
Extending Generalized Arc Consistency

Anastasia Paparrizou and Kostas Stergiou

Department of Informatics and Telecommunications Engineering,
University of Western Macedonia, Greece

Abstract. Generalized arc consistency (GAC) is the most widely used local con-
sistency in constraint programming. Several GAC algorithms for specific con-
straints, as well as generic algorithms that can be used on any constraint, have
been proposed in the literature. Stronger local consistencies than GAC have also
been studied but algorithms for such consistencies are generally considered too
expensive. In this paper we propose an extension to the standard GAC algorithm
GAC2001/3.1 that achieves a stronger local consistency than GAC by consid-
ering intersections of constraints. Importantly, the worst-case time complexity of
the proposed algorithm, called GAC+, is higher than that of GAC2001/3.1 only
by a factor e, where e is the number of constraints in the problem. Experimental
results demonstrate that in many cases GAC+ can reduce the size of the search tree
compared to GAC, resulting in improved cpu times. Also, in cases where there is
no gain in search tree size, there is only a negligible overhead in cpu time.

1 Introduction

Constraint Programming (CP) has become one of AI’s success stories in recent years
and is nowdays an established paradigm for modelling and solving hard combinatorial
problems from areas such as planning and scheduling, timetabling, resource allocation,
bioinformatics, etc. At the core of CP’s success is the wide range of efficient contraint
propagation algorithms offered by modern CP solvers for several types of non-binary
constraints.

Constraint propagation algorithms typically try to prune values from the domains
of variables by enforcing a local consistency property on the constraints of the prob-
lem. The most widely used local consistency is generalized arc consistency (GAC),
also known as domain consistency. Several specialized GAC algorithms for specific
(global) constraints have been proposed in the literature. In the absense of specialized
algorithms, generic GAC algorithms that can be used on any constraint are applied.
Examples of such algorithms are GAC3 [9], GAC4 [10], and GAC2001/3.1 [1].

Stronger local consistencies than GAC have also been studied extensively. Although
the application of such methods can result in significant gains in terms of search tree
size, they are rarely used in CP solvers. This is because algorithms for strong consisten-
cies are generally considered too expensive, meaning that potential gains in search tree
size are very often outweighted by the cpu time overheads.

In this paper we propose an extension to the well-known generic GAC algorithm
GAC2001/3.1 that achieves a stronger local consistency than GAC through the intel-
ligent exploitation of simple data structure used by GAC2001/3.1. Importantly, the

I. Maglogiannis, V. Plagianakos, and I. Vlahavas (Eds.): SETN 2012, LNAI 7297, pp. 174–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Extending Generalized Arc Consistency 175

worst-case time complexity of GAC+, is higher than that of GAC2001/3.1 only by a
factor e, where e is the number of constraints in the problem. Experimental results from
benchmark problems demonstrate that in many cases GAC+ can reduce the size of the
search tree compared to GAC, resulting in improved cpu times. Also, in cases where
there is no gain in search tree size, there is only a negligible overhead in cpu time.

2 Background

A Constraint Satisfaction Problem (CSP) is defined as a tuple (X ,D, C) where: X =
{x1, . . . , xn} is a set of n variables, D = {D(x1), . . . , D(xn)} is a set of finite do-
mains, one for each variable, with maximum cardinality d, and C = {c1, . . . , ce} is a
set of e constraints with maximum arity k. Each constraint c is a pair (vars(c), rel(c)),
where vars(c) = {x1, . . . , xm} is an ordered subset of X , and the relation rel(c) is
a subset of the Cartesian product D(x1) × . . . × D(xm) that specifies the allowed
combinations of values for the variables in var(c). Constraints are represented either
extensionally by explicitly specifying their relation or intensionally through a predicate
or function.

Each tuple τ ∈ rel(c) is an ordered list of values (a1, . . . , ak) such that aj ∈
D(xj),j = 1, . . . , k. Given a constraint c, a variable xi ∈ var(c), and a tuple τ ∈
rel(c), we denote by τ [xi] the projection of τ on xi. A tuple τ ∈ rel(c) is valid iff
none of the values in the tuple has been removed from the domain of the corresponding
variable.

Given two constraints ci and cj , if var(ci) ∩ var(cj) �= ∅ then we say that the
constraints intersect. We denote by fmax the maximum number of variables that are
common to any two constraints that share more than one variable.

A standard way of solving CSPs is by interleaving depth-first search and constraint
propagation. The former is typically guided by branching heuristics, while the latter
involves repeatedly enforcing some local consistency property on the constraints of the
problem so that infeasible values are located and pruned.

The most commonly used local consistency is generalized arc consistency (GAC)
or domain consistency, simply referred to as arc consistency in the case of binary con-
straints.

Definition 1. A value ai ∈ D(xi) is GAC iff for every constraint c s.t. xi ∈ vars(c)
there exists a valid tuple τ ∈ rel(c) that includes the assignment of ai to xi. In this case
τ is called a support of ai. A variable is GAC iff all its values are GAC. A problem is
GAC iff there is no empty domain in D and all the variables in X are GAC.

When applied, GAC and its weaker variants such as Bounds Consistency (BC), focus
on one constraint at a time. In contrast, higher-order local consistencies exploit the fact
that very often constraints have two or more variables in common, to achieve stronger
pruning than GAC. One of the most promising such consistencies is max Restricted
PairWise Consistency (maxRPWC) [2].

Definition 2. A value ai ∈ D(xi) is maxRPWC iff ∀cj ∈ C, where xi ∈ var(cj), a
has a support τ ∈ rel(cj) s.t. ∀cl ∈ C (cl �= cj), s.t. var(cj) ∩ var(cl) �= ∅, ∃τ ′ ∈

176 A. Paparrizou and K. Stergiou

rel(cl), s.t. τ [var(cj) ∩ var(cl)] = τ ′[var(cj) ∩ var(cl)] and τ ′ is valid. In this case
we say that τ ′ is a PW-support of τ . A variable is maxRPWC iff all values in its domain
are maxRPWC. A problem is maxRPWC iff there is no empty domain in D and all
variables are maxRPWC.

Although the application of maxRPWC, and other strong local consistencies, can result
in stronger pruning than GAC, it is not widely used. This is due to the high cost of algo-
rithms for maxRPWC. For example, the standard maxRPWC1 algorithm hasO(e2k2dp)
worst-case time complexity, where p is the maximum number of variables involved in
two constraints that share at least two variables [2]. In contrast, GAC2001/3.1 has
O(ek2dk) worst-case complexity which is significantly lower considering that p =
2k − 2 in the worst case.

Following [4] we call a local consistency A stronger than B iff in any problem in
which A holds then B holds, and strictly stronger iff it is stronger and there is at least
one problem in which B holds but A does not.

3 GAC+

We now present GAC+, an algorithm that extends GAC2001/3.1 to achieve a local
consistency stronger than GAC. Specifically, when GAC+ is applied it deletes all values
that are not GAC and in addition it can delete some extra values that are GAC but are not
maxRPWC. To achieve this it utilizes the LastGAC data structure of GAC2001/3.1.
To recall the use of this data structure, for each constraint c and each value ai ∈ D(xi),
where xi ∈ var(c), LastGACc,xi,ai gives (i.e. points to) the most recently discovered
support of ai in c.

Algorithm 1. Algorithm GAC+
1: if PREPROCESSING then L=L ∪ {xi},∀xi ∈ V ;
2: else L={ currently assigned variable };
3: while L �= Ø do
4: L=L−{xi};
5: for each ck ∈ C s.t. xi ∈ var(ck) do
6: for each xj ∈ V s.t. xj ∈ var(ck) AND xj �= xi do
7: if revise GAC+(ck, xj) > 0 then
8: if DWO(xj) then return FAILURE;
9: L=L ∪ {xj};

10: return SUCCESS;

Algorithm GAC+ utilizes a list L where variables that have their domains pruned are
inserted. Once a variable xi is extracted from L, each constraint ck that involves xi is
examined (line 5 in Algorithm 1) and all the variables that appear in ck, except xi, are
revised. This is done by calling Function reviseGAC+.

This function takes a constraint ci and a variable xj , s.t. xj ∈ var(ci), and for each
value aj ∈ D(xj) first checks if aj has a support in ci. In case LastGACci,xj ,aj is
valid then this tuple is a support for aj . If LastGACci,xj,aj is not valid anymore, a

Extending Generalized Arc Consistency 177

new support is seeked. This is done by iterating through the tuples of ci in lexicographi-
cal order starting from the one immediatelly after LastGACci,xj,aj (line 5 in Function
2). In case a tuple τ that is valid and consistent is located, then a support for aj has
been established and LastGACci,xj,aj is set to τ . Up to this point GAC+ operates just
like a typical GAC algorithm. However, once a support τ is located, GAC+ performs
an additional operation which can sometimes determine that τ has no PW-support in
some intersecting constraint. Namely, the algorithm iterates over the constraints inter-
secting with ci on more than one variable and for each such constraint ck calls function
checkPWtuple1.

Function 2. reviseGAC+(ci, xj)

1: removedValues = 0;
2: for each aj ∈ D(xj) do
3: SUPPORT FOUND=FALSE;
4: if ¬isValid(LastGACci,xj ,aj) then
5: for each τ of ci > LastGACci,xj ,aj , s.t. τ [xj] = aj do
6: if isValid(τ) AND isConsistent(ci, τ) then
7: LastGACci,xj ,aj = τ ;
8: PW CONSISTENCY=TRUE;
9: for each ck �= ci s.t. |var(ck) ∩ var(ci)| > 1 do

10: if checkPWtuple(ci, τ, ck) then
11: PW CONSISTENCY=FALSE; break;
12: if PW CONSISTENCY then
13: SUPPORT FOUND=TRUE; break;
14: if ¬ SUPPORT FOUND then
15: remove aj from D(xj);
16: removedValues = removedValues + 1;
17: return removedValues;

This function first locates Lex Max, the lexicographically largest
LastGACck,xk,τ [xk] for all variables xk that belong to the intersection of ci and ck
(lines 1-4). Then it checks if there can exist a tuple greater or equal to this one that has
the same values for the variables of the intersection as τ . Crucially, this check is done
in linear time as follows.

Assuming Lex Max =< (x1, a1), ..., (xm, am) > then this tuple is scanned from
left to right. If the currently examined variable xk belongs to var(ck) ∩ var(ci) and
ak > τ [xk], where ak is the value of xk in Lex Max, then we conclude that there can
be no PW-support for τ in ck (line 10). In the opposite case where ak < τ [xk] (line
10), we infer that a PW-support could be located for τ and thus we stop searching. If
xk does not belong to var(ck) ∩ var(ci) then if the value it takes in Lex Max is the
last value in its domain, we continue scanning (line 7). Otherwise, the scan is stopped
because there may exist a tuple larger or equal to Lex Max that is a PW-support of τ .

As implied by its description, checkPWtuple can verify the lack of PW-support mainly
in cases where the variables in the intersection appear consecutively at the start of

1 Constraints that intersect on exactly one variable are not considered because after making the
problem GAC they cannot possibly contribute to any extra pruning [2].

178 A. Paparrizou and K. Stergiou

constraint’s ck scope. Hence, this function performs a limited, and cheap, check for
PW consistency. That is, it can sometimes determine that a verified support τ is not PW
consistent (i.e. it has no PW-support on some constraint). In such a case, the search for
a support for aj is resumed in reviseGAC+. The following example illustrates the basic
idea behind GAC+.

Function 3. checkPWtuple(ci, τ, ck)
1: Lex Max=NULL;
2: for each xk ∈ var(ck) ∩ var(ci) do
3: if τ ′ = LastGACck,xk,τ [xk] > Lex Max then
4: Lex Max=τ ′;
5: for each xk ∈ var(ck) do
6: if xk /∈ var(ck) ∩ var(ci) then
7: if Lex Max[xk] is last value in D(xk) then continue;
8: else break;
9: else

10: if Lex Max[xk] < τ [xk] then break;
11: if Lex Max[xk] > τ [xk] then return FALSE;
12: return TRUE;

Example 1. Consider two constraints c1 and c2 with var(c1) = {x1, x2, x3, x4} and
var(c2) = {x3, x4, x5, x6}. Assume that the support τ = {0, 2, 2, 1} has been located
for value 0 of x1, and that LastGACc2,x3,2 is tuple τ ′ = {2, 2, 0, 1}. Since τ ′[x4] is
greater than τ [x4], it is clear that there is no valid and consistent tuple in c2 that includes
values 2 and 1 for x3 and x4 respectively. That is, no PW-support for τ exists in c2 and
hence value 0 of x1 is not maxRPWC. If we assume that τ is the last support of (x1, 0)
in c1 then GAC+ will determine (simply by comparing τ to τ ′) that 0 should be deleted
from D(x1). In contrast, a GAC algorithm cannot infer this since it does not consider
constraint intersections at all.

The following proposition is a direct consequence of the limited check for PW consis-
tency that GAC+ performs. The proof is straightforward if we consider that GAC+ is
identical to GAC2001/3.1 plus the calls to Function checkPWtuple, which can only
result in extra pruning, and is thus ommitted.

Proposition 1. GAC+ achieves a level of local consistency that is strictly stronger than
GAC and strictly weaker than maxRPWC.

As mentioned, the ability of GAC+ to delete extra values compared to a GAC algo-
rithm depends on the ordering of the variables in the scope of the constraints. For in-
stance, if the scope of constraint c2 in Example 1 is var(c2) = {x3, x5, x4, x6} with
LastGACc2,x3,2 being τ ′ = {2, 0, 2, 1} then we cannot deduce that no PW-support for
τ exists in c2 unless 0 is the last value in D(x5). This is because a tuple that is lexi-
cographically greater than τ ′, e.g. {2, 1, 1, 1} may be a PW-support of τ . However, the
ordering of the constraints’ scope can be altered if necessary. For example, if a subset
of the variables in a constraint appears in many intersections with other constraints then
these variables can be moved to the front of the constraint’s scope to facilitate pruning
by GAC+. This can be done for all constraints in a preprocessing step.

Extending Generalized Arc Consistency 179

Finally, we discuss the worst-case complexity of GAC+. Since GAC+ uses the same
LastGAC data structure as GAC2001/3.1, it has the same O(ekd) space complexity.

Proposition 2. The worst-case time complexity of GAC+ is O(e2k2dk).

Proof. GAC+ is identical to GAC2001/3.1 with the addition of lines 8-13 to re-
viseGAC+. In reviseGAC+, for each variable xj and each of its d values, dk−1 tuples
are first checked for GAC consistency with O(k) cost for each check. Then, for each
tuple and each constraint ck interecting ci checkPWtuple is called.

Let us now consider the cost of checkPWtuple. Finding the lexicographically largest
LastGAC among the at most fmax variables in var(ck) ∩ var(ci) costs O(fmax),
assuming that the lexicographic comparison of two tuples is implemented efficiently.
The for loop of line 5 costs O(k) since in the worst case all values in the tuple must be
examined. Hence, the cost of checkPWtuple is O(fmax + k)=O(k).

Hence, reviseGAC+ costs O(ddk−1(k+ek)) = O(ekdk). This function can be called
at most kd times for each constraint ci and variable xj ∈ var(ci). However, the cost
of reviseGAC+ for each xj and each ci is amortized over all the kd calls because of
the use of LastGAC (see [1] for details). Since there are at most e constraints and k
variables per constraint, the worst-case time complexity of GAC+ is O(e2k2dk). �	

4 Experiments

We ran experiments with benchmark non-binary problems taken from C. Lecoutre’s
repository and used in the CSP Solver Competitions2. We tried the following classes:
Golomb rulers, random problems, forced random problems, chessboard coloration,
Schurr’s lemma, modified Renault, positive table constraints and BDD. The first five
classes only include constraints of arity up to 4, while the other three include constraints
of large arity (up to 18).

The algorithms were implemented within a CP solver written in Java from scratch.
Search used a binary branching scheme, the dom/wdeg heuristic for variable order-
ing [3], and lexicographical value ordering. The searches for GAC on extensional con-
straints of large arity were performed using the efficient algorithm of [6]. The ordering
of variables in the constraint scopes was not altered to facilitate propagation for GAC+,
although this is an interesting direction for future work.

In Table 1 we present indicative results from search algorithms that maintain a certain
local consistency throughout search. We compare GAC+ to GAC (implemented using
algorithm GAC2001/3.1). The results demonstrate that GAC+ improves uppon the
performance of GAC2001/3.1 in the majority of instances.

Specifically, GAC+ is clearly better than GAC2001/3.1 on Golomb rulers instances
as well as random and forced random problems. Often there are large margins between
the performances of the two algorithms. For example on rand-3-20-20-60-632-fcd-15
GAC+ is 3 times faster than GAC2001/3.1. These results are due to the stronger prun-
ing achieved by GAC+ which results in significant reduction in the number of nodes.

2 http://www.cril.univ-artois.fr/CPAI08/

http://www.cril.univ-artois.fr/CPAI08/

180 A. Paparrizou and K. Stergiou

Table 1. Search tree nodes and cpu times in secs from various representative problem instances

Instance
Node visits CPU time

GAC2001/3.1 GAC+ GAC2001/3.1 GAC+
renault-mod-5 1,070 1,038 326 332
renault-mod-10 1,532 1,514 48 47
renault-mod-24 753 674 217 206
renault-mod-25 1,273 545 510 365
renault-mod-31 863 796 76 69
bdd-21-133-18-78-6 41,199 39,002 3,521 2,777
bdd-21-133-18-78-7 36,383 31,713 4,312 4,462
ruler-25-8-a4 2,697 2,316 96 67
ruler-34-9-a4 8,495 9,430 1,264 934
rand-3-20-20-60-632-fcd-4 223,155 113,814 275 154
rand-3-20-20-60-632-fcd-8 136,912 110,585 171 145
rand-3-20-20-60-632-fcd-15 85,940 25,858 109 35
rand-3-20-20-60-632-4 124,450 37,612 165 51
rand-3-20-20-60-632-7 114,375 112,592 150 155
rand-3-20-20-60-632-9 73,408 48,956 102 67
pt-8-20-5-18-800-4 37,466 37,416 1,301 1,181
pt-8-20-5-18-800-7 15,845 15,757 505 464
cc-8-8-2 13,278 13,762 7.2 7.8
cc-9-9-2 12,945 12,828 12 13
lemma-20-9 370,992 370,992 101 102
lemma-30-9 367,664 367,664 249 253

GAC+ does not achieve notable additional pruning on positive table constraints. Al-
beit, it is still faster than GAC2001/3.1. Results are somewhat mixed on the modified
Renault and BDD classes. However, GAC+ is faster than GAC2001/3.1 in the major-
ity of the instances.
GAC+ is not successful, in terms of pruning, on the chessboard coloration and Schurr’s

lemma classes. This is due to the structure of the instances in these classes. In chessboard
coloration constraints have relatively small arity (4) and they are very loose (disjunctions
of �= constraints). This minimizes the extra pruning that can be achieved by GAC+. Note
that in some cases GAC+ results in more node visits than GAC2001/3.1, meaning that
its few extra value deletions actually mislead the variable ordering heuristic. In Schurr’s
lemma problems there are only a few constraint intersections on more than one variable.
As a result, our method cannot exploit the problems’ structure for additional pruning.
However, despite the lack of additional pruning in these two classes, the overheads of
GAC+ do not slow down search notably compared to GAC2001/3.1.

4.1 Discussion

From the experimental results we can conclude that the performance of GAC+ depends
largely on the structure of the particular problem class, i.e. on the topology of the
constraint graph and the type of constraints. Our method is particularly successful on

Extending Generalized Arc Consistency 181

problems where many intersections between constraints exist, and the constraints are
relatively tight. On the other hand, GAC+ does not offer improvements on problems
with few intersections or/and when constraints are loose. We believe that these results
can be exploited to preselect the appropriate propagation technique by examining the
structure of the given problem.

It is important to note that the idea on which GAC+ is based (i.e. the exploitation of
the LastGAC data structure) is not only applicable within a generic algorithm. Algo-
rithms for certain specialized constraints can also benefit. Specifically, specialized GAC
algorithms for table constraints (i.e. extensionally defined constraints) can be enhanced
to achieve stronger pruning following the ideas presented here in a straightforward way.
The GAC algorithms of [8], [7] and [5] already utilize a structure similar to LastGAC.
Therefore, it is easy to extend them along the lines of GAC+. We intend to investigate
this in the future.

5 Conclusion

We have presented GAC+, an extension to the standard GAC algorithm GAC2001/3.1
that achieves a stronger local consistency level than GAC. This is accomplished through
the exploitation of a simple data structure already used by GAC2001/3.1. In contrast
to existing methods for strong local consistencies, the worst-case time complexity of
GAC+ is very close to that of GAC algorithms. This is reflected on the practical per-
formance of the algorithm as it does not slow down search in a significant way even in
cases where no additional pruning compared to GAC is achieved. On the other hand,
there exist cases where the additional pruning of GAC+ results in important cpu time
gains.

References

1. Bessière, C., Régin, J.C., Yap, R., Zhang, Y.: An Optimal Coarse-grained Arc Consistency
Algorithm. Artificial Intelligence 165(2), 165–185 (2005)

2. Bessiere, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary con-
straints. Artificial Intelligence 172(6-7), 800–822 (2008)

3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting
constraints. In: Proceedings of ECAI 2004, Valencia, Spain (2004)

4. Debruyne, R., Bessière, C.: Domain Filtering Consistencies. JAIR 14, 205–230 (2001)
5. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised arc con-

sistency for extensional constraints. In: Proceedings of the Twenty Second Conference on
Artificial Intelligence (2007)

6. Lecoutre, C.: Optimization of Simple Tabular Reduction for Table Constraints. In: Stuckey,
P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 128–143. Springer, Heidelberg (2008)

7. Lecoutre, C., Szymanek, R.: Generalized Arc Consistency for Positive Table Constraints. In:
Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 284–298. Springer, Heidelberg (2006)

8. Lhomme, O., Régin, J.C.: A fast arc consistency algorithm for n-ary constraints. In: Proceed-
ings of AAAI 2005 (2005)

9. Mackworth, A.K.: On reading sketch maps. In: Proceedings IJCAI 1977, pp. 598–606 (1977)
10. Mohr, R., Masini, G.: Good Old Discrete Relaxation. In: Proceedings of ECAI 1988, pp.

651–656 (1988)

	Extending Generalized Arc Consistency

	Introduction
	Background
	GAC+
	Experiments
	Discussion

	Conclusion
	References

