
Refining Constraint Weighting
Hugues Wattez∗†, Christophe Lecoutre∗†, Anastasia Paparrizou∗, Sébastien Tabary∗†

∗CRIL, CNRS UMR 8188, Lens, France
†Université d’Artois, Lens, France

Email: {wattez,lecoutre,paparrizou,tabary}@cril.fr

Abstract—Backtracking search is a complete approach that
is traditionally used to solve instances modeled as constraint
satisfaction problems. The space explored during search de-
pends dramatically on the order that variables are instantiated.
Considering that a perfect variable ordering might result to
a backtrack-free search (i.e., finding backdoors, cycle cutsets),
finding heuristics for variable ordering has always attracted
research interest. For fifteen years, constraint weighting has been
shown to be a successful approach for guiding backtrack search.
In this paper, we show how the popular generic variable ordering
heuristic dom/wdeg can be made more robust by taking finer
information at each conflict: the “current” arity of the failing
constraint as well as the size of the current domains of the
variables involved in that constraint. Our experimental results
show the practical interest of this refined variant of constraint
weighting.

Index Terms—constraint satisfaction, search heuristics, con-
straint weighting

I. INTRODUCTION

Backtrack search remains a classical approach for solving
instances of the Constraint Satisfaction Problem (CSP). It is
based on a depth-first exploration, which is conducted by
instantiating variables in sequence and backtracking when
dead-ends occur. For efficiently exploring the search space, a
property (called local consistency) is enforced at each step of
the search so as to filter the domains of the variables; typically
most of the constraints guarantees the property known as
(generalized) arc consistency.

The order in which variables are chosen during the depth-
first traversal of the search space is decided by a variable
ordering heuristic H . At each internal node of the search tree
built by the backtrack search algorithm, the next variable x is
selected by H , and a value is assigned to x according to a value
ordering heuristic, which can simply be the lexicographic
order over the domain of x. Choosing the right variable
ordering heuristic for a given constraint network is a key issue
in the design of constraint solvers, since different heuristics
can lead to drastically different search trees.

For a long time, the most popular (variable ordering)
heuristic was dom [8] that selects variables in sequence of
increasing size of domain. However, fifteen years ago, modern
adaptive heuristics were introduced: they take into account
information collected along the part of the search space (tree)
already explored. The two first proposed generic adaptive
heuristics are impact [13] and wdeg [2]. The former relies
on a measure of the effect of any assignment, and the latter

associates a counter with each constraint (and indirectly, with
each variable) indicating how many times any constraint led
to a domain wipe-out. Counting-based heuristics [12] and
activity-based search [10] are two more recent additional
adaptive techniques for guiding search.

Currently, the constraint weighting variant dom/wdeg that
additionally takes domain sizes into account, is considered
as the most robust generic heuristic, as it is used by default
in many constraint solvers (e.g., Choco). It certainly remains
the state-of-the-art (as a generic heuristic) even if several
attempts were made to further improve it. A first idea [5]
was to learn weighting information during an initial phase
in which variables are chosen at random and the search is
repeatedly run to a fixed cutoff. This random probing method
was intended to start the “real” search better informed after
gathering information from different parts of the search space.
Some other variants were also studied in [1]. By noting
the constraint responsible of each value deletion (a kind of
explanation), it is possible to implement different weighting
strategies. For example, whenever there is a domain wipe-out
on a variable x while propagating constraint c, the weight
of every constraint responsible for the removal of a value of
x is incremented. Another variant uses an aging mechanism,
as in some SAT solvers, which periodically divides the value
of all weights by a constant, thereby giving greater impor-
tance to conflicts discovered recently. Surprisingly, the “basic”
dom/wdeg heuristic remained very competitive compared to
such attractive variants.

A specific variant of constraint weighting was shown to
be successful for job-shop scheduling problems [6]: by rea-
soning from the domain sizes associated with the variables
denoting the starting times of tasks, the proposed weighting-
based heuristic was shown to be better informed and to yield
particularly strong performance for scheduling. Because it was
observed that the efficiency of dom/wdeg may deteriorate
when problem instances contain many constraints of large
arity (because it loses its ability to discriminate variables),
a possible approach [9] is to weight a conflict set rather than
the entire scope of a failed constraint. Although this approach
is stimulating, it is unfortunately not generic since one has
to conceive a specific procedure for each type of (global)
constraints.

More recently, a new competitive heuristic [7], called CHS,
has been proposed by exploiting the history of search failures.
Techniques coming from reinforcement learning are used to

make an exponential recency weighted average in order to es-
timate the evolution of the hardness of constraints throughout
the search. In brief, this heuristic gives a higher reward to
constraints that fail regularly over short periods.

The paper is organized as follows. After some preliminaries,
we introduce classical variable ordering heuristics. Next, we
show how to refine constraint weighting, and demonstrate the
practical interest of our approach. Finally, we conclude.

II. PRELIMINARIES

A constraint network P is composed of a finite set of
variables X , and a finite set of constraints C. Each variable
x must be assigned a value from its current domain, denoted
by dom(x); the initial domain of x is denoted by dominit(x).
Each constraint c represents a mathematical relation over an
ordered set of variables, called the scope of c, and denoted
by scp(c). The arity of a constraint c is the size of its scope.
The degree of a variable x is the number of constraints of C
involving x.

A solution to P is the assignment of a value to each variable
of X such that all constraints of C are satisfied. A constraint
network is satisfiable iff it admits at least one solution. The
Constraint Satisfaction Problem (CSP) is to determine whether
a given constraint network is satisfiable, or not. A classical
approach for solving this NP-complete problem is to perform
a depth-first search with backtracking, while enforcing a prop-
erty called (generalized) arc consistency [11] after each taken
decision. This procedure, called Maintaining Arc Consistency
(MAC) [14], builds a binary search tree T : for each internal
node ν of T , a pair (x, v) is selected where x is a variable and
v is a value in dom(x). Then, two cases are considered: the
assignment x = v (positive decision) and the refutation x 6= v
(negative decision). In this paper, we shall be interested in the
future variables of a constraint c, denoted by fut(c), which
are the variables at the current node of the search tree that
have not been explicitly assigned by MAC.

Backtrack search algorithms that rely on deterministic vari-
able ordering heuristics have been shown to exhibit heavy-
tailed behavior on both random and structured CSP instances
[4]. This issue can be alleviated using randomization and
restart strategies, which respectively incorporate some random
choices in the search process, and iteratively restart the com-
putation from the beginning, with a different variable ordering.

III. VARIABLE ORDERING HEURISTICS

We provide in this section a quick overview of popular
general-purpose search heuristics. The simple variable order-
ing heuristic dom [8], which selects variables in sequence of
increasing size of domain, has long been considered as the
most robust backtrack search heuristic. However, fifteen years
ago, modern adaptive heuristics were introduced: they take
into account information collected along the part of the search
space (tree) already explored.

In this paper, we shall mainly focus our attention to the
very popular heuristic wdeg, and its variant dom/wdeg. As

a baseline, we shall also consider impact and activity,
which are defined as follows:
• impact, or IBS (Impact-Based Search) selects in prior-

ity the variable with the highest impact. The impact of
a variable x gives a measure about the importance of x
in reducing the search space [13]. The size of the search
space of P is the product of all current domain sizes:

size(P) =
∏
x∈X
|dom(x)|

The impact I of a variable assignment x = a on P is
computed as follows:

I(x = a) = 1− size(P ′)
size(P)

where P ′ = AC(P |x=a) denotes the CN obtained
after assigning x to a and enforcing (generalized) arc
consistency. Note that if P ′ leads to a failure, then
I(x = a) = 1. It is easy to see that this heuristic can
be used for value selection as well.

• activity, or ABS (Activity-Based Search) selects in
priority the variable with the highest activity. The activity
of a variable x is roughly measured by the number of
times the domain of x is reduced during search [10]. This
heuristic is motivated by the key role of propagation in
constraint programming and relies on a decaying sum to
forget the oldest statistics progressively. The activities are
initialized by making random probing in the search space.

• CHS (Conflict-History Search), selects in priority vari-
ables appearing in recent failures. All failures are regis-
tered with a timestamp. More precisely, CHS maintains
for each constraint c, a score q(c) and updates it at every
domain wipeout with an exponential recency weighted
average:

q(c) = (1− α)× q(c) + α× r(c)

where α = 0.4 (decreasing as time goes by) and r(c)
is the reward gives when a domain wipeout occurred.
Reward is higher when the constraint entered frequently
in conflict :

r(c) =
1

#Conflicts− Conflict(c) + 1

#Conflicts is the total number of conflicts and
Conflict(c) stores the last #Conflicts value where
c led to a failure. The conflict history score (chv) of a
variable x which will be used in selecting the branching
variable is given by:

chv(x) =

∑
c∈C : x∈scp(c)∧|fut(c)|>1 q(c) + δ

|dom(x)|
where δ is a positive real number close to 0 that avoid
random selection at the beginning of search. Thus, the
branching will be oriented according to the degree of the
variables.

To introduce wdeg and dom/wdeg, we need to describe
the way constraint propagation is run each time a decision is
taken by the backtrack search algorithm. Algorithm 1 describes

Algorithm 1: propagate(P = (X , C): CN): Boolean

1 Q← C
2 while Q 6= ∅ do
3 pick and delete c from Q
4 Xevt ← filter(c) // Xevt is the subset

of scp(c) with reduced domains
5 if ∃x ∈ Xevt | dom(x) = ∅ then
6 incrementWeightVER(c)
7 return false // global inconsistency

8 foreach c′ ∈ C | c′ 6= c and Xevt ∩ scp(c′) 6= ∅ do
9 Q← Q ∪ {c′}

10 return true

a basic propagation scheme based on the use of a queue of
constraints. Other schemes exists in the literature, but this is
not an important issue for introducing constraint weighting.
This algorithm is then applied at the beginning of the search
and systematically each time a decision is taken. Initially the
queue Q contains the whole set of constraints of the constraint
network. Then, each constraint c in Q is picked in turn and
a filtering process is applied from c: typically, this is for
enforcing arc-consistency by calling Function filter(c) at
Line 4. The call to this function returns a subset of variables
of the scope of c, denoted by Xevt, whose domains have
been modified (i.e., such that at least one value has been
removed from these domains). By means of Xevt, we can
update Q so as to ensure constraint propagation is run until
a fixed point is reached. If ever the domain of one variable
of Xevt becomes empty, it simply means that a conflict
occurred (a dead-end has been identified) and so, a backtrack
is required. This is triggered by the returned Boolean value
false, after having called the function incrementWeightVER

with the culprit constraint (responsible of the domain wipeout)
passed as a parameter. In the initial paper [2], the principle of
constraint weighing is very simple: the weight of the culprit
constraint c, denoted by c.weight, is incremented by 1, as
shown in Algorithm 2 (here, VER written as a superscript at
Line 6 of Algorithm 1 corresponds to 2004). To summarize,
each constraint c admits a weight, initially set to 1, which is
incremented whenever a domain wipeout occurs while filtering
c.

Algorithm 2: incrementWeight2004(c: Constraint)

1 c.weight← c.weight+ 1

Algorithm 3: incrementWeightAbsCon(c: Constraint)

1 foreach x ∈ fut(c) do
2 c.weights[x]← c.weights[x] + 1

The heuristics wdeg and dom/wdeg are defined as follows:

Algorithm 4: incrementWeightrefined(c: Constraint)

1 foreach x ∈ fut(c) do
2 switch VARIANT do
3 case ia do
4 increment← 1

|scp(c)|

5 case ca do
6 increment← 1

|fut(c)|

7 case id do
8 increment← 1

|dominit(x)|

9 case cd do
10 increment← 1

1+|dom(x)|

11 case ca.cd do
12 increment← 1

|fut(c)|×(1+|dom(x)|)

13 c.weights[x]← c.weights[x] + increment

• wdeg selects in priority the future variable with the
highest ‘weighted degree’. Each variable x is given a
weighted degree, which is the sum of the weights over
all constraints involving x and at least another future
variable. For each future variable x, the score of x
according to wdeg is:∑

c∈C : x∈scp(c)∧|fut(c)|>1 c.weight

• dom/wdeg selects in priority the future variable with the
smallest ratio ‘current domain size to weighted degree’.
For each future variable x, the score of x according to
dom/wdeg is:

|dom(x)|∑
c∈C : x∈scp(c)∧|fut(c)|>1 c.weight

To break ties, which correspond to sets of variables that
are considered as equivalent by the heuristic, one can use a
second criterion (e.g., the dynamic degree of each variable).
However, for adaptive heuristics, it is usual to use lexico,
meaning that the first encountered variable with the best score
is selected.

IV. REFINING WEIGHTED DEGREES

The heuristic dom/wdeg is very simple to be implemented
while being quite robust. However, this is not exactly the
version that is implemented in the constraint solver AbsCon.
Indeed, it was observed experimentally that it was more effec-
tive to consider only the future variables involved in a culprit
constraint. Technically, instead of associating a global weight
c.weight with each constraint c, one can introduce a local
weight c.weight[x] to be associated with each variable x in
scp(c). Hence, when a conflict occurs, instead of incrementing
the weight c.weight of the culprit constraint, one can decide to
increment the local weight c.weight[x] of each future variable
involved in scp(c). Because each variable has now its specific
weight in each constraint, the score of a future variable x
becomes:

∑
c∈C : x∈scp(c)∧|fut(c)|>1 c.weight[x]

for wdeg and:

|dom(x)|∑
c∈C : x∈scp(c)∧|fut(c)|>1 c.weight[x]

for dom/wdeg.
Constraint weighting is now given by Algorithm 3 that

describes the function called at Line 6 of Algorithm 1. To
distinguish between the 2004 version and the AbsCon version,
we shall refer to the heuristics of the 2004 initial paper with
wdeg2004 and dom/wdeg2004.

Even if dom/wdeg slightly outperforms dom/wdeg2004

(this is shown in Section V), one may regret that constraint
weighting remains very simplistic and does not differentiate
between constraints. For instance, characteristics like the arity
of the constraints and the state of the domains of the participant
variables are totally ignored as the increment is static (i.e.,
1). This is why we propose to refine constraint weighting by
exploiting such information. More specifically, we introduce
four variants in Algorithm 4 as follows:
• ia is the variant in which the ‘initial’ arity of the

constraints is used.
• ca is the variant in which the ‘current’ arity (i.e., the

number of future variables) of the constraints is used.
• id is the variant in which the (size of the) initial domains

of the future variables is used.
• cd is the variant in which the (size of the) current

domains of the future variables is used.
• ca.cd combines both current arity and current domains.
These different variants are described by Algorithm 4.

V. EXPERIMENTAL RESULTS

We have conducted a first experiment with all avail-
able CSP series (82) from the XCSP3 [3] archive
(http://xcsp.org), which contains 9, 243 CSP instances
(referred to as ALL). We have also conducted two additional
experiments by considering the instances from the main CSP
track at the 2017 XCSP3 competition (COMP-17 composed
of aim, AllInterval, bdd, Bibd, Blackhole, bmc, bqwh, Cab-
inet, CarSequencing, ColouredQueens, composed, CostasAr-
ray, CoveringArray, Crossword, CryptoPuzzle, DeBruijnSe-
quence, DiamondFree, Domino, driverlogw, Dubois, ehi, Fis-
cher, geometric, gp10, GracefulGraph, Hanoi, Haystacks, jnh,
Kakuro, Knights, KnightTour, Langford, LangfordBin, lard,
MagicHexagon, MagicSequence, MagicSquare, MarketSplit,
mdd, MultiKnapsack, Nonogram, NumberPartitioning, Or-
tholatin, Pb, pigeonsPlus, Primes, PropStress, QuasiGroup,
QueenAttacking, Queens, QueensKnights, qwh, RadarSurveil-
lance, rand, RectPacking, reg, Renault, RenaultMod, Rl-
fap, RoomMate, Sadeh, Sat, SchurrLemma, SocialGolfers,
SportsScheduling, Steiner3, StripPacking, Subisomorphism,
Sudoku, SuperQueens, SuperSadeh, SuperTaillard, Travel-
lingSalesman, Wwtpp) and 2018 XCSP3 competition (COMP-
18 composed of Bibd, CarSequencing, ColouredQueens,
Crossword, Dubois, Eternity, frb, GracefulGraph, Haystacks,

LangfordBin, MagicHexagon, MisteryShopper, Pb, Quasi-
Group, Rlfap, SocialGolfers, SportsScheduling, StripPacking,
Subisomorphism). These instances have been launched on
a cluster equipped with 2.66 GHz Intel Xeon and 32 GB
RAM nodes. The constraint solver used for our experiments is
AbsCon where our new constraint weighting variants and CHS
have been implemented. The timeout was set to 20 minutes.

TABLE I
COMPARISON OF HEURISTICS IN TERMS OF NUMBER OF SOLVED
INSTANCES (#INST.) AND SEVERAL TIME METRICS [COMP-18]

2004 AbsCon
refined

ia ca id cd ca.cd

#inst. 92 96 113 109 107 111 119
c. time 1, 937 2, 026 1, 489 1, 606 1, 602 900 1, 117
by1 62, 813 56, 995 39, 862 45, 242 47, 304 40, 813 32,207
by2 116, 813 106, 195 68, 662 78, 842 83, 304 72, 013 53,807

wdeg

by10 548, 813 499, 795 299, 062 347, 642 371, 304 321, 613 226,607

#inst. 91 101 117 110 106 112 119
c. time 1, 070 2, 131 1, 857 844 2, 129 1, 607 924
by1 66, 446 55, 773 35, 839 40, 935 49, 120 41, 916 34,304
by2 121, 646 98, 973 59, 839 73, 335 86, 320 71, 916 55,904

dom/wdeg

by10 563, 246 444, 573 251, 839 332, 535 383, 920 311, 916 228,704

In Table I, the new constraint weighting variants proposed
in that paper are compared with the classical wdeg and
dom/wdeg heuristics (2004 and AbsCon versions). The
comparison is given by the number of solved instances (within
1, 200 seconds) as well as by several time metrics: the cu-
mulated CPU time (c. time) computed from instances solved
by all methods, and the cumulated CPU times (by1, by2,
by10) computed from all instance by considering for unsolved
instances a ‘solving’ time equal to x × 1, 200 for x = 1,
x = 2 and x = 10, respectively. Numbers given in bold
face correspond to the best obtained results. In Table I, we
can observe that classical heuristics are outperformed by the
new variants. Notably, the variant ca.cd is clearly the best
one as it allows us to solve 18% more instances than the
best classical heuristic dom/wdegAbsCon (119 vs 101). Such
results are confirmed by Table II on the CSP 2017 competition
instances.

TABLE II
COMPARISON OF HEURISTICS IN TERMS OF NUMBER OF SOLVED
INSTANCES (#INST.) AND SEVERAL TIME METRICS [COMP-17]

2004 AbsCon
refined

ia ca id cd ca.cd

#inst. 347 359 363 368 359 367 369
c. time 4,792 5, 385 5, 337 5, 931 5, 940 6, 108 6, 085
by1 58, 625 46, 404 40, 316 38, 122 46, 543 37, 887 35,156
by2 100, 625 76, 404 65, 516 57, 322 76, 543 58, 287 53,156

wdeg

by10 436, 625 316, 404 267, 116 210, 922 316, 543 221, 487 197,156

#inst. 345 360 362 360 348 362 366
c. time 3,573 4, 657 4, 549 4, 871 5, 100 4, 499 4, 240
by1 57, 203 45, 244 36,867 43, 929 57, 077 41, 221 38, 449
by2 104, 003 74, 044 60, 867 72, 729 99, 077 67, 621 60,049

dom/wdeg

by10 478, 403 304, 444 252, 867 303, 129 435, 077 278, 821 232,849

In Table III, we provide some details about specific series.
Due to lack of space, we decided to only keep c. time as time
metric because we find it to be the most relevant one. For
the lack of clarity, some series have been discarded from this
table because we obtained rather similar results whatever the
heuristic is used. However, note that these series are taken into
account when displaying the total number of solved instances

TABLE III
COMPARISON OF HEURISTICS IN TERMS OF NUMBER OF SOLVED INSTANCES (#INST.) AND CUMULATED CPU TIME (C. TIME) [ALL]

wdeg2004 wdegAbsCon dom/wdeg2004 dom/wdegAbsCon wdegca.cd

#inst c. time #inst c. time #inst c. time #inst c. time #inst c. time

AllInterval 5 1, 094 14 397 15 20 15 845 15 20
bdd 48 584 48 926 48 583 48 1, 028 48 952
Bibd 30 1, 827 82 623 27 1, 019 88 967 84 209
Blackhole 1 0 20 0 0 0 14 0 20 0
bmc 12 3, 716 16 195 12 4, 022 16 250 16 180
Cabinet 20 131 20 138 20 177 20 283 20 115
CarSequencing 31 248 37 383 19 872 30 565 48 446
ColouredQueens 0 0 1 0 0 0 0 0 1 0
CostasArray 3 374 5 89 4 186 4 825 4 169
CoveringArray 1 207 2 73 4 4 4 3 3 3
Crossword 169 11, 852 157 18, 902 190 3, 631 185 4, 260 176 11, 628
DeBruijnSequence 5 516 6 495 6 358 6 396 5 805
DiamondFree 17 2, 205 22 349 18 3, 242 22 493 22 208
DistinctVectors 3 891 3 32 3 1, 057 3 96 3 34
Dubois 8 81 19 36 8 120 6 435 20 60
frb 19 2, 417 20 2, 355 28 2, 672 29 2, 661 19 2, 547
GracefulGraph 4 281 7 59 8 204 7 50 8 28
Knights 7 438 7 520 7 309 7 426 5 683
KnightTour 17 20 16 25 4 1, 299 10 37 18 16
Langford 11 950 12 704 11 1, 082 12 1, 035 12 898
LangfordBin 1 6 1 36 1 5 1 13 10 3
MagicHexagon 3 89 9 67 9 7 18 10 16 7
MagicSequence 14 819 14 2, 542 14 1, 780 14 1, 660 14 2, 137
MagicSquare 11 626 21 407 32 163 43 58 41 150
MarketSplit 10 396 7 1, 212 10 449 9 620 9 624
mdd 33 3, 476 29 4, 922 32 3, 298 27 3, 604 29 4, 984
MultiKnapsack 11 64 9 416 11 52 9 1, 066 10 86
NumberPartitioning 38 258 38 588 15 494 29 3, 926 38 501
Ortholatin 4 28 4 16 2 5 2 8 3 29
Pb 3 299 4 705 3 117 4 105 6 146
pigeonsPlus 13 3, 012 14 2, 178 15 1, 583 15 1,466 15 1, 489
Primes 8 60 15 80 13 209 18 94 16 239
qcp 11 808 11 334 11 622 13 480 13 578
QuasiGroup 4 327 4 476 5 125 6 210 5 248
QueensKnights 9 147 9 150 5 500 6 387 8 206
qwh 43 8, 303 43 4, 291 51 3, 487 47 5, 178 52 3, 876
RadarSurveillance 40 1, 798 40 1, 688 40 2, 483 40 2, 348 41 1, 922
Rlfap 6 652 7 533 6 518 7 397 7 584
RoomMate 13 5, 457 14 5, 239 11 5, 740 14 5, 577 14 5,167
SocialGolfers 59 1, 744 56 2, 105 44 3, 916 51 1, 299 61 1, 207
StripPacking 2 0 5 0 0 0 3 0 7 0
Subisomorphism 206 2, 241 162 18, 193 204 4, 616 200 2, 380 211 2, 099
SuperQueens 1 657 1 739 1 292 1 282 1 892
SuperSadeh 10 163 11 245 9 225 9 612 9 182
SuperTaillard 39 2, 258 37 1, 960 41 3, 847 37 2, 570 37 2, 386
TravellingSalesman 18 988 18 1, 157 18 281 18 339 18 1, 262
Wwtpp 229 5, 562 244 2, 119 243 9, 380 242 15, 269 240 2, 049

Total 1, 465 75, 375 1, 559 84, 436 1, 486 74, 116 1, 617 72, 547 1,694 60,482

(last line of the table). For the remaining series, we also
discarded ‘easy’ instances, which are CSP instances solved
by all heuristics by less than 10 seconds. In each row, the
highest number of solved instances is written in bold, except
when all heuristics solve the same instances, in which case
the c.time is given in bold. Once again, we can observe that
wdegca.cd is the best variant.

Figure 1 shows a scatterplot allowing us to compare
the overall respective behavior of dom/wdegAbsCon and
wdegca.cd. For our comparison, we used the set COMP-
17+18 containing instances coming from both the 2017 and
2018 XCSP instances (main CSP track). Each dot in this figure

represents a CSP instance. The coordinates of this dot are
defined by: on the horizontal axis, the CPU time (in seconds)
required to solve the instance with dom/wdegAbsCon and on
the vertical axis, the CPU time required to solve the instance
with wdegca.cd. One can observe that more instances are
located at the bottom-right side of the figure, meaning that
wdegca.cd is usually more efficient. Also, note the presence
of many dots along the right border, indicating that these
instances have not been solved (within 1, 200 seconds) by the
classical heuristic dom/wdegAbsCon. The same trend can be
observed in Figure 2, when comparing CHS and wdegca.cd,
even if results are closer. When comparing these two heuristics

101 102 103

dom/wdegAbsCon

101

102

103
w
d
e
g
c
a
.c
d

SAT
UNSAT

Fig. 1. Comparing dom/wdegAbsCon and wdegca.cd [COMP-17+18]

101 102 103

chs

101

102

103

w
d
e
g
c
a
.c
d

SAT
UNSAT

Fig. 2. Comparing CHS and wdegca.cd [COMP-17+18]

on the overall set of instances (ALL), the c. time of wdegca.cd

is decreased by 32% and 59 additional instances are solved.

The cactus plot in Figure 3 shows the performance of all
popular generic heuristics and wdegca.cd on COMP-17+18.
It displays the number of solved instances (on the horizontal
axis) per unit of time (on the vertical axis). On the left of
the figure, we can find the least effective heuristics, namely,
impact, activity, wdeg2004 and dom/wdeg2004 that
behave rather similarly. In the middle of the figure, we have
wdegAbsCon and dom/wdegAbsCon, as implemented (and used
by default) in AbsCon. Finally, CHS and wdegca.cd are
clearly the most efficient heuristics since they are situated on
the right.

Figure 4 focuses on constraint weighting variants (compar-
ing very classical heuristics with our new best variant ca.cd).
Clearly, wdegca.cd appears to be the most robust heuristic
based on constraint weighting.

360 380 400 420 440 460 480

Number of instances

0

200

400

600

800

1000

1200

Ti
m

e
(s

)

wdegca.cd

chs

dom/wdegAbsCon

wdegAbsCon

dom/wdeg2004

wdeg2004

activity

impact

Fig. 3. Comparing popular heuristics and wdegca.cd [COMP-17+18]

1100 1200 1300 1400 1500 1600 1700

Number of instances

0

200

400

600

800

1000

1200

Ti
m

e
(s

)

wdegca.cd

dom/wdegAbsCon

wdegAbsCon

dom/wdeg2004

wdeg2004

Fig. 4. Comparing popular heuristics and wdegca.cd [ALL]

VI. CONCLUSION

In this paper, we have revisited constraint weighting that
is known to be a robust generic approach to guide back-
track search. By refining the way weights of constraints (and
variables) are updated by taking into account both constraint
arities and sizes of variable domains, we show how the
popular heuristic dom/wdeg can be improved. We think that
dom/wdegca.cd is the most robust generic (variable ordering)
heuristic to be used for solving instances of constraint satis-
faction problems.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for
their comments. This work has been supported by the project
CPER Data from the region “Hauts-de-France”.

REFERENCES

[1] T. Balafoutis and K. Stergiou. On conflict-driven variable ordering
heuristics. In Proceedings of CSCLP’08, 2008.

[2] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic
search by weighting constraints. In Proceedings of ECAI’04, pages 146–
150, 2004.

[3] F. Boussemart, C. Lecoutre, and G. Audemard C. Piette. XCSP3: an
integrated format for benchmarking combinatorial constrained problems.
CoRR, abs/1611.03398, 2016.

[4] C. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena
in satisfiability and constraint satisfaction problems. Journal of Auto-
mated Reasoning, 24:67–100, 2000.

[5] D. Grimes and R.J. Wallace. Learning to identify global bottlenecks in
constraint satisfaction search. In Proceedings of FLAIRS’07, 2007.

[6] Diarmuid Grimes and Emmanuel Hebrard. Solving variants of the job
shop scheduling problem through conflict-directed search. INFORMS
Journal on Computing, 27:268–284, 04 2015.

[7] Djamal Habet and Cyril Terrioux. Conflict history based search for con-
straint satisfaction problem. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC ’19, pages 1117–1122, New
York, NY, USA, 2019. ACM.

[8] R. Haralick and G. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

[9] Emmanuel Hebrard and Mohamed Siala. Explanation-based weighted
degree. pages 167–175, 05 2017.

[10] L. Michel and P. Van Hentenryck. Activity-based search for black-box
constraint programming solvers. In Proceedings of CPAIOR’12, pages
228–243, 2012.

[11] Ugo Montanari. Network of constraints : Fundamental properties and
applications to picture processing. Information Science, 7:95–132, 1974.

[12] G. Pesant, C.-G. Quimper, and A. Zanarini. Counting-based search:
Branching heuristics for constraint satisfaction problems. Journal of
Artificial Intelligence Research, 43:173–210, 2012.

[13] P. Refalo. Impact-based search strategies for constraint programming.
In Proceedings of CP’04, pages 557–571, 2004.

[14] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in
constraint satisfaction. In Proceedings of CP’94, pages 10–20, 1994.

