
A Lazy Algorithm to Efficiently Approximate Singleton Path Consistency
for Qualitative Constraint Networks

Michael Sioutis∗, Anastasia Paparrizou†, and Jean-François Condotta†
∗Örebro universitet, MPI@AASS, Örebro, Sweden

michael.sioutis@oru.se
†Université d’Artois, CRIL-CNRS UMR 8188, Lens, France

{paparrizou,condotta}@cril.fr

Abstract—Partial singleton (weak) path consistency, or partial
◆-consistency, for a qualitative constraint network, ensures that
the process of instantiating any constraint of that network with
any of its base relations b and enforcing partial (weak) path
consistency, or partial �-consistency, in the updated network,
yields a partially �-consistent subnetwork where the respective
constraint is still defined by b. This local consistency is essential
for helping to decide the satisfiability of challenging qualitative
constraint networks and has been shown to play a crucial
role in tackling more demanding problems associated with
a given qualitative constraint network, such as the problem
of minimal labeling. One of the main downsides to using
partial ◆-consistency, is that it is computationally expensive to
enforce in a given qualitative constraint network, as, despite
being a local consistency in principle, it retains a global scope
of the network at hand. In this paper, we propose a lazy
algorithm that restricts the singleton checks associated with
partial ◆-consistency to constraints that are likely to lead to
the removal of a base relation upon their propagation. A
key feature of this algorithm is that it collectively eliminates
certain unfeasible base relations by exploiting singleton checks.
Further, we show that the closure that is obtained by our
algorithm is incomparable to the one that is entailed by partial
◆-consistency and non-unique in general. We demonstrate the
efficiency of our algorithm via an experimental evaluation with
random Interval Algebra networks from the phase transition
region of two separate models and, moreover, show that it can
exhibit very similar pruning capability for such networks to
the one of an algorithm for enforcing partial ◆-consistency.

Index Terms—Qualitative constraint-based reasoning, spatial
and temporal relations, partial ◆-consistency, approximation.

1. Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is
a major field of study in Artificial Intelligence, and in
particular in Knowledge Representation & Reasoning. This
field has received a lot of attention over the past decades,
as it extends to a plethora of areas and domains that include
ambient intelligence, dynamic GIS, cognitive robotics, and
spatiotemporal design [1]. QSTR abstracts from numerical

quantities of space and time by using qualitative descriptions
instead, e.g., precedes, contains, and is left of, thus providing
a concise framework that allows for rather inexpensive
reasoning about entities located in space and time.

The problem of representing and reasoning about qual-
itative information can be modeled as a qualitative con-
straint network (QCN) using a qualitative constraint lan-
guage. Specifically, a QCN is a network of constraints corre-
sponding to qualitative spatial or temporal relations between
spatial or temporal variables respectively, and a qualitative
constraint language is used to define those constraints over
a finite set of binary relations, called base relations (or
atoms) [2]. An example of such a qualitative constraint
language is Interval Algebra (IA), introduced by Allen [3].
IA considers time intervals (as its temporal entities) and
each of its base relations represents an ordering of the four
endpoints of two intervals in the timeline.

Partial �-consistency is the basic local consistency used
in the literature for defining practical algorithms to effi-
ciently reason with QCNs [4], [5], [6], [7], [8]. Given a
QCN N and a graph G, partial �-consistency with respect
to G, denoted by �G-consistency, entails (weak) consistency
for all triples of variables in N that correspond to three-
vertex cycles (triangles) in G. The literature suggests that
�
G-consistency alone is sufficient in most cases to guarantee
that a solution for a given QCN, should it exist, can be
efficiently obtained (see also [9]). However, for the more
challenging QCNs and the more demanding problems, such
as the problem of minimal labeling, which calls for deter-
mining the strongest implied constraints in a given QCN, a
stronger local consistency is typically employed that builds
upon �G-consistency, called singleton �G-consistency and de-
noted by ◆G-consistency [4]. Specifically, given a QCN N
and a graph G, it is said that ◆G-consistency holds on N
if and only if after instantiating any constraint of N with
any of its base relations b and closing the updated network
N under �G-consistency, the corresponding constraint in the
�
G-consistent subnetwork of N remains defined by b.

Unfortunately, ◆G-consistency is computationally very ex-
pensive to enforce in a given QCN [9]; this was also verified
in the experimental evaluation that took place in the context
of this paper (presented in Section 4) where a state-of-the-
art algorithm for enforcing ◆

G-consistency was employed.

Therefore, we make the following contributions: (i) we
propose a lazy algorithm to approximate ◆G-consistency that
restricts the singleton checks associated with ◆G-consistency
to constraints that are likely to lead to the removal of a base
relation upon their propagation in a given QCN, and that
collectively eliminates certain unfeasible base relations by
exploiting singleton checks; (ii) we thoroughly study the
theoretical properties of this algorithm and show, among
other things, that the closure that it computes is incom-
parable to the one that is achieved by ◆

G-consistency and
non-unique in general, and finally (iii) we demonstrate the
efficiency of our algorithm via an experimental evaluation
with random IA networks from the phase transition region of
two separate models and, moreover, show that it can exhibit
very similar pruning capability for such networks to the one
of an algorithm for enforcing ◆G-consistency.

The remainder of the paper is structured as fol-
lows. In Section 2 we give some preliminaries on qual-
itative constraint-based reasoning, with an emphasis on
◆

G-consistency. In Section 3 we introduce and thoroughly
study the algorithm for approximating ◆

G-consistency, and
in Section 4 we evaluate it against the state-of-the-art algo-
rithm for achieving ◆G-consistency. Finally, in Section 5 we
conclude the paper and sketch some future work.

2. Preliminaries

A binary qualitative spatial or temporal constraint lan-
guage, is based on a finite set B of jointly exhaustive and
pairwise disjoint relations defined over an infinite domain
D, which is called the set of base relations [2]. The base
relations of a particular qualitative constraint language can
be used to represent the definite knowledge between any
two of its entities with respect to the level of granularity
provided by the domain D. The set B contains the identity
relation Id, and is closed under the converse operation (−1).
Indefinite knowledge can be specified by a union of possible
base relations, and is represented by the set containing
them. Hence, 2B represents the total set of relations. The
set 2B is equipped with the usual set-theoretic operations
of union and intersection, the converse operation, and the
weak composition operation denoted by symbol � [2]. For
all r ∈ 2B, we have that r−1 =

⋃
{b−1 | b ∈ r}. The weak

composition (�) of two base relations b, b′ ∈ B is defined
as the strongest (i.e., smallest) relation r ∈ 2B that includes
b ◦ b′, or, formally, b � b′={b′′ ∈ B | b′′∩(b ◦ b′) 6= ∅},
where b ◦ b′={(x, y) ∈ D × D | ∃z ∈ D such that (x, z) ∈
b∧ (z, y) ∈ b′} is the (true) composition of b and b′. For all
r, r′ ∈ 2B, we have that r � r′ =

⋃
{b � b′ | b ∈ r, b′ ∈ r′}.

Finally, we assume that r � B = B for every r ∈ 2B.
As an illustration, consider the well known qualita-

tive temporal constraint language of Interval Algebra (IA)
introduced by Allen [3]. IA considers time intervals (as
its temporal entities) and the set of base relations B =
{eq, p, pi,m,mi, o, oi, s, si, d, di, f, fi}; each base relation
of IA represents a particular ordering of the four endpoints of
two intervals in the timeline, as demonstrated in Figure 1.
The base relation eq is the identity relation Id of IA. As

Y

precedes

meets

overlaps

starts

during

finishes

equals

p

m

o

s

d

f

eq

pi

mi

oi

si

di

fi

eq

X

X
Y

X

X

X

X

Y

Y

Y

Y

Y

X

Fig. 1: The base relations of IA

another illustration, the Region Connection Calculus (RCC)
is a first-order theory for representing and reasoning about
mereotopological information [10]. The domain D of RCC
comprises all possible non-empty regular subsets of some
topological space. These subsets do not have to be internally
connected and do not have a particular dimension, but are
commonly required to be regular closed [11]. Other notable
and well known qualitative spatial and temporal constraint
languages include Point Algebra [12], Cardinal Direction
Calculus [13], [14], and Block Algebra [15].

The weak composition operation �, the converse oper-
ation −1, the union operation ∪, the complement operation
{, and the total set of relations 2B along with the identity
relation Id of a qualitative constraint language, form an
algebraic structure (2B, Id, �,−1 ,{ ,∪) that can correspond
to a relation algebra in the sense of Tarski [16].

Proposition 1 ([17]). The languages of Point Algebra, Car-
dinal Direction Calculus, Interval Algebra, Block Algebra,
and RCC-8 are each a relation algebra with the algebraic
structure (2B, Id, �, −1, {, ∪).

In what follows, for a qualitative constraint language that
is a relation algebra with the algebraic structure (2B, Id, �,
−1, {, ∪), we will simply use the term relation algebra, as
the algebraic structure will always be of the same format.

Definition 1. A subclass of relations is a subset A ⊆ 2B that
contains the singleton relations of 2B and is closed under
converse, intersection, and weak composition.

The problem of representing and reasoning about quali-
tative information can be modeled as a qualitative constraint
network (QCN), defined in the following manner:

Definition 2. A qualitative constraint network (QCN) is a
tuple (V,C) where:
• V = {v1, . . . , vn} is a non-empty finite set of variables,

each representing an entity;
• and C is a mapping C : V × V → 2B such that
C(v, v) = {Id} for all v ∈ V and C(v, v′) =
(C(v′, v))−1 for all v, v′ ∈ V .

An example of a QCN of IA is shown in Figure 2a;
for simplicity, converse relations as well as Id loops are not
mentioned or shown in the figure.

Definition 3. Let N = (V,C) be a QCN, then:

x1 x2

x3x4

{p,m}

B

{d, s, si} {oi}
{oi,m}

{pi, eq}

(a) A satisfiable QCN N

x1

x2

x3

x4

(b) A solution σ of N

x1 x2

x3x4

{m}

{d}
{d} {oi}

{oi}

{eq}

(c) A scenario S of N

Fig. 2: Figurative examples of QCN terminology using IA

• a solution of N is a mapping σ : V → D such that
∀(u, v) ∈ V×V , ∃b ∈ C(u, v) such that (σ(u), σ(v)) ∈
b (see Figure 2b);

• N is satisfiable iff it admits a solution;
• a QCN is equivalent to N iff it admits the same set of

solutions as N ;
• a sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN

(V,C ′) such that C ′(u, v) ⊆ C(u, v) ∀u, v ∈ V ; if in
addition ∃u, v ∈ V such that C ′(u, v) ⊂ C(u, v), then
the notation N ′ ⊂ N is used;

• N is atomic iff ∀v, v′ ∈ V , C(v, v′) is a singleton
relation, i.e., a relation {b} with b ∈ B;

• a scenario S of N is an atomic satisfiable sub-QCN of
N (see Figure 2c);

• a base relation b ∈ C(v, v′) with v, v′ ∈ V is feasible
iff there exists a scenario S = (V,C ′) of N such that
C ′(v, v′) = {b};

• N is minimal iff ∀v, v′ ∈ V and ∀b ∈ C(v, v′), b is a
feasible base relation of N ;

• the constraint graph of N , denoted by G(N), is the
simple graph (V,E) where {u, v} ∈ E iff C(u, v) 6= B;

• N is trivially inconsistent iff ∃u, v ∈ V such that
C(u, v) = ∅;

• N is the empty QCN on V , denoted by ⊥V , iff
C(u, v) = ∅ for all u, v ∈ V .

Let us further introduce the following operations with re-
spect to QCNs:
• given a QCN N = (V,C) and v, v′ ∈ V , we have

that N[v,v′]/r with r ∈ 2B yields the QCN N ′ =
(V,C ′) defined by C ′(v, v′) = r, C ′(v′, v) = r−1

and C ′(y, w) = C(y, w) ∀(y, w) ∈ (V × V) \
{(v, v′), (v′, v)};

• given two QCNs N = (V,C) and N ′ = (V,C ′) on
the same set of variables V , we have that N ∪ N ′
yields the QCN N ′′ = (V,C ′′), where C ′′(v, v′) =
C(v, v′) ∪ C ′(v, v′) for all v, v′ ∈ V .

We recall the following definition of �G-consistency,
which, as noted in the introduction, is the basic local con-
sistency used in the literature for reasoning with QCNs:

Definition 4. Given a QCN N = (V,C) and a
graph G = (V,E), N is said to be �

G-consistent iff
∀{vi, vj}, {vi, vk}, {vk, vj} ∈ E we have that C(vi, vj) ⊆
C(vi, vk) � C(vk, vj).

We note that if G is complete, �G-consistency becomes
identical to �-consistency [18], and, hence, �-consistency is
a special case of �G-consistency. For any given QCN N =
(V,C) and graph G = (V,E), there exists a unique and
largest (w.r.t. ⊆) �G-consistent sub-QCN of N , denoted by
�
G(N), which is also equivalent to N [9].

Given a graph G = (V,E), a QCN N = (V,C) is
◆

G-consistent iff for every pair of variables {v, v′} ∈ E
and every base relation b ∈ C(v, v′), after instantiating
C(v, v′) with {b} and computing the closure of N under
�
G-consistency, the revised constraint C(v, v′) is always de-
fined by {b}. Formally, ◆G-consistency of a QCN is defined
as follows.

Definition 5. Given a QCN N = (V,C) and a graph G
= (V,E), N is said to be ◆G-consistent iff ∀{v, v′} ∈ E
and ∀b ∈ C(v, v′) we have that {b} = C ′(v, v′), where
(V,C ′) = �G(N[v,v′]/{b}).

If G is a complete graph, i.e., G = KV , we can eas-
ily verify that ◆G-consistency corresponds to �B-consistency
of the family of �f -consistencies studied in [9]. As with
�
G-consistency, for any given QCN N = (V,C) and graph
G = (V,E), there exists a unique and largest (w.r.t. ⊆)
◆

G-consistent sub-QCN of N , denoted by ◆

G(N), which
is also equivalent to N [9]. Interestingly, ◆G-consistency
can also be seen as a counterpart of singleton arc consis-
tency (SAC) [19] for QCNs. Given a QCN N = (V,C)
and a graph G = (V,E), for every b ∈ B and every
{v, v′} ∈ E, we will say that b is ◆G-consistent for C(v, v′)
iff {b} = C ′(v, v′), where (V,C ′) = �G(N[v,v′]/{b}).

We recall the following result, which suggests that
◆

G-consistency entails �G-consistency:

Proposition 2 ([4]). Let N = (V,C) be a QCN and G =
(V,E) a graph. IfN is ◆G-consistent, thenN is �G-consistent.

Finally, the following result shows the connection be-
tween ◆G-consistency and minimal QCNs:

Proposition 3 ([4]). Let A be a subclass of relations of a
relation algebra with the property that for any QCN N =
(V,C) over A there exists a graph G = (V,E) such that,
if �G(N) is not trivially inconsistent, then N is satisfiable.
Then, for any such N and G, we have that ∀{u, v} ∈ E and
∀b ∈ C ′(u, v), where (V,C ′) = ◆

G(N), the base relation b

Algorithm 1: `PSWPC∪(N , G)
in : A QCN N = (V,C), and a graph G = (V,E).
out : A sub-QCN of N .

1 begin
2 N ← PWPC(N , G);
3 Q ← E ∩ E(G(N));
4 while Q 6= ∅ do
5 {v, v′} ← Q.pop();
6 (V,C′) ← ⊥V ;
7 foreach b ∈ C(v, v′) do
8 (V,C′) ← (V,C′) ∪

PWPC(N[v,v′]/{b}, G, {{v, v′}});
9 C(v, v′) ← C′(v, v′);

10 if (V,C′) ⊂ N then
11 foreach {u, u′} ∈ E \ {v, v′} do
12 if C′(u, u′) ⊂ C(u, u′) then
13 C(u, u′)← C′(u, u′);
14 C(u′, u)← C′(u′, u);
15 Q ← Q ∪ {u, u′};

16 return N ;

Algorithm 2: PSWPC(N , G) cf. [4]
in : A QCN N = (V,C), and a graph G = (V,E).
out : A sub-QCN of N .

1 begin
2 N ← PWPC(N , G);
3 Q ← E;
4 while Q 6= ∅ do
5 {v, v′} ← Q.pop();
6 (V,C′) ← ⊥V ;
7 foreach b ∈ C(v, v′) do
8 (V,C′) ← (V,C′) ∪

PWPC(N[v,v′]/{b}, G, {{v, v′}});
9 if C′(v, v′) ⊂ C(v, v′) then

10 C(v, v′) ← C′(v, v′);
11 C(v′, v) ← C′(v′, v);
12 Q ← E;

13 return N ;

is a feasible base relation of N .

As a note, an interesting case where the property de-
scribed in Proposition 3 can be satisfied, is the case where
the considered subclass of relations is obtained from a
relation algebra that has patchwork [20] for �G-consistent and
not trivially inconsistent QCNs defined over that subclass,
where G = (V,E) is any chordal graph such that G(N)
⊆ G for a given QCN N = (V,C). As a matter of fact,
patchwork holds for all the qualitative constraint languages
mentioned in Proposition 1 [21]. Of course, in general, the
property may be satisfied in other cases as well; for instance,
patchwork may not hold, but the overall property may hold
for complete graphs (and, hence, when �-consistency is
used) or when certain restrictions in the structure of the
constraint graph of a QCN are imposed (a trivial case being
restricting a constraint graph to being a tree).

Algorithm 3: PWPC(N , G, e← ∅) [22]
in : A QCN N = (V,C), a graph G = (V,E), and

optionally a set e such that e ⊆ E.
out : A sub-QCN of N .

1 begin
2 Q ← (e if e 6= ∅ else E);
3 while Q 6= ∅ do
4 {v, v′} ← Q.pop();
5 foreach v′′ ∈ V | {v, v′′}, {v′, v′′} ∈ E do
6 r ← C(v, v′′) ∩ (C(v, v′) � C(v′, v′′));
7 if r ⊂ C(v, v′′) then
8 C(v, v′′) ← r;
9 C(v′′, v) ← r−1;

10 Q ← Q ∪ {{v, v′′}};
11 r ← C(v′′, v′) ∩ (C(v′′, v) � C(v, v′));
12 if r ⊂ C(v′′, v′) then
13 C(v′′, v′) ← r;
14 C(v′, v′′) ← r−1;
15 Q ← Q ∪ {{v′′, v′}};

16 return N ;

3. Efficiently Approximating ◆G-Consistency

In this section, we propose an algorithm to efficiently ap-
proximate ◆G-consistency for a given QCN N = (V,C) with
respect to a graph G = (V,E), presented in Algorithm 1 and
called `PSWPC∪ (which stands for lazy ∪-collective partial
singleton weak path consistency).

A key feature of this algorithm is that it collectively
eliminates certain unfeasible base relations by exploiting the
singleton checks that are typically performed by an algo-
rithm for enforcing ◆G-consistency, such as the one presented
in Algorithm 2 and called PSWPC. The operations involved
in the singleton checks themselves are based on the use
of an algorithm for enforcing �G-consistency, such as the
one presented in Algorithm 3 and called PWPC (which
stands for partial weak path consistency), and are in line
with Definition 5 of ◆G-consistency. We refer to the exploited
singleton checks that are used to collectively eliminate cer-
tain unfeasible base relations as collective singleton checks
and we define them as follows. Given a QCN N = (V,C)
and a graph G = (V,E), a collective singleton check for a
constraint C(v, v′) with {v, v′} ∈ E consists of computing
the QCN N ′ =

⋃
{�G(N[v,v′]/{b}) | b ∈ C(v, v′)} and check-

ing if N ′ ⊂ N . Simply put, a collective singleton check
involves successively instantiating a given constraint of a
QCN with each of its base relations, computing and unifying
the corresponding �G-consistent QCNs, and checking if there
exist stronger constraints in the resulting QCN than the
respective ones in the original QCN so that the latter can be
updated accordingly.

Another feature of our algorithm is that during its execu-
tion it takes a lazy (non-exhaustive) approach and performs a
collective singleton check only for a constraint that has been
revised and put into the queue due to a previous collective
singleton check for some other constraint. As we will see
in what follows, this behavior leads to a non-unique closure

being obtained in general for a given input QCN.
Further, as opposed to PSWPC, our algorithm initially

takes into account only non-universal relations of �G(N) for
a QCN N = (V,C) and a graph G = (V,E).

In all other aspects, algorithm `PSWPC∪ can be
viewed as being similar to the one for efficiently achiev-
ing ◆

G-consistency, namely, PSWPC, which in itself is
an advancement1 of the respective algorithm for enforc-
ing ◆

G-consistency that is presented in [4], and as a non-
exhaustive variant of the algorithm for enforcing a stronger
notion than ◆G-consistency that recently appeared in [26].

We prove the following main result regarding algorithm
`PSWPC∪, which captures its major theoretical properties:

Theorem 1. Given a QCNN = (V,C) of a relation algebra
and a graph G = (V,E), algorithm `PSWPC∪ terminates
and returns a sub-QCN N ′ of N such that:
• N ′ is �G-consistent;
• N ′ is equivalent to N ;
• N ′ is non-unique;
• N ′ is incomparable to ◆G(N);
• N ′ ⊆ �G(N).

Proof. In line 2 of the algorithm, the original QCN N is
made �G-consistent via a call to function PWPC; let N ′
= (V,C ′) = �

G(N). We need to show that the rest of the
refinement operations in the algorithm entail �G-consistency
as well. By utilizing the incremental functionality of al-
gorithm PWPC (see [27, Section 3]), in lines 7–8 of the
algorithm, for a pair of variables {u, u′} ∈ E a set of
�
G-consistent sub-QCNs of N ′ is created, namely, the set
S = {�G(N ′[u,u′]/{b}) | b ∈ C ′(u, u′)}. Then, in those
same lines, the operation

⋃
S takes place. We show that⋃

S is �G-consistent. Clearly, if all the QCNs in S are
trivially inconsistent, then

⋃
S is �G-consistent. Thus, let us

assume that there exist k not trivially inconsistent QCNs
in S, with k ≤ |C ′(u, u′)|, and hence let N1 = (V,C1),
N2 = (V,C2), . . ., Nk = (V,Ck) be all the k different
�
G-consistent and not trivially inconsistent QCNs in S. We
need to show thatN ∗ = (V,C∗) =

⋃k
i=1Ni is �G-consistent.

Let us consider three variables v, v′, v′′ ∈ V such that
{v, v′}, {v, v′′}, {v′, v′′} ∈ E, and a base relation b such that
b ∈ C∗(v, v′). Then, we have that b ∈ Ci(v, v

′) for some
i ∈ {1, 2, . . . , k}. Since Ni is �G-consistent, we have that
Ci(v, v

′) ⊆ Ci(v, v
′′) � Ci(v

′′, v′) and, as it is not trivially
inconsistent, there exist base relations b′ ∈ Ci(v, v

′′) and
b′′ ∈ Ci(v

′′, v′) such that b ∈ b′ � b′′. Therefore, we have

1We use a queue in PSWPC that is initialized with all of the edges
of a given graph G, which correspond to constraints of a given QCN, and
that is also filled with all of the aforementioned edges during execution
whenever any of those constraints is revised, i.e., whenever a base relation
is removed. This technique is equivalent to executing a break statement
in the algorithm of [4] whenever a singleton check fails and, hence, a
constraint is revised, forcing the inner loop in that algorithm to stop and
using the outer loop to initiate singleton checks in a fresh QCN. We have
found this to work much better in practice, cutting down on the number of
constraint checks performed by ∼ 20%. Further, using a queue allows for
prioritizing certain edges, a strategy which is in line with similar techniques
used in the algorithm for enforcing �G-consistency [23], [24], [25], but this
is something that we have not yet explored and retain for future work.

that b′ ∈ C∗(v, v′′) and b′′ ∈ C∗(v′′, v′). It follows that
b ∈ C∗(v, v′′) � C∗(v′′, v′) and that N ∗ is �G-consistent.
This proves that the algorithm terminates and returns a
�
G-consistent sub-QCN of N .

Let N ′ = (V,C ′) = �
G(N) (line 2 of the algorithm).

By equivalence of �G-consistency N ′ is equivalent to N .
Further, let b ∈ C ′(u, u′) with {u, u′} ∈ E be a base
relation. In lines 9–14 of the algorithm, the base relation b
is eliminated only if ∃{v, v′} ∈ E such that b 6∈ C ′′(u, u′),
where (V,C ′′) =

⋃
{�G(N ′[v,v′]/{b′}) | b′ ∈ C ′(v, v′)}.

We need to show that b is an unfeasible base relation
of N ′. Let us suppose that b is a feasible base relation.
Then, by definition of feasible base relations there exists a
scenario S = (V,Ca) of N ′ such that Ca(u, u′) = {b}.
Further, it holds that �G(S) = S, as S being an atomic
and satisfiable QCN is minimal and, hence, necessarily
�
G-consistent. Thus, it follows that ∀{v, v′} ∈ E we have that
b ∈ C ′′′(u, u′), where (V,C ′′′) = �G(N ′[v,v′]/Ca(v,v′)), as S
⊆ N ′[v,v′]/Ca(v,v′) and, hence, �G(S) ⊆ �G(N ′[v,v′]/Ca(v,v′))
by monotonicity of �G-consistency. As S ⊆ N ′, it follows
that ∀{v, v′} ∈ E we have that Ca(v, v′) ⊆ C ′(v, v′)
and, hence, that ∃b′ ∈ C ′(v, v′) such that b ∈ C∗(u, u′),
where (V,C∗) = �

G(N ′[v,v′]/{b′}), by simply considering
the base relation b′ ∈ C ′(v, v′) to be the one of the singleton
relation Ca(v, v′) of S. Therefore, by definition of operation
∪ with respect to QCNs we can derive that ∀{v, v′} ∈ E
it holds that b ∈ C ′′(u, u′), which concludes our proof by
contraposition. This proves that the algorithm terminates and
returns a sub-QCN of N that is equivalent to N .

In what follows, we give an intuition of why the order
in which the constraints are processed ultimately affects the
output of the algorithm. The validity of the result itself
is supported by a counterexample, which is impossible to
present here due to space limitations. Let N ′ = (V,C ′)
= �

G(N) (line 2 of the algorithm). Further, consider two
different pairs of variables {v, v′}, {u, u′} ∈ E, and letN uu′

= (V,Cuu′
) =

⋃
{�G(N ′[u,u′]/{b}) | b ∈ C ′(u, u′)} andN vv′

= (V,Cvv′
) =

⋃
{�G(N ′[v,v′]/{b}) | b ∈ C ′(v, v′)}. Then,

it is entirely possible that there exist two different pairs of
variables {y, y′}, {w,w′} ∈ E \ {{v, v′}, {u, u′}} such that
Cuu′

(y, y′) ⊂ Cvv′
(y, y′) and Cuu′

(w,w′) ⊃ Cvv′
(w,w′).

(In fact, such an example can be constructed by considering
two copies of the QCN of Figure 4 inside a larger QCN.) It
follows that N uu′ 6⊆ N vv′

and N vv′ 6⊆ N uu′
. Since both

N uu′
and N vv′

are sub-QCNs of N ′, but incomparable to
each other even if we only take into account constraints
between pairs of variables other than {v, v′} and {u, u′}, this
result suggests that different constraints may be revised and
put into the queue of the algorithm depending on the order
in which N uu′

and N vv′
are calculated. As the algorithm

takes a lazy (non-exhaustive) approach during its execution
and performs a collective singleton check (in lines 7–14)
only for a constraint that has been revised and put into the
queue due to a previous collective singleton check for some
other constraint, the order in which these collective singleton
checks are performed is important and can lead to different
outputs for the same input QCN.

x1 x2

x3 x4

x5

{di,m}

{m, si}

{o}

{pi, p, si, f} {d}

{d, o}

{=, d, fi} {d, di}

B B

(a) A QCN N = (V,C) of IA

x1 x2

x3 x4

x5

{di,m}

{m, si}

{o}

{pi, p, si, f} {d}

{d, o}

{=, d, fi} {d, di}

B B \ {mi}

(b) The QCN ◆

G(N)

Fig. 3: Given the QCN N = (V,C) of Figure 3a and the graph G that results by removing the edge {x1, x5} from the
complete graph on V , algorithm `PSWPC∪ is unable to eliminate the base relation mi in C(x2, x5) for any possible order
in which the constraints are processed; however, mi is not ◆G-consistent for C(x2, x5), as shown in Figure 3b

x1 x2

x3x4

{p, d,mi}

{p, pi}
{s, f} {oi, fi}

{o, oi}

{m,mi}

Fig. 4: A ◆

G-consistent QCN N

Consider the QCN of Figure 3a and let G be the
graph that results by removing the edge {x1, x5} from the
complete graph on the set of variables of the QCN. Given
that QCN and the graph G as input, algorithm `PSWPC∪

is unable to eliminate any base relation in the QCN for
any possible order in which the constraints are processed.
However, the QCN is not ◆G-consistent as shown in Fig-
ure 3b. Indeed, the base relation mi is not ◆G-consistent
for the constraint between variables x2 and x5. Therefore,
◆

G-consistency is able to eliminate more base relations than
our algorithm in this case. Next, consider the ◆G-consistent
QCN of Figure 4 with respect to the complete graph G on
the set of variables of the QCN. In this case, our algorithm
is able to eliminate the base relation d for the constraint
between variables x1 and x2 for any possible order in which
the constraints are processed. This suggests that given a
QCN N = (V,C) and a graph G = (V,E), algorithm
`PSWPC∪ can produce an output sub-QCN N ′ of N such
that ◆G(N) 6⊆ N ′ and N ′ 6⊆ ◆

G(N). This proves that the
algorithm terminates and returns a sub-QCN N ′ of N that
is, in general, incomparable to ◆G(N).

We have already established that algorithm `PSWPC∪

terminates and returns a �G-consistent sub-QCN N ′ of N in
the first part of this proof. By dominance of �G-consistency
we have that �G(N) is the largest (w.r.t. ⊆) �G-consistent sub-

QCN of N . Therefore, it follows that N ′ ⊆ �G(N).

Time complexity analysis of `PSWPC∪. Given a
QCN N = (V,C) and a graph G = (V,E), we have that al-
gorithm `PSWPC∪ terminates in O(∆·|E|3·B3) time, where
∆ is the maximum vertex degree of graph G. In particular,
algorithm PWC is executed O(|E| · |B|) times every time
a constraint is revised, and such a constraint revision can
occur O(|E|·|B|) times. Further, we note that the unification
operations that take place in line 8 of the algorithm are
handled in O(|E| · |B|) time in total, as we keep track of
the constraints that are revised by algorithm PWC and we
can have a total of O(|E| · |B|) constraint revisions. The
same argument holds for the operations that take place in
lines 9–14 of the algorithm. (These details are not included
in the algorithm to allow for a more compact representation.)
Now, by taking into account the worst-case time complexity
of algorithm PWC, which is O(∆ · |E| · B) [22], a worst-
case time complexity of O(∆ · |E|3 · B3) can be obtained
for algorithm `PSWPC∪. Notably, this is also the worst-case
time complexity of algorithm PSWPC [4], however, in the
next section we demonstrate that `PSWPC∪ significantly
outperforms PSWPC in practice.

4. Experimental Evaluation

We evaluated the performance of an implementation of
algorithm `PSWPC∪ against an implementation of the algo-
rithm for enforcing partial ◆G-consistency that was presented
here, viz., PSWPC, with a varied dataset of QCNs of IA.

Technical specifications. The evaluation was carried
out on a computer with an Intel Core i5-6200U processor,
8 GB of RAM, and the Xenial Xerus x86 64 OS (Ubuntu
Linux). All algorithms were coded in Python and run using
the PyPy interpreter under version 5.1.2, which implements
Python 2.7.10. Only one CPU core was used.

Tab. 1: Evaluation of the computational effort of algorithms PSWPC and `PSWPC∪

(a) Evaluation with random IA networks of model A(n = 70, l = 6.5, d) [28]

min µ max σ

d PSWPC `PSWPC∪ PSWPC `PSWPC∪ PSWPC `PSWPC∪ PSWPC `PSWPC∪

7 0.00s
1

0.00s
1

2.66s
10k

0.38s
2k

7.40s
21k

1.22s
4k

1.23s
4k

0.20s
528

8 0.00s
1

0.00s
1

7.88s
18k

1.45s
4k

59.82s
73k

17.91s
16k

8.55s
12k

2.16s
3k

9 0.01s
1

0.04s
1

23.56s
37k

5.04s
8k

132.00s
172k

73.33s
75k

27.67s
30k

10.36s
11k

10 0.00s
1

0.00s
1

43.56s
36k

8.86s
9k

343.99s
205k

96.71s
90k

64.98s
52k

18.60s
16k

11 0.00s
1

0.00s
1

6.96s
3k

1.53s
462

126.19s
151k

16.45s
9k

16.52s
15k

3.05s
2k

12 0.00s
1

0.00s
1

1.63s
121

0.43s
39

14.16s
2k

6.05s
623

2.75s
205

0.94s
89

(b) Evaluation with structured random IA networks of model BA(n = 150,m) [6]

min µ max σ

m PSWPC `PSWPC∪ PSWPC `PSWPC∪ PSWPC `PSWPC∪ PSWPC `PSWPC∪

2 0.00s
1

0.00s
1

0.60s
5k

0.11s
741

2.21s
12k

0.49s
3k

0.30s
2k

0.06s
266

3 0.00s
1

0.00s
1

11.82s
19k

2.33s
4k

73.86s
81k

18.76s
23k

11.28s
11k

2.91s
4k

4 0.00s
1

0.00s
1

115.37s
57k

30.92s
17k

1423.06s
552k

575.15s
238k

205.92s
97k

73.56s
34k

5 0.00s
1

0.00s
1

0.94s
24

0.04s
2

24.28s
585

1.44s
42

3.91s
96

0.17s
6

Tab. 2: Evaluation of the pruning capability of algorithm
`PSWPC∪ compared to that of PSWPC; a percentage x%
denotes that `PSWPC∪ removed x% more base relations

(a) Evaluation with the IA networks used in Table 1a

d min µ max med #‖

7 −2.97% −0.07% 0% 0% 0

8 −6.18% −0.58% 0% −0.09% 5

9 −36.99% −3.59% 0.03% −1.58% 14

10 −95.01% −10.57% 0.18% 0% 10

11 −95.49% −3.21% 0% 0% 0

12 0% 0% 0% 0% 0

(b) Evaluation with the IA networks used in Table 1b

m min µ max med #‖

2 0% 0% 0% 0% 0

3 −3.94% −0.22% 0% 0% 4

4 −74.41% −1.36% 0.03% 0% 23

5 0% 0% 0% 0% 0

Dataset. We employed models A(n, l, d) [28] and
BA(n,m) [6] to generate random QCNs of IA. In particular,
A(n, l, d) can generate random QCNs of n variables with
an average number l of base relations per non-universal
constraint and an average degree d for the respective con-
straint graphs, and BA(n,m) can generate random QCNs of
n variables with an average number |B|/2 of base relations
per non-universal constraint and by use of a preferential
attachment [29] value m for the respective constraint graphs.

Using model A(n, l, d), we generated 100 QCNs of IA of
n = 70 variables with l = 6.5 base relations per non-
universal constraint on average for all values of d ranging
from 7 to 12 with a step of 1, as the phase transition
region [30] for this model is observed for 8 ≤ d ≤ 11 [28].
Using model BA(n,m), we generated 100 QCNs of IA of
n = 150 variables for all values of m ranging from 2 to
5 with a step of 1, as the phase transition region for this
model is observed for m ≈ 3 or 4 [31]. Finally, regarding
the graphs that were given as input to our algorithms, the
maximum cardinality search algorithm [32] was used to
obtain triangulations of the constraint graphs of our QCNs.
The choice of such chordal graphs was reasonable given
their extensive use in the recent literature, as reviewed in [7].

Measures. The first measure considers the number of
constraint checks per base relation removals performed by
an algorithm for meeting its objective. Given a QCN N
= (V,C) and three variables vi, vk, vj ∈ V , a constraint
check occurs when we compute the relation r = C(vi, vj)
∩ (C(vi, vk) � C(vk, vj)) and check if r ⊂ C(vi, vj), so that
we can propagate it if that condition is satisfied. The second
measure concerns the CPU time and is naturally correlated
with the first one. The third measure compares the pruning
capability between the evaluated algorithms, and, finally, the
fourth measure keeps track of the number of cases where
the algorithms yield incomparable outputs; this measure in
particular is denoted by symbol #‖ in Table 2.

Results. The results of our experimental evalualation are
detailed in Tables 1 and 2, where a fraction x

y in Table 1 de-

notes that an approach required x seconds of CPU time and
performed y constraint checks per base relation removals
on average per dataset of networks during its operation. In
short, with respect to computational effort, Table 1 shows
that `PSWPC∪ had a significant advantage over PSWPC
in all cases and, in particular, that `PSWPC∪ was up
to 5 times faster than PSWPC on average for the more
difficult instances; and with respect to pruning capability,
Table 2 shows that, in most cases, `PSWPC∪ performed
almost the same pruning in the labels of a given QCN as
PSWPC. Notably, PSWPC unveiled 6 more inconsistencies
than `PSWPC∪ in a total of 1 000 QCNs, in particular,
3 more for A(70, 6.5, 10) and A(70, 6.5, 11) respectively.
Further, as demonstrated by measure #‖, there were 56 cases
of incomparable outputs. Finally, we note that the order in
which the constraints were processed was random for both
algorithms. (The queue data structure in both algorithms
was implemented using sets, as suggested by their compact
representations in Algorithms 1 and 2; sets have no order.)

5. Conclusion and Future Work

In this paper, we proposed a lazy algorithm that restricts
the singleton checks associated with partial ◆G-consistency
to constraints that are likely to lead to the removal of a
base relation upon their propagation. A key feature of this
algorithm is that it collectively eliminates certain unfeasi-
ble base relations by exploiting singleton checks. Further,
we studied certain theoretical properties of this algorithm
and demonstrated its efficiency against the state-of-the-art
algorithm for enforcing partial ◆G-consistency, with respect
to both computational effort and pruning capability, via
an experimental evaluation with random Interval Algebra
networks from the phase transition region of two separate
models. For future work we would like to explore queueing
strategies that will allow our algorithm reach a fixed point
faster and, possibly, even with improved pruning capability.
These strategies could be coupled with certain criteria and/or
a cost function that will prioritize constraints that may be
propagated more efficiently based on their neighbourhood,
their restrictiveness, or a combination of both.

References

[1] M. Bhatt, H. W. Guesgen, S. Wölfl, and S. M. Hazarika, “Qualitative
Spatial and Temporal Reasoning: Emerging Applications, Trends, and
Directions,” Spatial Cognition & Computation, vol. 11, pp. 1–14,
2011.

[2] G. Ligozat and J. Renz, “What Is a Qualitative Calculus? A General
Framework,” in PRICAI, 2004.

[3] J. F. Allen, “Maintaining Knowledge about Temporal Intervals,”
Commun. ACM, vol. 26, pp. 832–843, 1983.

[4] N. Amaneddine, J.-F. Condotta, and M. Sioutis, “Efficient Approach
to Solve the Minimal Labeling Problem of Temporal and Spatial
Qualitative Constraints,” in IJCAI, 2013.

[5] J. Huang, J. J. Li, and J. Renz, “Decomposition and tractability in
qualitative spatial and temporal reasoning,” Artif. Intell., vol. 195, pp.
140–164, 2013.

[6] M. Sioutis, J. Condotta, and M. Koubarakis, “An Efficient Approach
for Tackling Large Real World Qualitative Spatial Networks,” Int. J.
Artif. Intell. Tools, vol. 25, pp. 1–33, 2016.

[7] M. Sioutis, Y. Salhi, and J.-F. Condotta, “Studying the use and effect
of graph decomposition in qualitative spatial and temporal reasoning,”
Knowl. Eng. Rev., vol. 32, p. e4, 2016.

[8] Z. Long, M. Sioutis, and S. Li, “Efficient Path Consistency Algorithm
for Large Qualitative Constraint Networks,” in IJCAI, 2016.

[9] J.-F. Condotta and C. Lecoutre, “A Class of df-Consistencies for
Qualitative Constraint Networks,” in KR, 2010.

[10] D. A. Randell, Z. Cui, and A. Cohn, “A Spatial Logic Based on
Regions & Connection,” in KR, 1992.

[11] J. Renz, “A Canonical Model of the Region Connection Calculus,”
J. Appl. Non-Classical Logics, vol. 12, pp. 469–494, 2002.

[12] M. B. Vilain and H. A. Kautz, “Constraint Propagation Algorithms
for Temporal Reasoning,” in AAAI, 1986.

[13] G. Ligozat, “Reasoning about cardinal directions,” J. Vis. Lang.
Comput., vol. 9, pp. 23–44, 1998.

[14] A. U. Frank, “Qualitative Spatial Reasoning with Cardinal Direc-
tions,” in ÖGAI, 1991.

[15] P. Balbiani, J.-F. Condotta, and L. F. del Cerro, “Tractability Results
in the Block Algebra,” J. Log. Comput., vol. 12, pp. 885–909, 2002.

[16] A. Tarski, “On the calculus of relations,” J. Symb. Log., vol. 6, pp.
73–89, 1941.

[17] F. Dylla, T. Mossakowski, T. Schneider, and D. Wolter, “Algebraic
Properties of Qualitative Spatio-Temporal Calculi,” in COSIT, 2013.

[18] J. Renz and G. Ligozat, “Weak Composition for Qualitative Spatial
and Temporal Reasoning,” in CP, 2005.

[19] R. Debruyne and C. Bessière, “Some Practicable Filtering Techniques
for the Constraint Satisfaction Problem,” in IJCAI, 1997.

[20] C. Lutz and M. Milicic, “A Tableau Algorithm for DLs with Concrete
Domains and GCIs,” J. Autom. Reasoning, vol. 38, pp. 227–259, 2007.

[21] J. Huang, “Compactness and its implications for qualitative spatial
and temporal reasoning,” in KR, 2012.

[22] A. Chmeiss and J. Condotta, “Consistency of Triangulated Temporal
Qualitative Constraint Networks,” in ICTAI, 2011.

[23] P. van Beek and D. W. Manchak, “The design and experimental
analysis of algorithms for temporal reasoning,” J. Artif. Intell. Res.,
vol. 4, pp. 1–18, 1996.

[24] J. Renz and B. Nebel, “Efficient Methods for Qualitative Spatial
Reasoning,” J. Artif. Intell. Res., vol. 15, pp. 289–318, 2001.

[25] P. B. Ladkin and A. Reinefeld, “Fast Algebraic Methods for Interval
Constraint Problems,” Ann. Math. Artif. Intell., vol. 19, pp. 383–411,
1997.

[26] M. Sioutis, A. Paparrizou, and J.-F. Condotta, “Collective Singleton-
based Local Consistency for Qualitative Constraint Networks,” in
TIME, 2017, in press.

[27] A. Gerevini, “Incremental qualitative temporal reasoning: Algorithms
for the Point Algebra and the ORD-Horn class,” Artif. Intell., vol. 166,
pp. 37–80, 2005.

[28] B. Nebel, “Solving Hard Qualitative Temporal Reasoning Problems:
Evaluating the Efficiency of Using the ORD-Horn Class,” Constraints,
vol. 1, pp. 175–190, 1997.

[29] A.-L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, pp. 509–512, 1999.

[30] P. C. Cheeseman, B. Kanefsky, and W. M. Taylor, “Where the Really
Hard Problems Are,” in IJCAI, 1991.

[31] M. Sioutis, “Algorithmic Contributions to Qualitative Constraint-
based Spatial and Temporal Reasoning,” Ph.D. dissertation, Université
d’Artois, 2017.

[32] R. E. Tarjan and M. Yannakakis, “Simple Linear-Time Algorithms
to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and
Selectively Reduce Acyclic Hypergraphs,” SIAM J. Comput., vol. 13,
pp. 566–579, 1984.

	Introduction
	Preliminaries
	Efficiently Approximating bold0mu mumu GGGGGG-Consistency
	Experimental Evaluation
	Conclusion and Future Work
	References

