v is very weak: the third neighbor of v is a ≥ 3 -vertex (take n = 2, m = 1, p = r = 0) which is neither very weak (take n = 2, p = 1, m = r = 0) nor weak (take n = 2, r = 1, m = p = 0). So v has a non-weak neighbor and $d^*(v) \geq 3 + \frac{1}{3} 2 \times 3\frac{1}{6} = \frac{7}{3}$.
- d(v) = 3 and v is weak: the third neighbor of v is a ≥ 3 -vertex (take n = 2, p = 1, m = r = 0) which is neither very weak (take n = 2, r = 1, m = p = 0) nor weak (take m = 0, n = p = r = 1). So v has a non-weak neighbor and $d^*(v) \geq 3 + \frac{1}{6} 3\frac{1}{6} \frac{1}{3} = \frac{7}{3}$.

3.3. PROOFS OF THE NEGATIVE RESULTS

- d(v) = 3 and v is non-weak: If all the neighbors of v are 2-vertices, then they belong to 1-chains (take n = 2, m = 1, p = r = 0), so $d^*(v) = 3 3\frac{1}{6} = \frac{5}{2} > \frac{7}{3}$. Otherwise, v has a non-weak neighbor (take any combination with n < 3, m = 0, n + p + r = 3). Since v is non-weak, its two other neighbors are in the worst cases either two 2-chains, a 2-chain and a very weak vertex, two very weak vertices, a 3-chain and a 1-chain, or a 3-chain and a weak vertex. In every case v gives at most $\frac{2}{3}$, so $d^*(v) \ge 3 \frac{2}{3} = \frac{7}{3}$.
- $d(v) = k \ge 4$: If v has k 2-neighbors, then they belong to 1-chains (take n = k 1, m = 1, p = r = 0), so $d^*(v) = k k\frac{1}{6} = \frac{5k}{6} \ge \frac{10}{3} > \frac{7}{3}$. Otherwise, v has a non-weak neighbor (take any combination with n < k, m = 0, n + p + r = k), so $d^*(v) \ge k 3(k-1)\frac{1}{6} = \frac{k+1}{2} \ge \frac{5}{2} > \frac{7}{3}$.

3.3 Proofs of the negative results

3.3.1 Proof of Theorem 3.2.(1)

We define the family of rooted trees T_n , $n \ge 0$. Take $T_0 = K_2$. For $n \ge 1$, T_n is obtained from n copies of T_{n-1} and another vertex, the root of T_n , which is adjacent to the root of every copy of T_{n-1} . Let G_0 be the 4-cycle (u_0xv_0y) . For $n \ge 1$, G_n is obtained from 2n copies of G_{n-1} , G_{n-1}^i for $1 \le i \le 2n$, and two vertices, u_n and v_n , which are adjacent to the vertices u_{n-1}^i and v_{n-1}^i of every copy of G_{n-1} .

Proposition 3.1. In any edge partition of G_n into two forests F_1 and F_2 , either u_n or v_n is the root of a tree $T_n \subseteq F_2$.

Proof. It is clear for G_0 , since F_1 cannot cover all the edges of the cycle. So, we prove the proposition by induction on n. Consider an edge partition of G_n into two forests F_1 and F_2 . Since u_{n-1}^i and v_{n-1}^i play similar role in G_{n-1}^i , we assume w.l.o.g. that u_{n-1}^i is the root of a tree $T_{n-1} \subseteq F_2 \cap G_{n-1}^i$ for $1 \leq i \leq 2n$. There is at most one vertex u_{n-1}^i such that the edges $u_n u_{n-1}^i$ and $v_n u_{n-1}^i$ are in F_1 , otherwise there would be a 4-cycle in F_1 . Now if we consider the remaining 2n - 1 vertices u_{n-1}^i , then the pigeonhole principle ensures that either u_n or v_n , say u_n , has n neighbors u_{n-1}^i in F_2 . This means that u_n is the root of a tree $T_n \subseteq F_2$ and proves the proposition.

It is easy to see that every tree is a subtree of T_n for some n. So for every tree T, there exist some G_n having no edge partition into a forest and a T-free forest. Since every G_n is clearly 2-degenerate, planar, and bipartite, this proves Theorem 3.2.(1).

3.3.2 Proof of Theorem 3.2.(2)

Figure 3.5: The tree T and the graph H_T .

We define another family of rooted trees T_n , $n \ge 0$. Take $T_0 = K_1$. For $n \ge 1$, T_n is obtained from two copies of T_{n-1} , such that the root of one copy is the root of T_n and is adjacent to the root of the root of the other copy.

Let T be a tree. We construct the graph H_T by adding to T a new vertex v adjacent to every vertex of T (see Figure 3.5). We now define a family G_n of graphs, depending on T, with a specified vertex s. Let $G_0 = K_1$. For $n \ge 1$, G_n is obtained from a copy H of H_T , by identifying every vertex of H with the specified vertex of copy of G_{n-1} . The specified vertex of G_n is the vertex v of H.

Proposition 3.2. In any edge partition of G_n into a forest F_1 and a T-free forest F_2 , the specified vertex s is the root of a 2-monochromatic copy of T_n .

Proof. It is clear that G_0 contains a 2-monochromatic copy T_0 . We prove the proposition by induction on n. Let v denote the specified vertex of G_n . There exist two vertices $x, y \in H \setminus \{s\}$ such that xy is colored 1, since otherwise $H \setminus \{s\}$ would be a 2-monochromatic copy of T. The edges sx and sy cannot be both colored 1, since it would induce a 1-monochromatic triangle (sxy). So we assume w.l.o.g. that sx is colored 2. By induction, both s and x are the root of a 2-monochromatic copy of T_{n-1} in the associated copy of G_{n-1} . So s is the root of a 2-monochromatic copy of T_n .

It is easy to see that every tree is a subtree of T_n for some n. So for every tree T, we can construct a family of partial 2-trees G_i such that G_i have no edge partition into a forest and a T-free forest if $i \ge n$ for some n. This proves Theorem 3.2.(2).

3.4 Summary of results

The table below summarizes what is now known about the *T*-free arboricity of planar graphs with given girth. Some bounds in this table are given by known results from the litterature. The bounds on the acyclic chromatic number are reported from Theorem 1.3 and the values of the arboricity are given by Nash-Williams' formula (1.1). Gonçalves proved that planar graphs have caterpillar arboricity (i.e. S_3 -fa) at most four [28], and that there exist planar graphs with bistar arboricity (i.e. S_2 -fa) five [29]. Corollary 3.1 gives new upper bounds on the *T*-free arboricity of some graph classes for some trees *T*. New lower bounds are derived from Theorem 3.2.(1) and Theorem 4.4.

3.4. SUMMARY OF RESULTS

girth	χ_a	P_4	S_2	S_3	S_4	U	arb
3	5	5	5	4	4	3-4	3
4	5	4	4	4	4	3-4	2
5	3-4	3-4	3-4	3-4	3	2-3	2
6	3-4	3-4	3-4	3	3	2-3	2
7-8	3	3	3	2-3	2-3	2-3	2
9	3	3	2-3	2-3	2-3	2-3	2
10-13	3	3	2-3	2	2	2	2
≥14	3	3	2	2	2	2	2

Figure 3.6: Table of known results for planar graphs.

CHAPTER 3. EDGE COLORINGS

Chapter 4

NP-complete colorings

In this chapter, we expose NP-completeness results concerning the colorings considered in the two previous chapters. We chose to group them in a same chapter since their proofs often use similar polynomial reductions.

4.1 Introduction

If C_1 and C_2 are graph classes, we note $(C_1 : C_2)$ the problem of deciding whether a given graph $G \in C_1$ belongs to C_2 . If P_1 and P_2 are decision problems, we note $P_1 \propto P_2$ if there is a polynomial reduction from P_1 to P_2 . Notice that if $(C_1 : C_2)$ is NP-complete, then it implies in particular that C_1 is not a subclass of C_2 . Actually, whenever we obtained a graph-theoretic negative result of the form " $C_1 \not\subseteq C_2$ ", we have tried to strengthen it into a complexity result of the form " $(C_1 : C_2)$ is NP-complete".

Kratochvil proved that PLANAR $(3, \leq 4)$ -SAT is NP-complete [44]. In this restricted version of SAT, the graph of incidences variable-clause of the input formula must be planar, every clause is a disjonction of exactly three literals, and every variable occurs in at most four clauses. A subcoloring is an improper coloring of the vertex set such that each color class induces a union of disjoint cliques. The problem 2-SUBCOLORABILITY is NP-complete on triangle-free planar graphs with maximum degree 4 [22, 27]. Notice that on triangle-free graphs, a 2-subcoloring corresponds to a vertex partition into two graphs with maximum degree 1. Finally, the problem 3-COLORABILITY is shown to be NP-complete on planar graphs with maximum degree 4 in [26]. Thus, using our notations, we have that $(\mathcal{P}_4 \cap \mathcal{S}_4 : \mathcal{S}_1^2)$ and $(\mathcal{P}_3 \cap \mathcal{S}_4 : \mathcal{S}_0^3)$ are NP-complete.

4.2 Acyclic and/or improper colorings

Theorem 4.1. PLANAR $(3, \leq 4)$ -SAT $\propto (\mathcal{P}_6 \cap \mathcal{S}_3 : \mathcal{S}_0 \circ \mathcal{S}_1)$

Proof. In a $S_0 \circ S_1$ or $S_0 \odot S_1$ coloring c, a vertex v gets color c(v) = i if v is in the color class S_i , $0 \leq i \leq 1$. We observe that the graph depicted in Figure 4.1(i) has no $S_0 \circ S_1$ coloring such that c(u) = c(v) = 1. This implies that the vertex u in the graph depicted in Figure 4.1(ii) must be colored 1. Given an instance I of PLANAR $(3, \leq 4)$ -SAT, we build a graph G as

Figure 4.1: The forcing gadget for the reduction of Theorem 4.1.

Figure 4.2: The variable gadget for the reduction of Theorems 4.1 and 4.2.

Figure 4.3: The clause gadget for the reduction of Theorems 4.1

follows. We replace every variable of I by a copy the variable gadget depicted in Figure 4.2. We replace every clause of I by a copy the clause gadget depicted in Figure 4.3(i). The way we link variables to clauses is best explained with an example: for a clause gadget $C = (x, \overline{y}, z)$ and variables gadgets X, Y, Z, we add an edge between a big vertex \overline{x} of X and the vertex v_1 of C, between a big vertex y of Y and the vertex v_2 of C, and between a big vertex \overline{z} of Z and the vertex v_3 of C. The boolean value true (resp. false) is associated with the color 0 (resp. 1). We see in figure 4.3(ii) that an unsatisfied clause is not $S_0 \circ S_1$ colorable, whereas any satisfied clause (i.e. such that at least one v_1, v_2, v_3 is colored 1) is colorable, see figure 4.3(ii). This means that I is satisfiable if and only if G belongs to $S_0 \circ S_1$. We easily check that G is indeed planar, with girth 6, and maximum degree 3.

Notice that on triangle-free graphs, the $S_0 \circ S_1$ coloring correspond to the (1, 2)-subcoloring defined in [47]. Theorem 4.1 improves a result in [47] stating that $(\mathcal{P}_4 \cap S_3 : S_0 \circ S_1)$ is NP-complete.

Theorem 4.2. PLANAR $(3, \leq 4)$ -SAT $\propto (\mathcal{P}_{10} \cap \mathcal{S}_3 \cap bip : \mathcal{S}_0 \odot \mathcal{S}_1)$

Figure 4.4: The forcing gadget for the reduction of Theorem 4.2.

Proof. The proof is similar to the previous one, with the following two changes. We use another forcing gadget depicted in Figure 4.4. In any $S_0 \odot S_1$ coloring of the forcing gadget, the vertex u must be colored 1. The clause gadget is obtained from the one in Figure 4.3(i) by deleting the vertex forced to be colored 1 and its two 2-neighbors. If a clause is unsatisfied, then its clause gadget is not colorable (an alternating cycle C_{12} is forbidden). If a clause is satisfied, then its clause gadget is colorable (the coloring in Figure 4.3(iii) is acyclic).

Theorem 4.3. $(\mathcal{P}_4 \cap \mathcal{S}_4 : \mathcal{S}_1^2) \propto (\mathcal{P}_8 \cap \mathcal{S}_4 \cap bip : \mathcal{S}_1^{(2)})$

Proof. Consider the graph depicted in Figure 4.5(i). Any S_1^2 coloring such that the vertex u is colored 1 and has no neighbor colored 1 contains an alternating cycle C_8 . So in every $S_1^{(2)}$ coloring, both u and one neighbor of u must get the same color. Now we use three copies of this graph in the forcing gadget depicted in Figure 4.5(ii). Since the cycle of this forcing gadget cannot be alternating, two types of special edges are forced: monochromatic edges and edges whose endpoints have distinct colors and have a neighbor of the same color. Given a

Figure 4.5: The forcing gadget for the reduction of Theorem 4.3.

2	2	1		2	2	1	2	2	1	2	2	1	2	
1	(1)	(2) 1		(2)	(1)	1	(2)	(1)	1	(2)	(1)	1	ect.
u	1			u_2	_	-	u_3			u_4	_		u_5	

Figure 4.6: The vertex gadget for the reduction of Theorem 4.3.

planar graph G, we construct the graph G' as follows. We replace every vertex of G by a copy of the vertex gadget depicted in Figure 4.6 and for every edge vw we link a big vertex u_i in the gadget of v to a small vertex u_i in the gadget of w. In any $\mathcal{S}_1^{(2)}$ coloring of the vertex gadget, all u_i 's get the same color, say 1, and there exists no alternating path between distinct u_i 's. This common color in the gadget of a vertex v corresponds to the color of v in a \mathcal{S}_1^2 coloring of G. Notice that if one of the u_i 's, say u_2 , has a neighbor colored 1 not in the gadget, then every other u_i has a neighbor colored 1 in the gadget. Thus we can obtain a $\mathcal{S}_1^{(2)}$ coloring of G' from a \mathcal{S}_1^2 coloring of G and vice-versa.

Theorem 4.4. $(\mathcal{P}_3 \cap \mathcal{S}_4 : \mathcal{S}_0^3) \propto (\mathcal{P}_4 \cap \mathcal{S}_4 \cap bip \cap \mathcal{D}_2 : \mathcal{S}_0^{(3)})$

Figure 4.7: The vertex gadget for the reduction of Theorem 4.4.

Proof. Given a planar graph G, we construct the graph G' as follows. We replace every vertex of G by a copy of the vertex gadget depicted in Figure 4.7 and for every edge vw we link a big vertex u_i in the gadget of v to a small vertex u_i in the gadget of w. The given 3-acyclic coloring of the vertex gadget is the unique one up to permutation of colors. Notice that all u_i 's get the same color and there exists no alternating path between distinct u_i 's. This common color in the gadget of a vertex v corresponds to the color of v in a 3-coloring of G. Thus G' is acyclically 3-colorable if and only if G is 3-colorable.

Theorem 4.5. $(\mathcal{P}_3 \cap \mathcal{S}_4 : \mathcal{S}_0^3) \propto (\mathcal{P}_4 \cap \mathcal{S}_8 \cap bip \cap \mathcal{D}_2 : \mathcal{S}_0^{(4)})$

Figure 4.8: The forcing gadgets for the reduction of Theorem 4.5.

Figure 4.9: The vertex gadget for the reduction of Theorem 4.5.

Proof. Consider the graph depicted in Figure 4.8(i). Any $\mathcal{S}_0^{(4)}$ coloring is such that x and y get the same color. Moreover, this gadget has a coloring such that there exists only one alternating path between x and y (the path colored 1 and 2 in Figure 4.8(i)). In the graph depicted in Figure 4.8(ii), the vertices x and y must have distinct colors and there is no alternating path between x and y. Given a planar graph G, we construct the graph G' as follows. We replace every vertex of G by a copy of the vertex gadget depicted in Figure 4.9 and for every edge vw we connect a vertex u_i (resp. t_i) in the gadget of v to a vertex u_i (resp. t_i) in the gadget of w using the forcing gadget (ii) (resp. (i)). In any $\mathcal{S}_0^{(4)}$ coloring of the vertex gadget, all u_i 's get the same color and all t_i 's get a same color distinct from the color of the u_i 's. The color of the u_i 's in the gadget of a vertex v corresponds to the color of v in a 3-coloring of G. The color of the t_i 's is common to every vertex gadget in G', assuming that G is connected. Thus G' is acyclically 4-colorable if and only if G is 3-colorable.

4.3 Acyclic list colorings

Theorem 4.6. It is NP-complete to decide whether a planar graph G, given with an acyclic 4-coloring and 4-list assignment L, is L-colorable.

Figure 4.10: The forcing gadget $F_{a,b}$: 4-list assignment and acyclic 4-coloring.

Proof. We use again a reduction from $(\mathcal{P}_3 \cap \mathcal{S}_4 : \mathcal{S}_0^3)$. The proof for the restriction to graphs with maximum degree 4 [26] shows that we can assume that the input graph G is acyclically 4-colorable and that an acyclic 4-coloring can be constructed in polynomial time.

Let p_1 and p_2 be adjacent vertices with lists $L_{p_1} = L_{p_2} = \{1, 2, 3, 4\}$. We take three copies of the graph $F_{a,b}$ depicted in Figure 4.10: $F_{4,1}$, $F_{4,2}$, $F_{4,3}$. We identify all the vertices v_1 (resp. v_2) to the vertex p_1 (resp. p_2) to obtain the forcing gadget. We check that $F_{a,b}$ is not colorable if $c(v_1) = a$ and $c(v_2) = b$. So, the forcing gadget is colorable if and only if $c(v_1) \neq 4$. Given an input graph G for ($\mathcal{P}_3 \cap \mathcal{S}_4 : \mathcal{S}_0^3$), we assign to every vertex v in G the list $\{1, 2, 3, 4\}$ and identify v to the vertex p_1 of copy of the forcing gadget. We thus obtain a graph G' with an assignment L of lists of size four. Notice that any 3-coloring of G extends to an L-coloring of G' and conversely any L-coloring of G' induces a 3-coloring of G.

4.4 *T*-free arboricities

Theorem 4.7. The following problems are NP-complete:

- 1. Deciding whether a graph $G \in \mathcal{P}_4 \cap \mathcal{D}_2 \cap bip$ satisfies P_4 -fa $(G) \leq 3$.
- 2. For every $n \ge 2$, deciding whether a graph $G \in \mathcal{P}_4 \cap \mathcal{D}_2 \cap bip$ satisfies S_n - $fa(G) \le 3$.
- 3. For every $n \ge 3$, deciding whether a graph $G \in \mathcal{P}_6 \cap bip$ satisfies S_n - $fa(G) \le 2$.
- 4. Deciding whether a graph $G \in \mathcal{P}_8 \cap bip$ satisfies S_2 -fa $(G) \leq 2$.
- 5. For every n, deciding whether a graph $G \in \mathcal{P}_n \cap \mathcal{S}_3 \cap bip$ satisfies P_4 -fa $(G) \leq 2$.
- 6. Deciding whether a graph $G \in \mathcal{P}_3$ satisfies P_4 -fa $(G) \leq 4$.

Let us denote by L(G) the line graph of G and by \mathcal{L} the class of line graphs of "planar bipartite graphs with maximum degree three and girth at least six". Notice that graphs in \mathcal{L} are planar with maximum degree four and line graphs of bipartite graphs, thus perfect [38]. Alternatively, we can say that they are planar $(K_{1,3}, K_4, K_4^-, C_4, \text{odd-hole})$ -free (this implies the maximum degree four). As we already mentioned, if G is triangle-free, then P_4 $fa(G) = \chi'_{sub}(G) = \chi_{sub}(L(G))$. Thus, EDGE SUBCOLORABILITY is NP-complete on planar graphs. This answers an open question of Fiala and Le [23].

Corollary 4.1. Deciding whether a graph $G \in \mathcal{L}$ satisfies $\chi_{sub}(G) \leq 2$ is NP-complete.

Shermer proved that recognizing graphs with caterpillar arboricity two is NP-complete [73], but their reduction produces non-planar graphs that contain copies of K_4 . Theorem 4.7.(3) shows in particular that this result still holds if the input graph is restricted to the class $G \in \mathcal{P}_6 \cap bip$.

Theorem 4.7.(2) implies the existence of bipartite planar graphs with caterpillar arboricity four and, as we already mentioned, the track number of a triangle-free graph equals its caterpillar arboricity (i.e. S_3 -fa). This answers an open question of Gyárfás and West [33].

Corollary 4.2. There exist bipartite planar graphs with track number four.

Theorems 4.7.(1), 4.7.(2), and 4.7.(6) are each obtained by a polynomial reduction from $(\mathcal{P}_3 \cap \mathcal{S}_4 : \mathcal{S}_0^3)$. Theorems 4.7.(3), 4.7.(4), and 4.7.(5) are each obtained by a polynomial reduction from $(\mathcal{P}_4 \cap \mathcal{S}_4 : \mathcal{S}_1^2)$. Let us now describe the reductions for Theorems 4.7.(1) and 4.7.(2) (resp. Theorems 4.7.(3) and 4.7.(4)). Given a planar graph (resp. a triangle-free planar graph) G, we construct a graph G' that belongs to the class specified in the theorem as follows: we add a "vertex gadget" to every vertex v of G and replace every edge uv of G by an "edge gadget". The vertex gadget forces the vertex v to be an inner vertex in at most one forest F_i for any k-T-fa coloring (with k and T as mentioned in the theorem). The edge gadget is such that G' is k-T-fa colorable if and only if G is 3-colorable (resp. 2-subcolorable). More precisely if G has a vertex coloring c, then G' has k-T-fa coloring such that every original vertex v is an inner vertex of F_i , then taking c(v) = i gives a vertex coloring of G.

4.4.1 Proof of Theorem 4.7.(1)

Figure 4.11: The vertex gadget and the edge gadget for the reduction of Theorem 4.7.(1).

Given a planar graph G, we construct G' by adding to every vertex of G the vertex gadget depicted in Figure 4.11 and by subdividing every edge of G.

Figure 4.12: 3- P_4 -fa coloring with conditions on x_1 and x_2 .

Given a planar graph G, we construct G' by adding to every vertex of G the vertex gadget depicted in Figure 4.11 and by subdividing every edge of G. First, we comment on how to $3-P_4$ -fa color the graph depicted in Figure 4.12. Notice that if a vertex has two incoming edges colored 1 and 2, all its remaining incident edges have to be colored 3. In the first drawing, we impose that all the edges x_iy_j are oriented toward y_j . This implies that all the edges y_iz_j are oriented toward z_j , and that we just used two colors for these edges. This finally implies that all the remaining edges incident to the z_i 's have the same color, which is not allowed. In the second drawing, we impose that only one edge x_iy_j is oriented toward x_2 and that the edges incident to x_1 have the same color, 1. The edges x_2y_1 and y_2x_2 have to be respectively colored 2 and 3. This implies that the edges y_1z_i are oriented toward z_i and colored 3. This implies that the edges y_2z_i are oriented toward z_i and colored 2. This finally implies that all the remaining edges incident to the z_i 's have the same color, which is not allowed. In the third drawing, we impose that just one edge x_iy_j is oriented toward x_2 , that the edges incident to x_1 have distinct colors, 1 and 2, and that the edges x_1y_2 and x_2y_1 have the same color, 1. This implies that the edges y_1z_i are oriented toward z_i and colored 3. This implies that the edges y_2z_i are oriented toward z_i and colored 1. This finally implies that all the remaining edges incident to the z_i 's have the same color, which is not allowed. In the last drawing, we see a 3- P_4 -fa coloring of the graph.

This implies that there is not much flexibility for coloring the vertex gadget in Figure 4.11. Actually, in any $3-P_4$ -fa coloring of the vertex gadget, the two edges incident to u have to be oriented toward u. So u is an inner vertex in at most one forest, say F_1 . In any $3-P_4$ -fa coloring of G', an edge incident to u that belongs to an edge gadget must be colored 1 and must be oriented toward the subdivision vertex. Thus the edge gadget forces the vertices u and v to be inner vertices in distinct forests.

Assume that G has a 3-coloring c, then for any vertex $u \in V_G$ we color its vertex gadget in G' so that u is an inner vertex in $F_{c(u)}$ and we extend this 3- P_4 -fa coloring to G'. Conversely, suppose G' has a 3- P_4 -fa coloring, we color the vertices of G accordingly to the forest for which they are an inner vertex in the 3- P_4 -fa coloring of G', and then we obtain a 3-coloring of G.

4.4.2 Proof of Theorem 4.7.(2)

Figure 4.13: The vertex gadget and the edge gadget for the reduction of Theorem 4.7.(2).

Given a planar graph G, we construct G' by adding to every vertex of G the vertex gadget depicted in Figure 4.13 and by replacing every edge uv of G by a cycle $(ux_{uv}vy_{uv})$. Using similar arguments as in the previous proof, we show that in any $3 \cdot S_n \cdot fa$ coloring of the vertex gadget, the vertex u is an inner vertex in exactly one forest, say F_1 . This implies that an edge incident to u that belongs to an edge gadget must get color 1. Consider an edge $uv \in E_G$. Since in a $3 \cdot S_n \cdot fa$ coloring of G', the edges ux_{uv} and uy_{uv} (resp. vx_{uv} and vy_{uv}) have the same color, the vertices u and v have to be inner vertices in distinct forests in order to avoid a monochromatic 4-cycle $(ux_{uv}vy_{uv})$. Assume that G has a 3-coloring c, then for any vertex $u \in V_G$ we color its vertex gadget in G' so that u is an inner vertex in $F_{c(u)}$ and then extend this $3-P_4$ -fa coloring to G'. Conversely, suppose G' has a $3-S_n$ -fa coloring, we color the vertices of G according to the forest in which they are inner vertices in the $3-S_n$ -fa coloring of G'. Thus we obtain a 3-coloring of G.

4.4.3 Proof of Theorem 4.7.(3)

Figure 4.14: The vertex gadget for the reduction for the reduction of Theorem 4.7.(3).

Given a triangle-free planar graph G, we construct G' by adding to every vertex of G the vertex gadget depicted in Figure 4.14 and by subdividing every edge of G. A 2- S_n -fa coloring of the vertex gadget forces an original vertex of G to be an inner vertex in at most one forest, say F_1 , and to be incident to at least n-2 unoriented edges of F_1 . We consider now 2- S_n -fa colorings of the edge gadget of an edge uv of G. If u and v are inner vertices in distinct forests, then we can 2- S_n -fa color the edges of the edge gadget and orient them toward the subdivision vertex. If u and v are inner vertices in the forest F_1 , then both edges of the edge gadget have to be unoriented edges colored 1. Thus u and v are now incident to n-1 unoriented edges of F_1 . This shows that G has a 2-subcoloring if and only if G' has a 2- S_n -fa coloring.

4.4.4 Proof of Theorem 4.7.(4)

Figure 4.15: The vertex gadget for the reduction for the reduction of Theorem 4.7.(4).

Given a triangle-free planar graph G, we construct G' by adding to every vertex of G a copy of the vertex gadget depicted in Figure 4.15 and by replacing every edge uv of G by a copy of the graph depicted in Figure 4.16, left. A 2- S_2 -fa coloring of the vertex gadget forces

Figure 4.16: The edge gadget for the reduction for the reduction of Theorem 4.7.(4).

that the original vertex of G is an inner vertex in at most one forest, say F_1 , but may not be incident to an unoriented edge of F_1 . We consider now 2- S_2 -fa colorings of the edge gadget of an edge uv of G. If u and v are inner vertices in distinct forests, then we can 2- S_2 -fa color the edge gadget such that neither u nor v is incident to an unoriented edge of the edge gadget (see Figure 4.16, middle). If u and v are inner vertices in the forest F_1 , then in any 2- S_2 -facoloring of the edge gadget, both u and v are incident to an unoriented edge colored 1 (see Figure 4.16, right). This shows that G has a 2-subcoloring if and only if G' has a 2- S_2 -facoloring.

4.4.5 Proof of Theorem 4.7.(5)

Figure 4.17: The vertex gadget and the edge gadget for the reduction of Theorem 4.7.(5).

Given a triangle-free planar graph G, we construct G' by replacing every vertex of G by the vertex gadget depicted in Figure 4.17, left. For every edge uv of G, we identify two vertices x_i of the gadget of u with two vertices x_i of the gadget of v as in Figure 4.17, middle. In any 2- P_4 -fa coloring of the vertex gadget, all edges incident to a vertex x_i have the same color and are oriented toward x_i , except at most one *special* edge (the one incident to x_2 in Figure 4.17). This common color in the vertex gadget of a vertex u corresponds to the color of uin a 2-subcoloring of G. We consider now 2- P_4 -fa colorings of the edge gadget of an edge uv of G. If the gadgets of u and v have the distinct common colors, then we can 2- P_4 -facolor the edge gadget without using any special edge (see Figure 4.17, middle). If the gadgets of u and v have the same common color 1, then in any 2- P_4 -fa coloring of the edge gadget uses the special edge of both vertex gadget (see Figure 4.17, right). This shows that G has a 2-subcoloring if and only if G' has a 2- P_4 -fa coloring. We easily check that the resulting graph G' is planar, bipartite, with maximum degree 3, and may have arbitrary girth (see the dotted lines in Figure 4.17).

4.4.6 Proof of Theorem 4.7.(6)

The proof is similar to the reduction $(\mathcal{P}_3 \cap \mathcal{S}_4 : \mathcal{S}_0^3) \propto (\mathcal{P}_4 \cap \mathcal{S}_8 \cap bip \cap \mathcal{D}_2 : \mathcal{S}_0^{(4)})$ (Theorem 4.5).

Figure 4.18: The forcing gadgets for the reduction of Theorem 4.7.(6).

Figure 4.19: The vertex gadget for the reduction of Theorem 4.7.(6).

Consider the forcing gadgets depicted in Figure 4.18. For any $4 \cdot P_4 \cdot fa$ coloring of C, the vertex x is incident to edges of all four forests and x is a center in at least one forest. Thus in any $4 \cdot P_4 \cdot fa$ coloring of D, the vertex u is a center in at most one forest. The gadget represented by a dotted edge in Figure 4.19 forces that the vertices u and v are centers in a common forest. The vertex gadget is such that the vertex x is a center in at most two forests, the u_i 's and the t_i 's are centers in at most one forest. The 2-path between u_i and t_i (resp. t_i and u_{i+1}) must be centers in distinct forests. Now, because of the dotted edges, all the u_i 's are centers in a same forest and all the t_i 's are centers in a same forest distinct from that of the u_i 's.

Given a planar graph G, we construct the graph G' as follows. We replace every vertex of G by a copy of the vertex gadget and for every edge vw of G we connect a vertex u_i (resp.

 t_i) in the gadget of v to a vertex u_i (resp. t_i) in the gadget of w using a copy of the gadget represented by a dotted edge (resp. a 2-path). In any $4 \cdot P_4 \cdot fa$ coloring of G', the color of the t_i 's is common to every vertex gadget in G', assuming that G is connected. Moreover if $vw \in E(G)$, then the u_i 's in the gadget of v and the u_i 's in the gadget of w cannot be centers in the same forest. Thus G' has a $4 \cdot P_4 \cdot fa$ if and only if G is 3-colorable.

Chapter 5

Conclusion

We first studied acyclic improper colorings, oriented colorings, and their relationship. In particular, we tried to see when a result about acyclic improper colorings could lower the known upper bound on the oriented chromatic number of a graph class. This situation occurs for planar graphs, where the implication $\chi_a(\mathcal{P}_3) \leq 5 \Longrightarrow \chi_o(\mathcal{P}_3) \leq 80$ provides the best known upper bound on $\chi_o(\mathcal{P}_3)$. A first negative result is that the inequality $\chi_o(\mathcal{C}_0 \odot \cdots \odot \mathcal{C}_{k-1}) \leq 2^{k-1} \sum_{i=0}^{i < k} \chi_o(\mathcal{C}_i)$ is tight for $k \geq 3$. A second negative result states that if every planar graph has an acyclic improper coloring with at most four colors, then the oriented chromatic number of a color class distinct from \mathcal{S}_0 is at least 15.

We were able to improve the upper bound on the oriented chromatic number of two significant graph classes, but the proof do not use any acyclic improper coloring. Precisely, we obtained that the strong oriented chromatic number of triangle-free planar graphs (resp. triangle-free 2-outerplanar graphs) is at most 59 (resp. 27) via an homomorphism to the Paley tournament QR_{59} (resp. QR_{27}). The proofs required to formalize the notion of $S_{k,n}$ property of an oriented graph and to check these properties by computer in the case of Paley tournaments. Notice that Marshall used a generalization of $S_{k,n}$ properties in his impressive proof of $\chi_s(\mathcal{P}_3) \leq 271$.

There remain interesting cases where acyclic improper colorings could be useful: A proof that $\mathcal{P}_5 \subseteq \mathcal{S}_0^{(3)}$ or $\mathcal{P}_5 \subseteq \mathcal{D}_1^{(2)}$ would lower the known upper bound on $\chi_o(\mathcal{P}_5)$ from 19 to 12. Similarly, a proof that $\mathcal{P}_6 \subseteq \mathcal{S}_0 \odot \mathcal{D}_1$ would lower the known upper bound on $\chi_o(\mathcal{P}_6)$ from 11 to 8.

A proof that $\mathcal{P}_5 \subseteq \mathcal{S}_0^{(3)}$ would also have important implications in edge coloring: $\chi_a(\mathcal{P}_5) = 3$ implies P_4 - $fa(\mathcal{P}_5) = 3$. Our *T*-free arboricities not only relate to acyclic colorings: we were able to obtain (negative) results concerning other parameters, namely the track number and the subchromatic number, via NP-completeness proofs for some T-fa colorings.

We also studied the list version of acyclic colorings and obtained somewhat surprising results. There exist graphs G with acyclic chromatic number and list chromatic number at most 3, and arbitrarily large acyclic list chromatic number. For planar graphs, on the other hand, $\chi_a(\mathcal{P}_3) = \chi^l(\mathcal{P}_3) = 5$ and $\chi_a^l(\mathcal{P}_3) = 5$ is conjectured by Borodin et al. [9].

Second part

Combinatorics on words

Chapter 6

Preliminaries

6.1 Repetitions, patterns, and letter frequencies

In this part, we consider words over a finite alphabet.

Let Σ_i denote the *i*-letter alphabet $\{0, 1, \ldots, i-1\}$ and let ε denote the empty word.

A morphism is an application $h: \Sigma_s^* \longrightarrow \Sigma_e^*$ such that h(xy) = h(x)h(y). So a morphism $h: \Sigma_s^* \longrightarrow \Sigma_e^*$ satisfies $h(\varepsilon) = \varepsilon$ and is completely defined by the couples (a, h(a)) for $a \in \Sigma_s$. For $q \ge 2$, a morphism $h: \Sigma_s^* \longrightarrow \Sigma_e^*$ is said q-uniform if |h(a)| = q for every $a \in \Sigma_s$. We say that a word $w \in \Sigma_s^*$ avoids a set $F \subset \Sigma_s^*$ of words if w does not contain a word in F as a factor, i.e. w cannot be written as w = lsr with $l, r \in \Sigma_s^*$, $s \in F$

A square is a repetition of the form xx, where x is a nonempty word; an example in English is hotshots. It is easy to see that every word of length at least 4 over Σ_2 must contain a square, so squares cannot be avoided in infinite binary words. However, Thue showed [6, 75, 76] that there exist infinite words over Σ_3 that avoid squares.

Squares can be seen as repetitions of exponent 2. For $\alpha > 1$ a rational number, we say that y is an α -repetition if we can write $y = x^n x'$ with x' a prefix of x and $|y| = \alpha |x|$. For example, the French word **entente** is a $\frac{7}{3}$ -repetition and the English word **tormentor** is a $\frac{3}{2}$ -repetition. An α^+ -repetition is a α' -repetition for some $\alpha' > \alpha$. Brandenburg [12] and (implicitly) Dejean [19] considered the problem of determining the *repetition threshold*; that is, the smallest exponent R_k such that there exist an infinite word over Σ_k that avoids R_k^+ repetitions. Dejean proved that $R_3 = \frac{7}{4}$. She also conjectured that $R_4 = \frac{7}{5}$ and $R_k = \frac{k}{k-1}$ for $k \ge 5$. In its full generality, this conjecture is still open, although Pansiot [61] proved that $R_4 = \frac{7}{5}$ and Moulin-Ollagnier [52] proved that Dejean's conjecture holds for $5 \le k \le 11$. For more information, see [14].

Instead of avoiding *all* squares, one interesting variation is to avoid *all sufficiently large* squares. Let us define the length of a square x^2 as |x|. Entringer, Jackson, and Schatz [21] showed that there exist infinite binary words avoiding all squares of length at least three. For some other papers about avoiding sufficiently large squares, see [20, 24, 62, 63, 68].

In Chapter 7, we study a generalization of the repetition threshold of Dejean which handles avoidance of all sufficiently large repetitions. Pansiot suggested such a generalization at the end of his paper [61]. Let $\alpha > 1$ be a rational number, and let $\ell \ge 1$ be an integer. A word w is a (α, ℓ) -repetition if we can write it as $w = x^n x'$ where x' is a prefix of x, $|x| = \ell$, and $|w| = \alpha |x|$. Notice that an α -repetition is an (α, ℓ) -repetition for some ℓ . We say a word is (α, ℓ) -free if it contains no factor that is a (α', ℓ') -repetition for $\alpha' \ge \alpha$ and $\ell' \ge \ell$. We say a word is (α^+, ℓ) -free if it is (α', ℓ) -free for all $\alpha' > \alpha$.

For integers $k \ge 2$ and $\ell \ge 1$, we define the generalized repetition threshold $R(k, \ell)$ as the real number α such that, over Σ_k , there exists

- (a) either an (α^+, ℓ) -free infinite word, but all (α, ℓ) -free words are finite;
- (b) or an (α, ℓ) -free infinite word, but for all $\epsilon > 0$, all $(\alpha \epsilon, \ell)$ -free words are finite.

Notice that $R(k, 1) = R_k$ corresponds to the repetition threshold.

Theorem 6.1. The generalized repetition threshold $R(k, \ell)$ exists and is finite for all integers $k \ge 2$ and $\ell \ge 1$. Furthermore, $1 + \ell/k^{\ell} \le R(k, \ell) \le 2$.

Proof. Define S to be the set of all real numbers $\alpha \ge 1$ such that there exists an (α, ℓ) -free infinite word over Σ_k . Since Thue proved that there exists an infinite word over a two-letter alphabet (and hence over larger alphabets) avoiding (2^+) -repetitions, we have that $\beta = \inf S$ exists and $\beta \le 2$. If $\beta \in S$, we are in case (b) above, and if $\beta \notin S$, we are in case (a). Thus $R(k, \ell) = \beta$.

For the lower bound, note that any word of length at least $k^{\ell} + \ell$ contains at least $k^{\ell} + 1$ factors of length ℓ . Since there are only k^{ℓ} distinct factors of length ℓ , such a word contains at least two occurrences of some word of length ℓ , and hence is not $(1 + \frac{\ell}{k^{\ell}}, \ell)$ -free.

It may be worth noting that we do not know any instance where case (b) of the definition of generalized repetition threshold above actually occurs, but we have not been able to rule it out.

Squares can be seen as occurrences of the pattern AA. A pattern P is a finite word over the alphabet $\{A, B, \ldots\}$. An occurrence of P is the image of P by a non-erasing morphism $\phi : \{A, B, \ldots\}^* \longrightarrow \Sigma_e^*$. Non-erasing means that for all $a \in \{A, B, \ldots\}$, $\phi(a) \neq \varepsilon$. A word $w \in \Sigma_e^*$ avoids a pattern P if avoids the set of occurrences of P. A pattern P is k-avoidable if there exists an infinite word $w \in \Sigma_k^*$ that avoids P. The avoidability index $\mu(P)$ of a pattern P is the smallest integer k such that P is k-avoidable.

The avoidability index of some ternary patterns (i.e. patterns over $\{A, B, C\}$) was left open in Cassaigne's thesis. In particular, *ABCBABC* was the only avoidable ternary pattern not known to be 3-avoidable. We obtain that $\mu(ABCBABC) = 2$, which gives the following result.

Theorem 6.2. Every ternary pattern is either unavoidable or 3-avoidable.

In Chapter 8, we complete the determination of the avoidability index of all ternary patterns, i.e. patterns over $\{A, B, C\}$.

6.2. A METHOD TO PRODUCE MORPHISMS

Given a factorial language L defined by an alphabet size and a set of forbidden repetitions, we denote by f_{\min} (resp. f_{\max}) the minimal (resp. maximal) letter frequency in an infinite word that belong to L. Letter frequencies have been studied for binary repetition-free words [40] and ternary square-free words [65, 72]. We consider here the frequency of the letter 0. Let $|w|_0$ denote the number of occurrences of 0 in the finite word w. So the letter frequency in w is $\frac{|w|_0}{|w|}$. In Chapter 9, we improve the estimation of the minimal letter frequencies given in [40, 72]. We also provide new conjectures and results about extremal letter frequencies for other languages.

6.2 A method to produce morphisms

This section is devoted to the method [58] we used to find all the positive results in this part.

A q-uniform morphism $h: \Sigma_s^* \to \Sigma_e^*$ is synchronizing if for any $a, b, c \in \Sigma_s$ and $v, w \in \Sigma_e^*$, if h(ab) = vh(c)w, then either $v = \varepsilon$ and a = c or $w = \varepsilon$ and b = c.

Lemma 6.1. Let $\alpha, \beta \in \mathbb{Q}$, $1 < \alpha < \beta < 2$ and $n \in \mathbb{N}^*$. Let $h: \Sigma_s^* \to \Sigma_e^*$ be a synchronizing q-uniform morphism (with $q \ge 1$). If h(w) is (β^+, n) -free for every α^+ -free word w such that $|w| < \max\left(\frac{2\beta}{\beta-\alpha}, \frac{2(q-1)(2\beta-1)}{q(\beta-1)}\right)$, then h(t) is (β^+, n) -free for every (finite or infinite) α^+ -free word t.

Proof. Suppose w is an α^+ -free word such that h(w) is not (β^+, n) -free and w is of minimum length with this property. Thus h(w) contains a β^+ -repetition, that is, a factor uvu such that $\frac{|uvu|}{|uv|} > \beta$. Denote x = |u| and y = |v|. Since $\frac{|uvu|}{|uv|} = \frac{2x+y}{x+y} > \beta$, we have $y < \frac{2-\beta}{\beta-1}x$. If $x \ge 2q-1$, then each occurrence of u contains at least one full h-image of a letter. As h is synchronizing, the two occurrences of u in uvu contain the same h-images and in the same positions. Let U be the factor of w that contains all letters whose h-images intersect v. Denoting X = |U| and Y = |V|, we have Yq < y + 2q and Xq > x - 2q, or equivalently x < (X+2)q. Since UVU is a factor of w and w is α^+ -free, then $\frac{2X+Y}{X+Y} \leq \alpha$, which gives $X \leq \frac{\alpha-1}{2-\alpha}Y$. Now we have

$$Yq < y + 2q < \frac{2-\beta}{\beta-1}x + 2q < \frac{2-\beta}{\beta-1}(X+2)q + 2q \leq \frac{2-\beta}{\beta-1}\left(\frac{\alpha-1}{2-\alpha}Y + 2\right)q + 2q,$$

implying that $Y < \frac{2(2-\alpha)}{\beta-\alpha}$. By the minimality of w we get

$$|w| \leq 2 + Y + 2X \leq 2 + Y\left(1 + 2\frac{\alpha - 1}{2 - \alpha}\right) < 2 + \frac{2(2 - \alpha)}{\beta - \alpha}\frac{\alpha}{2 - \alpha} = \frac{2\beta}{\beta - \alpha}$$

If $x \leq 2q-2$, then $y < \frac{2-\beta}{\beta-1}(2q-2)$ and thus $2x + y < \frac{2\beta}{\beta-1}(q-1)$. The minimality of w implies that $(|w|-2)q \leq |uvu|-2 = 2x + y - 2$. By the above we get that $|w| < \frac{2(q-1)(2\beta-1)}{q(\beta-1)}$, which completes the proof.

For convenience, let us denote the maximum in Lemma 6.1 by $\max_{\alpha,\beta,q}$. Using Lemma 6.1 with $R_s < \alpha$) allows us to check that the *h*-image of any (infinite) α^+ -free *s*-ary word is (β^+, n) -free with a finite amount of computation.

We want to find a q-uniform morphism $h: \Sigma_s^* \to \Sigma_e^*$ such that for every α^+ -free word $t \in \Sigma_s^*$, h(t) satisfies a property \mathcal{P} , where \mathcal{P} consists in some (β^+, n) -freeness properties and the avoidance of a finite set S of words. We fix $\alpha, \beta \in \mathbb{R}$, $1 < \alpha < \beta < 2$ and $e, n, q \in \mathbb{N}$. We use depth-first search to find an e-ary word w of size $s \times q$ which defines the morphism h by posing $w = h(0)h(1) \dots h(s-1)$. Obviously, we can restrict the search to words satisfying $h(s-1) \prec \cdots \prec h(1) \prec h(0)$, where \prec is the lexicographic order of Σ_e^q . We prune the search tree by checking property \mathcal{P} on the prefixes of a potential w. If no morphism is found, we increase the value of q and try again.

6.3 Exponential growth

Let t(n) be the number of words of length n satisfying a property \mathcal{P} . We say that there exist polynomially (resp. exponentially) many words satisfying \mathcal{P} if there exists a constant c > 1such that $t(n) \leq n^c + c$ (resp. $t(n) \geq c^n$) for every n.

The repetition threshold for binary words is 2, and this result is tight in the following senses:

- 1. There are only polynomially many 2^+ -free binary words.
- 2. There exist arbitrarily large squares in any large enough 2^+ -free binary word.

In this section we show that no similar situation occurs for ternary and 4-ary words. We use the following easy lemma, which is already implicitely used in [39].

Lemma 6.2. There are at least $2^{\lceil \frac{n}{k} \rceil} R_k^+$ -free words of length n over Σ_{k+1} .

Proof. Consider an R_k^+ -free word w in Σ_k^n . At least one letter in Σ_k , say 0, occurs at least $\left|\frac{n}{k}\right|$ times in w. The letter k belongs to Σ_{k+1} but does not belong to Σ_k . Notice that replacing zero or more occurrences of 0 by an occurrence of k in w produces an R_k^+ -free word of length n over Σ_{k+1} , and that we can obtain at least $2^{\left\lceil \frac{n}{k} \right\rceil}$ such words.

Theorem 6.3.

- 1. There exist exponentially many $\frac{7}{4}^+$ -free ternary words with no large $\frac{7}{4}$ -repetition.
- 2. There exist exponentially many $\frac{7}{5}^+$ -free 4-ary words with no large $\frac{7}{5}$ -repetition.

Proof. By Lemma 6.2, there exist exponentially many $\frac{7}{5}^+$ -free words over Σ_5 and exponentially many $\frac{5}{4}^+$ -free words over Σ_6 .

The following 59-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_5^*$, $h(t) \in \Sigma_3^*$ is $\frac{7}{4}^+$ -free and $\left(\frac{3}{2}^+, 10\right)$ -free.

The following 132-uniform morphism h is such that for any $\frac{5}{4}^+$ -free word $t \in \Sigma_6^*$, $h(t) \in \Sigma_4^*$ is $\frac{7}{5}^+$ -free and $\left(\frac{61}{44}^+, 11\right)$ -free.

We have not been able to extend Theorem 6.3 to Σ_5 . However, we believe that the following strong form of Dejean's conjecture holds.

Conjecture 6.1. For every $k \ge 5$, there exist exponentially many $\frac{k}{k-1}^+$ -free words over Σ_k .

The C sources of the programs and the morphisms discussed in this part are available at: http://dept-info.labri.fr/~ochem/morphisms/.

CHAPTER 6. PRELIMINARIES

Chapter 7

Generalized repetition thresholds

In this chapter, we provide new values and conjectured values of some generalized repetition thresholds $R(k, \ell)$.

7.1 Lower bounds

Figure 7.1 gives the established and conjectured values of $R(k, \ell)$. Entries in **bold** have been proved; the others (with question marks) are merely conjectured. However, in either case, if the entry for (k, ℓ) is α , then we have proved, using the usual tree-traversal technique discussed below, that there is no infinite (α, ℓ) -free word over Σ_k .

The proved results are as follows:

- R(2,1) = R(2,2) = 2 follows from Thue's proof of the existence of infinite overlap-free binary words, together with the observation of Entringer, Jackson and Schatz [21] that squares of size at least two are unavoidable over Σ_2 ;
- The values of $R(k, 1) = R_k$, $3 \le k \le 11$ correspond to the proven cases of Dejean's conjecture.
- $R(2,3) = \frac{8}{5}$, $R(2,4) = \frac{3}{2}$, $R(2,5) = \frac{7}{5}$, $R(2,6) = \frac{4}{3}$, $R(3,2) = \frac{3}{2}$ and $R(3,3) = \frac{4}{3}$ are new and are proved in Section 7.2.

We now explain how the conjectured results were obtained. We used the usual treetraversal technique, as follows: suppose we want to determine if there are only finitely many words over the alphabet Σ_k that avoid a certain set of words S. We construct a certain tree T and traverse it using breadth-first or depth-first search. The tree T is defined as follows: the root is labelled ε (the empty word). If a node w has a factor contained in S, then it is a leaf. Otherwise, it has children labelled wa for all $a \in \Sigma_k$. It is easy to see that T is finite if and only if there are finitely many words avoiding S.

We can take advantage of various symmetries in S to speed traversal. For example, if S is closed under renaming of the letters (as is the case in the examples we study), we can label the root with an arbitrary single letter (instead of ε) and deduce the number of leaves in the full tree by multiplying by k.
$R(k,\ell)$					ℓ				
		1	2	3	4	5	6	7	8
	2	2	2	$\frac{8}{5}$	$\frac{3}{2}$	$\frac{7}{5}$	$\frac{4}{3}$	$\frac{31}{24}$?	$\frac{24}{19}$?
	3	$\frac{7}{4}$	$\frac{3}{2}$	$\frac{4}{3}$	$\frac{5}{4}?$	$\frac{6}{5}$?	$\frac{7}{6}?$	$\frac{8}{7}$?	$\frac{9}{8}$?
	4	$\frac{7}{5}$	$\frac{5}{4}$?	$\frac{6}{5}$?	$\frac{7}{6}$?	$\frac{8}{7}$?	$\frac{9}{8}$?	$\frac{10}{9}$?	$\frac{11}{10}?$
	5	$\frac{5}{4}$	$\frac{6}{5}$?	$\frac{8}{7}$?	$\frac{9}{8}$?	$\frac{10}{9}$?			
	6	$\frac{6}{5}$	$\frac{36}{31}$?						
k	7	$\frac{7}{6}$	$\frac{9}{8}$?						
	8	$\frac{8}{7}$							
	9	$\frac{9}{8}$							
	10	$\frac{10}{9}$							
	11	$\frac{11}{10}$							
	12	$\frac{12}{11}?$							
	13	$\frac{13}{12}?$							

Figure 7.1: Known and conjectured values of $R(k, \ell)$.

Furthermore, if we use depth-first search, we can in some cases dramatically shorten the search using the following observation: if at any point some suffix of the current string strictly precedes the prefix of the same length of the same string in lexicographic order, then this suffix must have already been examined. Hence we can immediately abandon consideration of this node.

If the tree is finite, then certain parameters about the tree give useful information about the set of finite words avoiding S:

- If h is the height of the tree, then any word of length at least h over Σ_k contains a factor in S.
- If M is the length of a longest word avoiding S, then M = h 1.
- If I is the number of internal nodes, then there are exactly I finite words avoiding S. Furthermore, if L is the number of leaves, then (as usual), L = 1 + (k-1)I.
- If I' is the number of internal nodes at depth h-1, then there are I' words of maximum length avoiding S.

Figure 2 gives the value of some of these parameters. Here α is the established or conjectured value of $R(k, \ell)$ from Figure 1. "NR" indicates that the value was not recorded by our program.

7.2. NEW RESULTS

k	ℓ	α	L	I	h	M=h-1	I'
2	1	2	8	7	4	3	2
2	2	2	478	477	19	18	2
2	3	8/5	5196	5195	34	33	12
2	4	3/2	13680	13679	54	53	4
2	5	7/5	40642	40641	60	59	4
2	6	4/3	21476	21475	40	39	4
2	8	24/19	3480734274	3480734273	452	451	NR
3	1	7/4	6393	3196	39	38	18
3	2	3/2	11655	5827	31	30	6
3	3	4/3	4037361	2018680	228	227	6
3	4	5/4	188247	94123	63	62	24
3	5	6/5	493653	246826	63	62	12
3	6	7/6	782931	391465	60	59	24
3	7	8/7	2881125	1440562	68	67	24
3	8	9/8	6987903	3493951	62	61	24
4	1	7/5	709036	236345	122	121	48
4	2	5/4	10324	3441	17	16	24
4	3	6/5	153724	51241	24	23	96
4	4	7/6	2501620	833873	35	34	24
4	5	8/7	30669148	10223049	40	39	864
4	6	9/8	340760884	113586961	50	49	NR
5	1	5/4	1785	446	7	6	120
5	2	6/5	453965	113491	23	22	240
5	3	8/7	7497345	1874336	34	33	720
5	4	9/8	1521535445	380383861	52	51	NR
6	1	6/5	13386	2677	8	7	720
6	2	36/31	17372138466	3474427693	751	750	NR
7	1	7/6	112441	18740	9	8	5040
7	2	9/8	345508219	57584703	32	31	NR
8	1	8/7	1049448	149921	10	9	40320

Figure 7.2: Tree statistics for various values of k and l

We have seen how to prove computationally that only finitely many (α, ℓ) -free words exist. But what is the evidence that suggests we have determined the smallest possible α ? For this, we explore the tree corresponding to avoiding (α^+, ℓ) -repetitions using depth-first search. If we are able to construct a "very long" word avoiding (α^+, ℓ) -repetitions, then we suspect we have found the optimal value of α . For each unproven α given in Figure 1, we were able to construct a word of length at least 20000 avoiding the corresponding repetitions. This constitutes weak evidence of the correctness of our conjectures, but it is evidently not conclusive.

Based on the data in Figure 1, we propose the following conjectures.

Conjecture 7.1.

- 1. $R(3, \ell) = 1 + \frac{1}{\ell}$ for $\ell \ge 2$.
- 2. $R(4, \ell) = 1 + \frac{1}{\ell+2}$ for $\ell \ge 2$.

These conjectures are weakly supported by the numerical evidence above.

7.2 New results

In this section, we prove six results of the form $R(k, \ell) = \alpha$. From the numerical results reported in Figure 2, we know in each case that there exist no infinite (α, ℓ) -free words over

 Σ_k . It therefore suffices to exhibit an infinite (α^+, ℓ) -free word over Σ_k .

Theorem 7.1. $R(2,3) = \frac{8}{5}$.

Proof. Consider the 992-uniform morphism $h: \Sigma_4^* \longrightarrow \Sigma_2^*$ defined by

By a result of Pansiot [61], there exist $\frac{7}{5}^+$ -free infinite words over Σ_4 . Consider one such word **x**. A computer check shows that h is synchronizing and that for every $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$ such that $|t| < \max_{\frac{7}{5}, \frac{8}{5}, 992} = 16$, h(t) is $\left(\frac{8}{5}^+, 3\right)$ -free. By Lemma 6.1, this proves that $h(\mathbf{x})$ is an infinite binary $\left(\frac{8}{5}^+, 3\right)$ -free word.

Theorem 7.2. $R(2,4) = \frac{3}{2}$.

Proof. Consider the 19-uniform morphism $h: \Sigma_4^* \longrightarrow \Sigma_2^*$ defined by

$0 \mapsto 0000110100100111110,$	$1 \mapsto 0000011011001010111,$
$2 \mapsto 0000011010100111111,$	$3 \mapsto 0000010110111110010.$

We again consider an infinite $\frac{7}{5}^+$ -free word \mathbf{x} over Σ_4 . A computer check shows that h is synchronizing and that for every $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$ such that $|t| < \max_{\frac{7}{5},\frac{3}{2},19} = 30$, h(t) is $\left(\frac{3}{2}^+,4\right)$ -free. By Lemma 6.1, this proves that $h(\mathbf{x})$ is an infinite binary $\left(\frac{3}{2}^+,4\right)$ -free word. \Box

Theorem 7.3. $R(2,5) = \frac{7}{5}$.

Proof. Consider the 45-uniform morphism $h: \Sigma_5^* \longrightarrow \Sigma_2^*$ defined by

By a result of Moulin-Ollagnier [52], there exist $\frac{5}{4}^+$ -free infinite words over Σ_5 . Consider one such word **x**. A computer check shows that h is synchronizing and that for every $\frac{5}{4}^+$ -free word $t \in \Sigma_5^*$ such that $|t| < \max_{\frac{5}{4}, \frac{7}{5}, 45} = \frac{56}{3} < 19$, h(t) is $\left(\frac{7}{5}^+, 5\right)$ -free. By Lemma 6.1, this proves that $h(\mathbf{x})$ is an infinite binary $\left(\frac{7}{5}^+, 5\right)$ -free word.

Theorem 7.4. $R(2,6) = \frac{4}{3}$.

Proof. Consider the 71-uniform morphism $h: \Sigma_5^* \longrightarrow \Sigma_2^*$ defined by

$0 \mapsto$	00000	00010	0101	0111	111	110	000	100	010)111	101	111	010	000	000	011	.01	101	010	010	001	111	011	L,
$1 \mapsto$	00000	00001	.010	1111	111	000	110	010	100	0101	11	101	100	001	000	111	11	111	010	010	100	110	011	L,
$2 \mapsto$	00000	00001	010	1101	111	111	100	011	001	101	101	010	000	001	111	111	.00	100	010)11(010	110	011	L,
$3 \mapsto$	00000	00001	010	1011	111	100	011	001	010	010)11	101	111	000	010	001	10	110	101	.00	100	111	011	L,
$4 \mapsto$	00000	00001	001	0101	101	111	111	100	110	010)10	000	000	011	111	101	.01	101	000	010)01	111	011	L.

We again consider an infinite $\frac{5}{4}^+$ -free word \mathbf{x} over Σ_5 . A computer check shows that h is synchronizing and that for every $\frac{5}{4}^+$ -free word $t \in \Sigma_5^*$ such that $|t| < \max_{\frac{5}{4}, \frac{4}{3}, 71} = 32$, h(t) is $\left(\frac{4}{3}^+, 6\right)$ -free. By Lemma 6.1, this proves that $h(\mathbf{x})$ is an infinite binary $\left(\frac{4}{3}^+, 6\right)$ -free word. \Box

Theorem 7.5. $R(3,2) = \frac{3}{2}$.

Proof. Consider the 3-uniform morphism $h: \Sigma_4^* \longrightarrow \Sigma_3^*$ defined by

$$0 \mapsto 021, \qquad 1 \mapsto 100, \qquad 2 \mapsto 122, \qquad 3 \mapsto 201.$$

We again consider an infinite $\frac{7}{5}^+$ -free word \mathbf{x} over Σ_4 . A computer check shows that h is synchronizing and that for every $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$ such that $|t| < \max_{\frac{7}{5},\frac{3}{2},3} = 30$, h(t) is $\left(\frac{3}{2}^+,2\right)$ -free. By Lemma 6.1, this proves that $h(\mathbf{x})$ is an infinite ternary $\left(\frac{3}{2}^+,2\right)$ -free word. \Box

Theorem 7.6. $R(3,3) = \frac{4}{3}$.

Proof. Consider the 14-uniform morphism $h: \Sigma_5^* \longrightarrow \Sigma_3^*$ defined by

$0 \mapsto 00011112122220,$	$1 \mapsto 00101112202021,$	$2 \mapsto 01012111102120,$
$3 \mapsto 10002212102020,$	$4 \mapsto 10100222112020.$	

We again consider an infinite $\frac{5}{4}^+$ -free word \mathbf{x} over Σ_5 . A computer check shows that h is synchronizing and that for every $\frac{5}{4}^+$ -free word $t \in \Sigma_5^*$ such that $|t| < \max_{\frac{5}{4},\frac{4}{3},14} = 32$, h(t) is $\left(\frac{4}{3}^+,3\right)$ -free. By Lemma 6.1, this proves that $h(\mathbf{x})$ is an infinite ternary $\left(\frac{4}{3}^+,3\right)$ -free word. \Box

Chapter 8

Avoiding patterns and large squares

In this chapter, we show how the method in Section 6.2 can be used to construct infinite words avoiding some pattern. We also provide simpler proofs of known results about some infinite binary words avoiding large squares.

8.1 Pattern avoidance

We consider here the ternary patterns whose 2-avoidability was left open in Cassaigne's thesis [13]. We add to that list the binary pattern AABBA (resp. ABAAB) which was already known to be 2-avoidable, and is here 2-avoided together with its reverse ABBAA (resp. ABBAB). In particular, the 2-avoidability of ABCACB was one of Currie's open problems [18], which was mentioned mainly because ABCACB and its reverse are not simultaneously 2-avoidable.

Lemma 8.1. Any factor uvu of a (β^+, n) -free word w, with $\beta < 2$, is such that

$$|u| \leqslant \max\left(n-1-|v|, \left\lfloor\frac{\beta-1}{2-\beta}|v|\right\rfloor\right).$$

Proof. If |uv| < n then $|u| \le n - 1 - |v|$ and we are done, so suppose $|uv| \ge n$. Since w is (β^+, n) -free, we have $\frac{|uvu|}{|uv|} \le \beta \Longrightarrow |u| \le \frac{\beta - 1}{2 - \beta} |v|$.

Theorem 8.1. For every ternary pattern P listed in Table 8.1, there exist exponentially many binary words avoiding P.

Proof. Suppose that we are given a synchronizing morphism $h : \Sigma_s^* \to \Sigma_e^*$ and a pattern P over the alphabet $\{A, B, \ldots\}$. We can try to prove that h(t) avoids P for every α^+ -free word $t \in \Sigma_s^*$ in three steps:

- 1. Check useful (β^+, n) -freeness properties of h(t) thanks to Lemma 6.1.
- 2. Consider a potential occurrence $\phi(P)$ of P and obtain upper bounds on the quantities $a = |\phi(A)|, b = |\phi(B)|, \ldots$ using Lemma 8.1 and the results of step (1).

D-++		_		Commenter de la companya de la compa
Pattern	s	α	q	Comments
AABAACBAAB	3	7/4	8	self-reverse
AABACCB	3	7/4	24	avoided with its reverse
AABBA	3	7/4	21	avoided with its reverse
AABBCABBA	3	7/4	102	unavoidable with its reverse
AABBCAC	3	7/4	86	avoided with its reverse
AABBCBC	3	7/4	34	avoided with its reverse
AABBCC	3	7/4	52	self-reverse
AABCBC	3	7/4	46	avoided with its reverse
AABCCAB	3	7/4	34	avoided with its reverse
AABCCBA	3	7/4	56	avoided with its reverse
ABAAB	3	7/4	10	avoided with its reverse
ABAACBC	4	7/5	17	avoided with its reverse
ABAACCB	3	7/4	74	avoided with its reverse
ABACACB	3	7/4	12	avoided with its reverse
ABACBC	4	7/5	29	self-reverse
ABACCAB	3	7/4	19	avoided with its reverse
ABACCBA	3	7/4	14	avoided with its reverse
ABBACCA	3	7/4	12	self-reverse
ABBACCB	3	7/4	42	avoided with its reverse
ABBCACB	4	7/5	16	avoided with its reverse
ABBCBAC	4	7/5	14	avoided with its reverse
ABBCBCA	3	7/4	22	avoided with its reverse
ABBCCCAB	3	7/4	20	avoided with its reverse
ABCAACB	3	7/4	24	avoided with its reverse
ABCACAB	3	7/4	10	avoided with its reverse
ABCACB	6	5/4	810	unavoidable with its reverse
ABCBABC	4	7/5	19	self-reverse
ABCBBAC	4	7/5	18	avoided with its reverse

Figure 8.1: Table of 2-avoidable ternary patterns.

3. Use the bounds of step (2) to exhaustively check by computer that no occurrence of P appears in h(t).

Let P^R denote the reverse of the pattern P. We have $\mu(P^R) = \mu(P)$ since a word w avoids P if and only the reverse of w avoids P^R . Notice that the bounds obtained in step (2) using Lemma 8.1 that hold for potential occurrences of a pattern P also hold for those of P^R . Thus we try, when possible, to avoid simultaneously P and P^R . The method discussed in Section 6.2 is thus used so that the set S contains the small occurrences of P (and maybe P^R). Each line of Table 8.1 contains one of these pattern P and informations about the morphism h we used to show that $\mu(P) = 2$: the q-uniform morphism $h : \Sigma_s^* \to \Sigma_2^*$ is such that for every α^+ -free word $t \in \Sigma_s^*$, h(t) avoids P. We also precise whether such a word h(t) also avoids P^R . Binary words avoiding ABCACB are constructed from $\frac{5^+}{4}$ -free words over Σ_5 , and there are exponentially many such words by Lemma 6.2. For every other pattern P listed in Table 8.1,

binary words avoiding P are constructed from either $\frac{7}{4}^+$ -free words over Σ_3 , or $\frac{7}{5}^+$ -free words over Σ_4 . In both cases, there are exponentially many such words by Theorem 6.3. Now, for each pattern, we give the bounds obtained in step (2) of the proof and the morphism found with the method in Section 6.2.

The following 8-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABAACBAAB. The word h(t) is $\left(\frac{24}{13}^+, 3\right)$ -free. It contains no square of length at least three, and since the square AA occurs in the pattern, we have that $a \leq 2$. By Lemma 8.1, the factor BAAB implies $b \leq 11a$. For each occurrence of BAAB appearing in h(t), we have checked that the corresponding occurrence of AABAA does not appear. For instance, the occurrence $\phi(BAAB) = 0110$ (where $\phi(A) = 1$, $\phi(B) = 0$) appears in h(t), but the factor $\phi(AABAA) = 11011$ does not.

 $\begin{array}{l} 0 \mapsto 01101011 \\ 1 \mapsto 00111010 \\ 2 \mapsto 00101110 \end{array}$

The following 24-uniform morphism h is such that for any $\frac{7}{4}$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABACCB and its reverse.

The word h(t) is $\left(\frac{31}{16}^+, 3\right)$ -free, so $a \leq 2$ and $c \leq 2$. The factor *BACCB* implies $b \leq 15(a+2c)$.

 $\begin{array}{l} 0 \mapsto 000101001101101010101111 \\ 1 \mapsto 000101000111010111001011 \\ 2 \mapsto 000101000110100111001011 \end{array}$

The following 21-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern *AABBA* and its reverse.

The word h(t) is $\left(\frac{33^+}{17}, 4\right)$ -free, so $a \leq 3$ and $b \leq 3$.

 $\begin{array}{l} 0 \mapsto 001001011100011101101 \\ 1 \mapsto 001000111000101101101 \\ 2 \mapsto 000111000100101101101 \end{array}$

The following 102-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABBCABBA.

The word h(t) is $\left(\frac{31}{16}^+, 27\right)$ -free, so $a \leq 26$ and $b \leq 26$. For each occurrence of AABB we have checked that the corresponding occurrence of ABBA does not appear. Notice that the *k*-avoidability of AABBCABBA implies the *k*-avoidability of AABBA. A simple backtracting algorithm shows that AABBCABBA and ABBAA (i.e. the reverse of AABBA) are not simultaneously 2-avoidable, so that the two previous results are tight, in a way.

The following 86-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABBCAC and its reverse. The word h(t) is $\left(\frac{43}{22}^+, 3\right)$ -free, so $a \leq 2$ and $b \leq 2$. The factor *CAC* implies $c \leq \max(2-a, 21a) = 21a$.

1000101110101001101010101010101110110101011001010011010110010101011101 10101100101010011010101010101011101

The following 34-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern *AABBCBC* and its reverse. The word h(t) is $\left(\frac{33}{17}^+, 3\right)$ -free, so $a \leq 2$ and b = c = 1.

> $0\mapsto 1110101110001010001110001010100011$ $1\mapsto 1110101110001010100011100010100011$ $2\mapsto 111010111000111010000111000101000$

The following 52-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*, h(t) \in \Sigma_2^*$ avoids the pattern AABBCC.

The word h(t) is $\left(\frac{59}{30}^+, 3\right)$ -free, so $a \leq 2, b \leq 2$, and $c \leq 2$.

The following 46-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*, h(t) \in \Sigma_2^*$ avoids the pattern AABCBC and its reverse.

The word h(t) is $\left(\frac{367^+}{184}, 3\right)$ -free, so $a \leq 2$ and b = c = 1. Notice that the only occurrences of AABB in h(t) are 0011 and 1100.

> $1\mapsto 0011010011100011001011000110100111001011000111$

The following 34-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABCCAB and its reverse. The word h(t) is $\left(\frac{257}{136}^+, 4\right)$ -free, so $a \leq 3$ and $c \leq 3$. The factor *ABCCAB* implies $a + b \leq \left\lfloor \frac{242}{15}c \right\rfloor$, thus $b \leq \left\lfloor \frac{242}{15}c \right\rfloor - a$.

 $0\mapsto 00001011111010000111111010001011111$ $1\mapsto 0000101110100001111010001011111100$ $2\mapsto 0000101110100000011110100010111111$

The following 56-uniform morphism h is such that for any $\frac{7}{4}$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABCCBA and its reverse.

The word h(t) is $\left(\frac{36}{19}^+, 3\right)$ -free, so $a \leq 2$ and $c \leq 2$. The factor *BCCB* implies $b \leq 17c$.

The following 10-uniform morphism h is such that for any $\frac{7}{4}$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABAAB and its reverse. The word h(t) is $\left(\frac{39}{20}^+, 3\right)$ -free, so $a \leq 2$. The factor BAAB implies $b \leq 38a$.

```
\begin{array}{l} 0 \mapsto 0001110101 \\ 1 \mapsto 0000111101 \\ 2 \mapsto 0000101111 \end{array}
```

The following 17-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABAACBC and its reverse. The word h(t) is $\left(\frac{13}{7}^+, 7\right)$ -free, so $a \leq 6$. The word h(t) is $\left(\frac{23}{16}^+, 20\right)$ -free. Suppose $b+c \geq 20$,

then the factor CBC implies $c \leq \lfloor \frac{7}{9}b \rfloor$ and the factor BAACB implies $b \leq \lfloor \frac{7}{9}(2a+c) \rfloor$. From these relations we can deduce $b \leq 22$ and $c \leq 17$. Thus we have $b \leq 22$ and $c \leq 18$.

```
\begin{array}{l} 0 \mapsto 01110000110000111\\ 1 \mapsto 01011100110011101\\ 2 \mapsto 01000110011000101\\ 3 \mapsto 00011110011110001 \end{array}
```

The following 74-uniform morphism h is such that for any $\frac{7}{4}$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABAACCB and its reverse.

The word h(t) is $\left(\frac{193}{104}^+, 3\right)$ -free, so $a \leq 2$ and $c \leq 2$. The factor *BAACCB* implies $b \leq \left|\frac{89}{15}(a+c)\right|$.

The following 12-uniform morphism h is such that for any $\frac{7}{4}$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABACACB and its reverse. The word h(t) is $\left(\frac{15}{8}^+, 3\right)$ -free, so a = c = 1. The factor BACACB implies $b \leq 14(a+c) = 28$.

 $0 \mapsto 001010011111 \qquad 1 \mapsto 000110100111 \qquad 2 \mapsto 000001101011$

The following 29-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$, $h(t) \in \Sigma_2^*$ avoids the pattern *ABACBC*.

The word h(t) is $\left(\frac{41}{29}^+, 291\right)$ -free. Suppose $a + b \ge 291$ and $b + c \ge 291$. The factors *ABA*, *CBC*, and *BACB* respectively imply that $17a \le 12b$ (*i*), $17c \le 12b$ (*ii*), and $17b \le 12(a+c)$ (*iii*). The combination $17 \times (i) + 17 \times (ii) + 24 \times (iii)$ gives $a + c \le 0$, a contradiction. So we can suppose without loss of generality that $b + c \le 290$ (*iv*). If $291 \le a + b$ (*v*) then (*i*) and (*iii*) still hold and the combination $2324 \times (i) + 1649 \times (iii) + 19788 \times (iv) + 19720 \times (v)$ gives $213b \le 0$. This contradiction shows that $a + b \le 290$ and $b + c \le 290$.

 $\begin{array}{l} 0 \mapsto 00011010110000111100101001110\\ 1 \mapsto 00011010110000011100101001111\\ 2 \mapsto 00001101010000111101110011110\\ 3 \mapsto 0000110101000011110011101111\end{array}$

The following 19-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern *ABACCAB* and its reverse.

The word h(t) is $\left(\frac{35}{19}^+, 5\right)$ -free, so $c \leq 4$. The factor ACCA implies $a \leq \max\left(4 - 2c, \lfloor \frac{32}{3}c \rfloor\right) = \lfloor \frac{32}{3}c \rfloor$. The factor ABACCAB implies $a + b \leq \lfloor \frac{16}{3}(a + 2c) \rfloor$, thus $b \leq \lfloor \frac{13a+32c}{3} \rfloor$.

 $\begin{array}{l} 0 \mapsto 01011100101000001111 \\ 1 \mapsto 0101100000010011100 \\ 2 \mapsto 010001011101000011 \end{array}$

The following 14-uniform morphism h is such that for any $\frac{7}{4}$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABACCBA and its reverse.

If w is an occurrence of ABACCBA such that a > 1, then the suffix of w of size |w| - a + 1 is a smaller occurrence of ABACCBA such that a = 1. So we assume without loss of generality that a = 1. The word h(t) is $\left(\frac{23^+}{12}, 3\right)$ -free, so $c \leq 2$. The factor BACCBA implies $a+b \leq 22c$, thus $b \leq 22c - 1$.

 $\begin{array}{c} 0 \mapsto 10101100001110 \\ 1 \mapsto 01010111100011 \\ 2 \mapsto 01010000111110 \end{array}$

The following 12-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABBACCA.

The word h(t) is $\left(\frac{31^+}{16}, 4\right)$ -free, so $b \leq 3$ and $c \leq 3$. The factor *ABBA* implies $a \leq \max(3-2b, 30b) = 30b$.

```
\begin{array}{c} 0 \mapsto 000111001011 \\ 1 \mapsto 000101111010 \\ 2 \mapsto 000100111011 \end{array}
```

The following 42-uniform morphism h is such that for any $\frac{7}{4}$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABBACCB and its reverse.

The word h(t) is $\left(\frac{53}{28}^+, 3\right)$ -free, so $b \leq 2$ and $c \leq 2$. The factor *ABBA* implies $a \leq \lfloor \frac{50}{3}b \rfloor$.

The following 16-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABBCACB and its reverse. The word h(t) is $\left(\frac{9}{5}^+, 4\right)$ -free, so $b \leq 3$. The word h(t) is $\left(\frac{233}{160}^+, 49\right)$ -free. Suppose $a + c \ge 49$.

The factors ABBCA and CAC respectively imply that $a \leqslant \left|\frac{73}{87}(2b+c)\right|$ and $c \leqslant \left|\frac{73}{87}a\right|$. From these relations we can deduce $a \leq 15$ and $c \leq 12$. This contradiction shows that $a + c \leq 48$

> $0 \mapsto 001000001101111$ $1 \mapsto 0000111010001111$ $2 \mapsto 0000100111111011$ $3\mapsto 0000001001101011$

The following 14-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABBCBAC and its reverse. The word h(t) is $\left(\frac{18}{11}^+, 7\right)$ -free, so $b \leq 6$. The word h(t) is $\left(\frac{29}{20}^+, 43\right)$ -free. Suppose a + b + b = 1 $c \ge 43$. The factors ABBCBA and CBAC respectively imply that $a \le \left|\frac{9}{11}(3b+c)\right|$ and $c \leq \lfloor \frac{9}{11}(a+b) \rfloor$. From these relations we can deduce $a \leq 54$ and $c \leq 49$.

> $0 \mapsto 001010101010111$ $1 \mapsto 00010001110111$ $2 \mapsto 00000101011111$ $3 \mapsto 00000010111111$

The following 22-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*, h(t) \in \Sigma_2^*$ avoids the pattern ABBCBCA and its reverse.

The word h(t) is $\left(\frac{173}{88}^+,3\right)$ -free, so b = c = 1. The factor ABBCBCA implies $a \leq a \leq b \leq 1$. $\left|\frac{85}{3}(3b+2c)\right| = 141.$

> $0\mapsto 0001101011001010100111$ $1\mapsto 000110101010101001010111$ $2 \mapsto 0001101010011100101011$

The following 20-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*, h(t) \in \Sigma_2^*$ avoids the pattern ABBCCAB and its reverse. The word h(t) is $\left(\frac{15}{8}^+, 4\right)$ -free, so $b \leq 3$ and $c \leq 3$. The factor ABBCCAB implies $a + b \leq 3$

7(b+2c), thus $a \leq 6b+14c$.

 $0\mapsto 00010100100101011111$ $1\mapsto 00010010001110110111$ $2\mapsto 00000101011011010111$

The following 24-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*, h(t) \in \Sigma_2^*$ avoids the pattern ABCAACB and its reverse. The word h(t) is $\left(\frac{187^+}{96}, 4\right)$ -free, so $a \leq 3$. The word h(t) is $\left(\frac{355^+}{192}, 97\right)$ -free. The factor CAAC implies $c \leq \max\left(96 - 2a, \lfloor \frac{326a}{29} \rfloor\right) = 96 - 2a$. The factor BCAACB implies $b \leq \max\left(96 - 2a - 2c, \lfloor \frac{326(a+c)}{29} \rfloor\right)$. $0\mapsto 000001011111001000110111$

 $1 \mapsto 000001011111000100111011$ $2\mapsto 000001010111110010011011$

The following 10-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$

avoids the pattern ABCACAB and its reverse. The word h(t) is $\left(\frac{79}{40}^+, 3\right)$ -free, so a = c = 1. The word h(t) is $\left(\frac{149}{80}^+, 41\right)$ -free. The factor ABCACAB implies $a + b \leq \max(40 - a - 2c, |\frac{69}{11}(a + 2c)|)$, thus $b \leq 40 - 2a - 2c = 36$.

> $0 \mapsto 0001110101$ $1 \mapsto 0001011101$ $2 \mapsto 0001010111$

The 810-uniform morphism $h = m_{4,2} \circ m_{6,4}$ is such that for any $\frac{5}{4}^+$ -free word $t \in \Sigma_6^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABCACB.

The word h(t) is $\left(\frac{1073^+}{810^+}, 3241\right)$ -free. Suppose $a + c \ge 3241$. The factors ABCA, BCACB, and CAC respectively imply that $547a \leq 263(b+c)$ (i), $547b \leq 263(a+2c)$ (ii), and $547c \leq 263(a+2c)$ 263a (iii). The combination $2 \times (i) + (ii) + 2 \times (iii)$ gives $305a + 568b + 42c \leq 0$. This contradiction shows that $a + c \leq 3240$ (iv). The word h(t) is $\left(\frac{29}{14}^+, 4\right)$ -free, so the factor *CAC* implies $c \leq 14a$ (v). Suppose now $3238 \leq b$ (vi), so that $a + b + 2c \geq 3241$ and (ii) still holds. The combination $15 \times (ii) + 7627 \times (iv) + 263 \times (v) + 7632 \times (vi)$ gives $573b + 936 \leq 0$. This contradiction shows that $b \leq 3237$.

The 135-uniform morphism $m_{4,2}$ is given by:

The 6-uniform morphism $m_{6,4}$ is given by:

An occurrence of ABCBABC is a $\left(\frac{3}{2}^+, 4\right)$ -repetition since $|\phi(ABCB)| \ge 4$ and $\frac{|\phi(ABCBABC)|}{|\phi(ABCB)|} = \frac{2a+3b+2c}{a+2b+c} = \frac{3}{2} + \frac{a+c}{2(a+2b+c)} > \frac{3}{2}$. So ABCBABC is avoided by all the infinite $\left(\frac{3}{2}^+, 4\right)$ -free binary words, in particular those constructed in the proof of Theorem 7.2.

8.2. BINARY WORDS AVOIDING LARGE SQUARES

The following 18-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$, $h(t) \in \Sigma_2^*$ avoids the pattern *ABCBBAC* and its reverse.

The word h(t) is $\binom{8^+}{5}$, 7)-free, so $b \leq 6$. The word h(t) is $\binom{527^+}{378}$, 181)-free. Suppose $a+2b+c \geq 181$. The factors CBBAC and ABCBBA respectively imply that $c \leq \lfloor \frac{149}{229}(a+2b) \rfloor$ and $a \leq \lfloor \frac{149}{229}(3b+c) \rfloor$. From these relations we can deduce $a \leq 28$ and $c \leq 26$. This contradiction shows that $a + 2b + c \leq 180$.

 $\begin{array}{l} 0 \mapsto 010000011011011011\\ 1 \mapsto 00100100100101111101\\ 2 \mapsto 001000000111111011\\ 3 \mapsto 000000101010111111\end{array}$

8.2 Binary words avoiding large squares

Fraenkel and Simpson [24] constructed an infinite binary word containing only three squares. Another construction using uniform morphisms is given in [63]. Shallit [68] also gives uniform morphisms for binary words avoiding:

- squares of length at least 3 and 3⁺-repetitions (10-uniform),
- squares of length at least 4 and $\frac{5}{2}^+$ -repetitions (1560-uniform),
- squares of length at least 7 and $\frac{7}{3}^+$ -repetitions (252-uniform).

In this section we give small $\Sigma_3^* \to \Sigma_2^*$ uniform morphisms producing words having these properties.

The following 50-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ contains only the squares in $\{0^2, 1^2, (01)^2\}$ and is $\left(\frac{37}{19}^+, 3\right)$ -free.

The following 8-uniform morphism h is such that for any $\frac{7}{4}$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ is 3⁺-free, $\left(\frac{5}{2}^+, 2\right)$ -free, and $\left(\frac{59}{32}^+, 3\right)$ -free.

 $0\mapsto 01101011 \qquad 1\mapsto 00111010 \qquad 2\mapsto 00101110$

The following 103-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*, h(t) \in \Sigma_2^*$

is
$$\frac{5}{2}^+$$
-free, $\left(\frac{7}{3}^+, 3\right)$ -free, and $\left(\frac{823}{412}^+, 4\right)$ -free.

The following 30-uniform morphism h is such that for any $\frac{7}{4}$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ is $\frac{7}{3}^+$ -free and $\left(\frac{79}{40}^+, 7\right)$ -free.

 $\begin{array}{l} 0 \mapsto 001011001011010011011001001101 \\ 1 \mapsto 001011001011010011001011001101 \\ 2 \mapsto 001011001001101100101101001101 \end{array}$

Chapter 9

Letter frequencies

In this chapter, we consider the extremal frequency of a letter in infinite words over a finite alphabet avoiding some repetitions. The main motivation for this kind of problem is best explain with an example. We know that squares are avoidable over Σ_3 but are not over Σ_2 . A natural question is thus whether this third letter is essential or just barely needed to avoid squares. We can formalize this question and ask for the minimal letter frequency in an infinite ternary square-free word.

9.1 Statement of main results

For ternary square-free words, Tarannikov [72] showed that $f_{\min} \in \left[\frac{1780}{6481}, \frac{64}{233}\right] = [0.27464897..., 0.27467811...]$. According to [65], he also proved that $f_{\max} \leq \frac{469}{1201} = 0.39050791...$. Our next result provides better estimations of these constants:

Theorem 9.1. For ternary square-free words, we have

- 1. $f_{\min} \in \left[\frac{1000}{3641}, \frac{883}{3215}\right] = [0.27464982..., 0.27465007...].$
- 2. $f_{\text{max}} = \frac{255}{653} = 0.39050535\cdots$

Theorem 9.2. For $(\frac{5}{3}, 3)$ -free binary words, we have $f_{\min} = \frac{1}{2}$.

Theorem 9.2 implies that infinite $(\beta, 3)$ -free binary words have equal letter frequency for $\beta \in \left[\frac{8}{5}^+, \frac{5}{3}\right]$. A similar result in [40] says that infinite $(\beta, 1)$ -free binary words have equal letter frequency for $\beta \in \left[2^+, \frac{7}{3}\right]$, i.e. $\rho(2^+) = \rho\left(\frac{7}{3}\right) = \frac{1}{2}$. It is noticeable that these two cases of equal letter frequency have different kind of growth function. Karhumäki and Shallit have shown there exist polynomially many $\frac{7}{3}$ -free binary words [39], whereas there exist exponentially many $\left(\frac{8}{5}^+, 3\right)$ -free binary words. To see this, notice that the 992-uniform morphism $h: \Sigma_4^* \to \Sigma_2^*$ given in the proof of Theorem 7.1 produces a $\left(\frac{8}{5}^+, 3\right)$ -free binary word h(w) for every $\frac{7}{5}^+$ -free word $w \in \Sigma_4^*$, and that there exist exponentially many $\frac{7}{5}^+$ -free words over Σ_4 by Theorem 6.3.(2).

Kolpakov et al. [40] proved that the function ρ is discontinuous at $\frac{7}{3}$, more precisely they obtained that $\rho\left(\frac{7}{3}\right) = \frac{1}{2}$ and $\rho\left(\frac{7}{3}^{+}\right) \leq \frac{10}{21} = 0.47619047\cdots$.

The next result provides new points of discontinuity for ρ in the range $\left[\frac{7}{3}^+, 3\right]$, namely $\frac{17}{7}$, $\frac{5}{2}$, $\frac{23}{9}$, $\frac{41}{16}$, $\frac{18}{7}$, and $\frac{8}{3}$.

Theorem 9.3.

$$1. \ \rho\left(\frac{7}{3}^{+}\right) \leqslant \frac{47}{101} = 0.46534653\cdots$$

$$2. \ \rho\left(\frac{17}{7}\right) \geqslant \frac{467}{1004} = 0.46513944\cdots$$

$$3. \ \rho\left(\frac{17}{7}^{+}\right) \leqslant \frac{81}{175} = 0.46285714\cdots$$

$$4. \ \rho\left(\frac{5}{2}\right) \geqslant \frac{54286}{117293} = 0.46282386\cdots$$

$$5. \ \rho\left(\frac{5}{2}^{+}\right) \leqslant \frac{23}{52} = 0.44230769\cdots$$

$$6. \ \rho\left(\frac{23}{9}\right) > \frac{205}{464} = 0.44181034\cdots$$

$$7. \ \rho\left(\frac{23}{9}^{+}\right) \leqslant \frac{91}{206} = 0.44174757\cdots$$

$$8. \ \rho\left(\frac{41}{16}\right) > \frac{322}{729} = 0.44170096\cdots$$

$$9. \ \rho\left(\frac{41}{16}^{+}\right) \leqslant \frac{143}{324} = 0.44135802\cdots$$

$$10. \ \rho\left(\frac{18}{7}\right) \geqslant \frac{79}{179} = 0.44134078\cdots$$

$$11. \ \rho\left(\frac{18}{7}^{+}\right) \leqslant \frac{41}{93} = 0.44086021\cdots$$

$$12. \ \rho\left(\frac{8}{3}\right) > \frac{339}{769} = 0.44083224\cdots$$

$$13. \ \rho\left(\frac{8}{3}^{+}\right) \leqslant \frac{24}{59} = 0.40677966\cdots$$

$$14. \ \rho(3) > \frac{115}{283} = 0.40636042\cdots$$

9.2 Method for negative results

Let L be a factorial language. A word w is said to be k-biprolongable in L if there exists a word $lwr \in L$ such that |l| = |r| = k. A suffix cover of L is a set S of finite words in L such that every finite word that is k-biprolongable in L and of length at least $\max_{u \in S} |u|$ has a suffix that belongs to S, for some finite number k. Taking k = 20 is sufficient for every negative result in this paper. For a word $u \in S$, let

$$A_u(q) = \left\{ w \in L \mid uw \in L \text{ and for every prefix } w' \text{ of } w, \ \frac{|w'|_0}{|w'|} < q \right\}.$$

Lemma 9.1. Let L be a factorial language and S one of its suffix covers. Let $q \in \mathbb{Q}$. If $A_u(q)$ is finite for every word $u \in S$, then $f_{\min} \ge q$.

Proof. Assume $A_u(q)$ is finite for every word $u \in S$. Then any infinite word $w \in L$ has a decomposition into finite factors $w_0w_1w_2...$ such that $|w_0| = k + \max_{u \in S} |u|$ and $\frac{|w_i|_0}{|w_i|} \ge q$ for every $i \ge 1$.

Lemma 9.1 enables us to obtain bounds of the form $f_{\min} \ge q$ by choosing an explicit suffix cover and checking by computer that every set $A_u(q)$ is finite. It is easy to see that Lemma 9.1 and the definition of $A_u(q)$ can be modified to provide bounds of the form $f_{\min} > q$, $f_{\max} \leq q$, or $f_{\text{max}} < q$. This method is a natural generalization of the one in [72], where the suffix cover consists of the empty word, and of the one in [45], where the suffix cover consists of all binary words of length three. Since we study here the frequency of the letter 0 in repetition-free words, every letter other than 0 play the same role. Let us say that two words u and u' in Σ_s are equivalent if and only if u can be obtained from u' by a permutation of the letters in $\Sigma_s \setminus \{0\}$. Notice that for two equivalent words u and u', $A_{u'}(q)$ is finite if and only if $A_u(q)$ is finite. We define the reduced suffix cover of a suffix cover S as the quotient of S by this equivalence relation. To prove the negative part of Theorem 9.1.1 we used the reduced suffix cover $\{1, 01210, 0210, 2010\}$, the computation took about 20 days on a XEON 2.2Gh. For Theorem 9.1.2 we used the reduced suffix cover $\{0, 01, 021, 0121\}$. For Theorem 9.2 we used 0111100010}. We omit the computer proof that this is indeed a suffix cover for $(\frac{5}{3}, 3)$ -free binary words. The negative statements of Theorem 9.3 (even items) were obtained using the

suffix cover $\{1, 10, 100\}$.

9.3 Method for positive results

Let L be a factorial language over Σ_s^* . To construct an infinite word $w \in L$ with a given letter frequency $q \in \mathbb{Q}$, we use again the method described in Section 6.2. We write $q = \frac{a}{b}$ with acoprime to b. For increasing values of k, we look for a $(k \times b)$ -uniform morphism $h : \Sigma_e^* \to \Sigma_s^*$ producing (infinite) words in L such that $|h(i)|_0 = k \times a$ for every $i \in \Sigma_e$.

Consider the 8-uniform morphism $m: \Sigma_3^* \longrightarrow \Sigma_4^*$ defined by

$$m(0) = 01232103,$$

 $m(1) = 01230323,$
 $m(2) = 01210321.$

To get the bound $f_{\min} \leq \frac{883}{3215}$ in Theorem 9.1, we found a square-free morphism $h^+ : \Sigma_3^* \longrightarrow \Sigma_3^*$ such that $h^+ = m^+ \circ m$ where $m^+ : \Sigma_4^* \longrightarrow \Sigma_3^*$ is a 3215-uniform morphism. To get the bound $f_{\max} \geq \frac{255}{653}$ in Theorem 9.1, we found a square-free morphism $h^- : \Sigma_3^* \longrightarrow \Sigma_3^*$ such that $h^- = m^- \circ m$ where $m^- : \Sigma_4^* \longrightarrow \Sigma_3^*$ is a 9142-uniform morphism (9142 = 14 × 653). We need a result of Crochemore [17] saying that a uniform morphism is square-free if the image of every square-free word of length 3 is square-free. The software **mreps** [46] written by Kucherov et al. can test if a word is square-free in linear time. We used it to prove that h^- and h^+ are square-free by checking that $h^-(w)$ and $h^+(w)$ are square-free, where w = 010201210120212is square-free and contains every ternary square-free words of length 3 as factors. Checking the image of w is faster than checking the images of the 12 ternary square-free words of length 3 because **mreps** runs in linear time. Since the morphisms h^- (resp. h^+) are square-free, we obtain an exponential lower bound for ternary square-free words with letter frequency $\frac{883}{3215}$ (resp. $\frac{255}{653}$).

For each positive statement in Theorem 9.3 (odd items), we found a uniform morphism $h: \Sigma_3^* \longrightarrow \Sigma_2^*$ such that for every $\binom{7^+}{4}$ -free ternary word w, h(w) has the corresponding properties of repetition-freeness and letter frequency.

9.4 Dejean's conjecture and letter frequencies

Based on numerical evidences, we propose another strong form of Dejean's conjecture involving letter frequencies:

Conjecture 9.1.

- 1. For every $k \ge 5$, there exists an infinite $\left(\frac{k}{k-1}^+\right)$ -free word over Σ_k with letter frequency $\frac{1}{k+1}$.
- 2. For every $k \ge 6$, there exists an infinite $\left(\frac{k}{k-1}^+\right)$ -free word over Σ_k with letter frequency $\frac{1}{k-1}$.

It is easy to see that the values $\frac{1}{k+1}$ and $\frac{1}{k-1}$ in Conjecture 9.1 would be best possible. For $\left(\frac{5}{4}^+\right)$ -free words over Σ_5 , we obtain $f_{\max} < \frac{103}{440} = 0.23409090 \cdots < \frac{1}{4}$ using the reduced suffix cover $\{0, 01, 012, 0123, 012341, 401234, 4301234\}$. That is why Conjecture 9.1.(2) is stated with $k \ge 6$.

Chapter 10

Conclusion

In this part, we mainly presented positive results in combinatorics on words. More precisely, we construct infinite words on small alphabets with properties such as avoiding different kind of repetitions and/or patterns. We also consider the problem of minimizing and maximizing the frequency of one letter in an infinite repetition-free word.

The general idea is to obtain an infinite word with the desired property as the image of an infinite repetition-free word by a uniform morphism. We wrote a computer program that finds these morphisms.

The most natural application of this method is to find upper bounds on generalized repetition thresholds. We obtained the exact value of six generalized repetition threshold $R(k, \ell)$ with small alphabet size k and prefix size ℓ . Proving lower bounds on $R(k, \ell)$ is rather easy using backtracking, and we can be quite confident that our lower bounds are tight. Our upper bounds always follow from results about the (classical) repetition threshold $R_k = R(k, 1)$. This sounds like a limitation to the method, since Dejean's conjecture is settled for $k \leq 11$ only. Actually the main problem is the computing power needed to find a morphism, which grows very fast with k and/or l.

Then we used this method in pattern avoidance, and completed the determination of the avoidability index of all ternary patterns. A major open problem in pattern avoidance is whether the avoidability index of a pattern is computable. Unfortunately our method does not solve this problem, since it must deal with repetitions. For example, it cannot prove that $\mu(ABWACXBAYBCZCA) = 4$. It would be interesting to know if this method can decide the 2-avoidability of a given pattern, assuming Dejean's conjecture is true.

Concerning the extremal letter frequencies in repetition-free words, we obtained some precise precise bounds and two exact values: The maximal letter frequency in infinite ternary square-free words is $\frac{255}{653}$ and infinite $(\frac{8}{5}^+, 3)$ -free binary words have equal letter frequencies. We also found six new values x such that the minimal letter frequencies in x-free and x^+ -free binary words are distinct. We did not have enough time to program a more automated way of detecting such values.

To conclude, every result in this part is due to some progress in algorithmic devoted to combinatorics on words. Once we had an efficient enough algorithm and an implementation, we ran it on a maximum of instances. This gave us ideas about when and why the method fails or becomes impracticable.

Bibliography

- [1] I. Algor and N. Alon. The star arboricity of graphs, *Discrete Math.* **75** (1989) 11–12.
- [2] K. Appel and W. Haken. Every planar map is four colorable. I. Discharging, Illinois J. Math. 21(3) (1977) 429-490.
- [3] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. II. Reducibility, *Illinois J. Math.* 21(3) (1977) 491–567.
- [4] K.A. Baker, G.F. McNulty, and W. Taylor. Growth Problems for Avoidable Words, Theoret. Comput. Sci. 69 (1989) 319–345.
- [5] D.R. Bean, A. Ehrenfeucht, and G.F. McNulty. Avoidable Patterns in Strings of Symbols, *Pacific J. of Math.* 85 (1979) 261–294.
- [6] J. Berstel. Axel Thue's Papers on Repetitions in Words: a Translation. Number 20 in Publications du Laboratoire de Combinatoire et d'Informatique Mathématique. Université du Québec à Montréal, February 1995.
- [7] P. Boiron, E. Sopena, and L. Vignal. Acyclic improper colourings of graphs, J. Graph Theory 32 (1999) 97–107.
- [8] O.V. Borodin. On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211–236.
- [9] O.V. Borodin, D.G. Fon-Der Flaass, A.V. Kostochka, A. Raspaud, and E. Sopena. Acyclic list 7-coloring of planar graphs, J. Graph Theory 40(2) (2002) 83–90.
- [10] O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud, and E. Sopena. On the maximum average degree and the oriented chromatic number of a graph, *Discrete Math.* 206 (1999) 77–89.
- [11] O.V. Borodin, A.V. Kostochka, and D.R. Woodall. Acyclic colorings of planar graphs with large girth, J. London Math. Soc. 60 (1999) 344-352.
- [12] F.-J. Brandenburg. Uniformly growing k-th power-free homomorphisms, Theoret. Comput. Sci. 23 (1983) 69-82.
- [13] J. Cassaigne. Motifs évitables et régularité dans les mots, Thèse de Doctorat, Université Paris VI, Juillet 1994.
- [14] C. Choffrut and J. Karhumäki. Combinatorics of words, In G. Rozenberg and A. Salomaa, editors, *Handbook of Formal Languages*, Vol. 1, pp. 329–438. Springer-Verlag, 1997.

- [15] R.J. Clark. Avoidable formulas in combinatorics on words, Ph.D. Thesis, University of California, Los Angeles (2001).
- [16] B. Courcelle. The monadic second order logic of graphs VI: on several representations of graphs by relational structures, *Discrete Appl. Math.* 54(2-3), 117–149.
- [17] M. Crochemore. Sharp characterizations of squarefree morphisms, *Theoret. Comput. Sci.* 18 (1982) 221–226.
- [18] J.D. Currie. Open problems in pattern avoidance, Amer. Math. Monthly 100 (1993) 790-793.
- [19] F. Dejean. Sur un théorème de Thue, J. Combin. Theory. Ser. A 13 (1972) 90–99.
- [20] F.M. Dekking. On repetitions of blocks in binary sequences, J. Combin. Theory. Ser. A 20 (1976) 292–299.
- [21] R. C. Entringer, D. E. Jackson, and J. A. Schatz. On nonrepetitive sequences, J. Combin. Theory. Ser. A 16 (1974) 159–164.
- [22] J. Fiala, K. Jansen, V.B. Le, and E. Seidel. Graph Subcolorings: Complexity and Algorithm, SIAM J. Discrete Math. 16(4) (2003) 635-650.
- [23] J. Fiala and V.B. Le. The subchromatic index of graphs, KAM Series 655 (2004). http: //kam.mff.cuni.cz/~kamserie/serie/clanky/2004/s655.ps
- [24] A.S. Fraenkel and R.J. Simpson. How many squares must a binary sequence contain? Electronic J. Combinatorics 2 (1995) #R2.
- [25] E. Fried. On homogeneous tournaments, Combinatorial theory and its applications II (1970) 467-476.
- [26] M.R. Garey, D.S. Johnson, and L.J. Stockmeyer. Some simplified NP-Complete graph problems, *Theoret. Comput. Sci.* 1(3) (1976) 237-267.
- [27] J. Gimbel and C. Hartman. Subcolorings and the subchromatic number of a graph, Discrete Math. 272 (2003) 139–154.
- [28] D. Gonçalves. Caterpillar arboricity of planar graphs, *Discrete Math.* To appear.
- [29] D. Gonçalves. Étude de différents problèmes de partition de graphes, Ph.D. Thesis, LaBRI, Université Bordeaux I (2005).
- [30] D. Gonçalves and P. Ochem. On some arboricities in planar graphs, In Proceedings of the 7th International Colloquium on Graph Theory (ICGT'05), Hyères, France, July 12-16 2005.
- [31] H. Grötzsch. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Math. Nat. Reihe 8 (1959) 390-408.
- [32] B. Grünbaum. Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390–408.
- [33] A. Gyárfás and D.B. West. Multitrack Interval Graphs, Congressus Numerantium 109 (1995) 109-116.

- [34] S.L. Hakimi, J. Mitchem, and E. Schmeichel. Star arboricity of graphs, *Discrete Math.* 149 (1996) 93–98.
- [35] A.M. Hobbs. Computing edge-toughness and fractional arboricity, Contemp. Math. 89 (1989) 89–106.
- [36] I. Holyer. The NP-completeness of edge coloring, SIAM J. Comput. 10 (1981) 718–720.
- [37] L. Ilie, P. Ochem, and J.O. Shallit. A generalization of repetition threshold, *Theoret. Comput. Sci.* 345 (2005) 359–369.
- [38] Information System on Graph Class Inclusions, http://wwwteo.informatik.uni-rostock.de/isgci/index.html
- [39] J. Karhumäki and J.O. Shallit. Polynomial versus exponential growth in repetition-free binary words, J. Combin. Theory Ser. A 105 (2004) 335–347.
- [40] R. Kolpakov, G. Kucherov, and Y. Tarannikov. On repetition-free binary words of minimal density, *Theoret. Comput. Sci.* 218 (1999) 161–175.
- [41] A.V. Kostochka and L.S. Mel'nikov. Note to the paper of Grünbaum on acyclic colorings, Discrete Math. 14 (1976) 403–406.
- [42] A.V. Kostochka, E. Sopena, and X. Zhu. Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24(4) (1997) 331-340.
- [43] A.V. Kostochka and D.B. West. Every outerplanar graph is the union of two interval graphs, *Congressus Numerantium* 139 (1999) 5–8.
- [44] J. Kratochvíl. A Special Planar Satisfiability Problem and a Consequence of its NP-Completeness, Discrete Appl. Math. 52 (1994) 233-252.
- [45] G. Kucherov, P. Ochem, and M. Rao. How many square occurrences must a binary sequence contain? *Electron. J. Comb.* 10(1) (2003) #R12.
- [46] http://mreps.loria.fr/
- [47] H. Le and V.B. Le. The NP-completeness of (1, r)-subcolorability of cubic graphs, Inform. Process. Lett. 81(3) (2002) 157–162.
- [48] M. Lothaire. Algebraic Combinatorics on Words. Cambridge Univ. Press, 2002.
- [49] T.H. Marshall. On *P*-universal Graphs, *KAM Series* 510 (2001). http://kam.mff.cuni. cz/~kamserie/serie/clanky/2001/s510.ps
- [50] T.H. Marshall. Antisymmetric flows on planar graphs, KAM Series 652 (2003). http: //kam.mff.cuni.cz/~kamserie/serie/clanky/2003/s652.ps
- [51] M. Montassier, P. Ochem, and A. Raspaud. On the acyclic choosability of graphs, J. Graph Theory 51(4) (2006) 281–300.
- [52] J. Moulin-Ollagnier. Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters, *Theoret. Comput. Sci.* 95 (1992) 187–205.

- [53] M. Mirzakhani. A small non-4-choosable planar graph, Bull. Inst. Combin. Appl. 17 (1996) 15–18.
- [54] C.St.J.A. Nash-Williams. Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961) 445–450.
- [55] J. Nešetřil and A. Raspaud. Antisymmetric Flows and Strong Colorings of oriented planar graphs, Ann. Inst. Fourier 49 (1999) no.3, 1037–1056.
- [56] J. Nešetřil, A. Raspaud, and E. Sopena. Colorings and girth of oriented planar graphs, Discrete Math 165-166 (1997) 519-530.
- [57] P. Ochem. Oriented colorings of triangle-free planar graphs, Inform. Process. Lett. 92(2) (2004) 71–76.
- [58] P. Ochem. A generator of morphisms for infinite words, In Proceedings of the Workshop on Word Avoidability, Complexity, and Morphisms, Turku, Finland, July 17 2004. LaRIA Technical Report 2004-07, pp. 9–14.
 RAIRO - Theoretical Informatics and Applications 40 (2006) 427–441.
- [59] P. Ochem. Negative results on acyclic improper colorings, In Proceedings of the 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) Berlin, Germany, September 5-9 2005, DMTCS Proceedings pp. 357–362.
- [60] P. Ochem. Letter frequency in infinite repetition-free words, Theoret. Comput. Sci. 380 (2007) 388–392.
- [61] J.-J. Pansiot. A propos d'une conjecture de F. Dejean sur les répétitions dans les mots, Disc. Appl. Math. 7 (1984) 297–311.
- [62] H. Prodinger and F.J. Urbanek. Infinite 0-1-sequences without long adjacent identical blocks, Discrete Math. 28 (1979) 277-289.
- [63] N. Rampersad, J.O. Shallit, and M.-w. Wang. Avoiding large squares in infinite binary words, *Theoret. Comput. Sci.* 339 (2005) 19–34.
- [64] A. Raspaud and E. Sopena. Good and semi-strong colorings of oriented planar graphs, Inform. Process. Lett. 51(4) (1994) 171–174.
- [65] C. Richard and U. Grimm. On the entropy and letter frequencies of ternary square-free words, *Electron. J. Comb.* 11 (2004) #R14
- [66] P. Roth. Every Binary Pattern of Length Six is Avoidable on the Two-Letter Alphabet, Acta Inf. 29(1) (1992) 95-107.
- [67] D.P. Sanders. Linear Algorithms for Graphs of Tree-width at Most Four, Program of Algorithms, Combinatorics, and Optimization, PhD thesis, Georgia Institute of Technology, Atlanta, Georgia, June 1993.
- [68] J.O. Shallit. Simultaneous avoidance of large squares and fractional powers in infinite binary words, Int. J. Found. Comput. Sci. 15 (2004) 317-327. Preprint available at http: //www.arxiv.org/abs/math.CO/0304476, 2003.

- [69] E. Sopena. The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191– 205.
- [70] E. Sopena. Oriented graph coloring, *Discrete Math.* **229(1-3)** (2001) 359–369.
- [71] E. Sopena. There exist oriented planar graphs with oriented chromatic number at least sixteen, *Inform. Process. Lett.* **81(6)** (2002) 309–312.
- [72] Y. Tarannikov. The minimal density of a letter in an infinite ternary square-free word is 0.2746..., J. Integer Sequences 5(2):Article 02.2.2 (2002).
- [73] T.C. Shermer. On rectangle visibility graphs. III. External visibility and complexity, In Proceedings of the 8th Canadian Conference on Computational Geometry (CCCG'96), Turku, Finland, July 17 2004. (1996) 234-239
- [74] C. Thomassen. Every planar graph is 5-choosable, J. Combin. Theory. Ser. B 62 (1994) 180–181.
- [75] A. Thue. Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906) 1-22. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo (1977) 139-158.
- [76] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo (1977) 413–478.
- [77] L. Vignal. Homomorphismes et colorations de graphes orientés, Ph.D. Thesis, LaBRI, Université Bordeaux I (1997).
- [78] V.G. Vizing. On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3 (1964) 23-30. (in Russian)
- [79] M. Voigt. List colourings of planar graphs, Discrete Math. 120 (1993) 215–219.
- [80] M. Voigt. A non-3-choosable planar graph without cycles of length 4 and 5, Manuscript.
- [81] M. Voigt and B. Wirth. On 3-colorable non-4-choosable planar graphs, J. Graph Theory 24 (1997) 233-235.
- [82] R. Xu. Note on acyclic colorings of graphs, Combinatoria 72 (2004) 235–239