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Abstract

Table constraints are important in constraint programming as they are present
in many real problems from areas such as configuration and databases. As a result,
numerous specialized algorithms that achieve generalized arc consistency (GAC)
on table constraints have been proposed. Since these algorithms achieve GAC, they
operate on one constraint at a time. In this paper we propose new filtering algo-
rithms for positive table constraints that achieve stronger local consistency proper-
ties than GAC by exploiting intersections between constraints. The first algorithm,
called maxRPWC+, is a domain filtering algorithm that is based on the local con-
sistency maxRPWC and extends the GAC algorithm of Lecoutre and Szymanek
[23]. The second algorithm extends the state-of-the-art STR-based algorithms
to stronger relation filtering consistencies, i.e., consistencies that can remove tu-
ples from constraints’ relations. Experimental results from benchmark problems
demonstrate that the proposed algorithms are quite competitive with standard GAC
algorithms like STR2 in some classes of problems with intersecting table con-
straints, being orders of magnitude faster in some cases.

1 Introduction
Table constraints, i.e., constraints given in extension, are ubiquitous in constraint pro-
gramming (CP). First, they naturally arise in many real applications from areas such as
configuration and databases. And second, they are a useful modeling tool that can be
called upon to, for instance, easily capture preferences [15]. Given their importance in
CP, it is not surprising that table constraints are among the most widely studied con-
straints and as a result numerous specialized algorithms that achieve generalized arc
consistency (GAC) on them have been proposed.

GAC algorithms for positive table constraints, i.e., constraints defined by sets of
allowed tuples, have received the bulk of the attention. Such algorithms utilize a num-
ber of different techniques to speed-up the check for generalized arc consistency. For
example, some of them build upon GAC-schema [4] by interleaving the exploration
of allowed and valid tuples using either intricate data structures [26] or binary search
[23]. Other methods compile the tables into efficient data structures that allow for
∗Some results included in this paper first appeared in [31].
†This author has been funded by the EU project ICON (FP7-284715).
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faster support search (e.g., [11] and [9]). Simple Tabular Reduction (STR) [34] and
its refinements [18, 22] maintain dynamically the support tables by removing invalid
tuples from them during search. A recent approach holds information about removed
values in the propagation queue and utilizes it to speed up support search [29].

Given that GAC is a property defined on individual constraints, algorithms for GAC
operate on one constraint at a time trying to filter infeasible values from the variables
of the constraint. A different line of research has investigated stronger consistencies
and algorithms to enforce them. Some of them are domain filtering, meaning that they
only prune values from the domains of variables, e.g., see [10, 7], whereas a few other
ones are higher-order (or relation filtering), e.g., see [12, 13, 35, 16, 20], indicating that
inconsistent tuples of values (nogoods of size 2 or more) can be identified. In contrast
to GAC algorithms, the proposed algorithms to enforce these stronger consistencies are
able to consider several constraints simultaneously. For example, pairwise consistency
(PWC) [12] is a relation filtering consistency that considers intersections between pairs
of constraints.

Recently there has been renewed interest for strong domain or relation filtering
local consistencies as new ones have been proposed or/and efficient algorithms for
existing ones have been devised [19, 7, 16, 37]. One of the most promising such
consistencies is Max Restricted Pairwise Consistency (maxRPWC) [7], which is lo-
cal consistency that is based PWC but can only make value deletions. In practice,
strong consistencies are mainly applicable on constraints that are extensionally de-
fined since intensionally defined constraints usually have specific semantics and are
provided with efficient specialized filtering algorithms. However, a significant short-
coming of existing works on maxRPWC and other strong local consistencies is that the
proposed algorithms for them are generic. That is, like earlier GAC algorithms such as
GAC2001/3.1 [6], they are designed to operate on both intensional and extensional
constraints, failing to recognize that strong consistencies are predominantly applicable
on extensional constraints and should thus focus on such constraints.

Despite the wealth of research on strong consistencies, they have not been widely
adopted by CP solvers. State-of-the art solvers such as Gecode, Abscon, Choco, Min-
ion, etc. predominantly apply GAC, and lesser forms of consistency such as bounds
consistency, when propagating constraints. Regarding table constraints, CP solvers
typically offer one or more of the above mentioned GAC methods for propagation.

In this paper we propose filtering algorithms that achieve stronger consistency
properties than GAC and have been specifically designed for table constraints. We
contribute to both directions of domain and relation filtering methods by extending ex-
isting GAC algorithms for table constraints. The proposed methods are a step towards
the efficient handling of intersecting table constraints and also provide specialization
of strong local consistencies to extensional constraints that can be useful in practice.

The first algorithm, called maxRPWC+, extends the GAC algorithm for table con-
straints of Lecoutre and Szymanek [23] and specializes the generic maxRWPC algo-
rithm maxRPWC1 [7]. The proposed domain filtering algorithm incorporates several
techniques that help alleviate redundancies (i.e., redundant constraint checks and other
operations on data structures) displayed by existing maxRPWC algorithms. We also
describe a variant of maxRPWC+ which is more efficient when applied during search
due to the lighter use of data structures.
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The second algorithm, called HOSTR*, extends the state-of-the-art GAC algorithm
STR to a higher-order local consistency that can delete tuples from constraint relations
as well as values from domains. HOSTR* is actually a family of algorithms that com-
bines the operation of STR (or a refinement of STR such as STR2) when establishing
GAC on individual constraints and the operation of maxRPWC+ when trying to ex-
tend GAC supports to intersecting constraints. We describe several instantiations of
HOSTR* which differ in their implementation details.

We theoretically study the pruning power of the proposed algorithms and place
them in a partial hierarchy which includes GAC, maxRPWC, and full pairwise con-
sistency (FPWC), which is pairwise consistency followed by GAC. We show that the
level of local consistency achieved by HOSTR* is incomparable to that achieved by
maxRPWC+ and to maxRPWC, but weaker than FPWC. Interestingly, a simple variant
of HOSTR* achieves FPWC, albeit with a high cost. maxRPWC+ achieves a consis-
tency that is incomparable to maxRPWC but still stronger than GAC.

Experimental results from benchmark problems used in the evaluation of filtering
algorithms for table constraints demonstrate that the proposed algorithms are consid-
erably faster than the generic maxRPWC1 algorithm in classes of problems with large
tables. Also, the best among the proposed algorithms outperforms the state-of-the-art
GAC algorithm STR2 on some problem classes with intersecting table constraints, be-
ing orders of magnitude faster in many cases. However, it is also outperformed by
STR2 on other problem classes with the differences being quite large in some cases.

We also compare our approaches to the state-of-the-art Abscon solver which is a
solver with a more optimized implementation than our own. Results demonstrate that
Abscon is faster on most problem classes, but since our methods often cut down the
size of the search tree considerably, there are quite a few cases where this is reflected
on important CPU time gains.

Finally, comparing our methods to eSTR2, a relevant later introduced algorithm
[24], we observe that although eSTR2 is faster on most problems, its high memory
requirements mean that its use is infeasible on certain instances. In contrast, our algo-
rithms do not suffer from the drawback of high memory consumption and can easily
handle the instances where eSTR2 fails.

The rest of this paper is structured as follows. Section 2 gives the necessary back-
ground. Section 3 presents algorithm maxRPWC+ and a variant of this algorithm that
is more efficient when used during search. Section 4 extends STR-based algorithms
to achieve stronger consistencies than GAC. In Section 5 we give experimental results.
Finally, in Sections 6 and 7 we discuss related work and we conclude.

2 Background
A Constraint Satisfaction Problem (CSP) is defined as a tuple (X ,D, C) where:

• X = {x1, . . . , xn} is a set of n variables.

• D = {D(x1), . . . , D(xn)} is a set of finite domains, one for each variable, with
maximum cardinality d.
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• C = {c1, . . . , ce} is a set of e constraints; with k denoting the maximum arity of
the constraints.

Constraints can be defined either extensionally by listing the allowed (or disal-
lowed) combinations of values or intensionally through a predicate or a function. A
positive table constraint ci is a constraint given in extension and defined by a set of
allowed tuples. A tuple is called allowed iff it satisfies ci. Each table constraint ci
is a pair (scp(ci), rel[ci]), where scp(ci) = {xi1 , . . . , xir} is an ordered subset of X
referred to as the constraint scope, and rel[ci] is a subset of the Cartesian product
D(xi1)× . . .×D(xir ) that specifies the allowed combinations of values (known also
as ci’s relation) for the variables in scp(ci). For each table constraint ci ∈ C, we have
tci = |rel[ci]| and t = maximum(tci).

An assigment of a value ai to a variable xi is denoted by (xi, ai). A tuple τ ∈
rel[ci] is an ordered list of value to variable assignments ((x1, a1), . . . , (xm, am)) s.t.
aj ∈ D(xj), j = 1, . . . ,m. Given a (table) constraint ci, and a tuple τ ∈ rel[ci], we
denote by τ [x] the projection of τ on a variable x ∈ scp(ci) and by τ [X] the projection
of τ on any subset X ⊆ scp(ci) of variables; τ [X] is called a subtuple of τ . A tuple is
valid iff none of the values in the tuple has been removed from the variable domains of
the corresponding variable. For any constraint ci we denote by > (resp. ⊥) a dummy
tuple s.t. τ < > (resp. τ > ⊥) for any tuple τ ∈ rel[ci]. We assume that for any table
constraint its tuples are stored in lexicographical order.

Given two constraints ci and cj , if |scp(ci) ∩ scp(cj)| > 1 we say that the con-
straints intersect non trivially. We denote by fmin the minimum number of variables
that are common to any two constraints that intersect on more than one variable1.
Therefore, fmin is at least two.

The most commonly used local consistency is generalized arc consistency (GAC)
or domain consistency. A value ai ∈ D(xi) is GAC iff for every constraint c, s.t.
xi ∈ scp(c), there exists a valid tuple τ ∈ rel[c] s.t. τ [xi] = ai [30, 28]. In this case τ
is a GAC-support of ai on c. A variable is GAC iff all values in its domain are GAC.
A problem is GAC iff there is no empty domain in D and all variables are GAC.

Strong Local Consistencies Several alternative local consistencies have been
proposed, with domain filtering consistencies being especially interesting since they
only remove values from domains and thus do not alter the structure of the constraint
(hyper)graph or the constraints’ relations. Examples of such consistencies for non-
binary constraints include SAC [10], RPWC and maxRPWC [7], and rPIC [33]. Some
of the consistencies, are directly defined on both binary and non-binary constraints (i.e.,
SAC for binary and non-binary constraints). Others, like maxRPWC, are defined on
non-binary constraints but are inspired by relevant consistencies for binary constraints.
A theoretical and experimental evaluation demonstrated that maxRPWC is a promising
alternative to GAC [7].

A value a ∈ D(xi) is max Restricted Pairwise Consistent (maxRPWC) iff ∀cj ∈ C,
where xi ∈ scp(cj), a has a GAC-support τ ∈ rel[cj ] s.t. ∀cl ∈ C (cl 6= cj), s.t.
scp(cj) ∩ scp(cl) 6= ∅,∃τ ′ ∈ rel[cl], s.t. τ [scp(cj) ∩ scp(cl)] = τ ′[scp(cj) ∩ scp(cl)]

1On constraints that intersect on one variable maxRPWC is equivalent to GAC [7].
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and τ ′ is valid. In this case we say that τ ′ is a PW-support of τ and τ is a maxRPWC-
support of a. A variable is maxRPWC iff all values in its domain are maxRPWC. A
problem is maxRPWC iff there is no empty domain in D and all variables are maxR-
PWC.

GAC and maxRPWC are domain filtering (or first-order) consistencies, meaning
that they can only identify inconsistent values, thereby filtering variable domains. Re-
lation filtering (or higher-order) consistencies allow us to identify inconsistent tuples of
values in constraints’ relations. This is the case of pairwise consistency (PWC) defined
as follows (for positive table constraints). A tuple τi in the table of a constraint ci is
PWC iff ∀cj ∈ C, ∃τj in rel[cj ] which is a PW-support of τi. A problem is PWC iff
every tuple of every constraint in the problem is PWC. We will also say that a problem
is FPWC iff it is both PWC and GAC.

Following Debruyne and Bessiere [10], we call a local consistency A stronger than
B iff in any problem in which A holds then B holds, and strictly stronger iff it is
stronger and there is at least one problem in which B holds but A does not. Accord-
ingly, A is incomparable to B iff none is stronger than the other.

Three algorithms for achieving maxRPWC have been proposed [7]. The first one,
maxRPWC1, has O(e2k2dp) worst-case time complexity and O(ekd) space complex-
ity, where p is the maximum number of variables involved in two constraints that share
at least two variables. The second one has O(e2kdk) time complexity but its space
complexity is exponential in p, and this can be prohibitive. The third one has the same
time complexity as maxRPWC1 but O(e2kd) space complexity. Although maxRPWC1
is less sophisticated than the other two, its performance when maintained during search
is on average better than theirs because it uses lighter data structures. All these algo-
rithms are generic in the sense that they do not consider any specific semantics that the
constraints may have.

Recently, an extension of STR-based algorithms, called eSTR, that achieves full
pairwise consistency was proposed [24]. This algorithm verifies the existence of a
PW-support, in constant time, through the use of counters that store the number of oc-
currences of specific combinations of values in constraint intersections. As a result,
the worst-case time complexity of one call to its basic filtering procedure (i.e., the re-
vision of a constraint’s table) is quite close to that of STR algorithms. Precisely, it
is O(kd +max(k, g)t), where g is the maximum number of non-trivial intersections
that a constraint may have, while its worst-case space complexity of handling one con-
straint is O(n + max(k, g)t). In practice, the space requirements, even for just one
constraint, can be quite high because eSTR requires O(t) additional space for each
intersecting constraint. A weaker version of eSTR, denoted by eSTRw, was also pro-
posed. This achieves a consistency level between GAC and FPWC and is more efficient
in practice. Experiments demonstrated that this method can significantly outperform
STR2 in many problem classes, but it can become prohibitive when many and/or large
intersections occur, due to its high space requirements.
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3 Algorithm maxRPWC+
In this section we will first describe an algorithm that is based on maxRPWC and
is specialized for application on table constraints, and then present an efficient vari-
ant of it that makes a lighter use of its data structures. The presented algorithm,
called maxRPWC+, builds upon the generic maxRPWC algorithm maxRPWC1 and a
GAC algorithm that is specific to table constraints (called GAC-va hereafter) [23].
maxRPWC+ not only specializes maxRPWC to table constraints but also introduces
several techniques that help eliminate redundancies displayed by existing algorithms,
such as unnecessary constraint checks and other operations on data structures. As in
GAC-va, the main idea behind maxRPWC+ is to interleave support and validity checks.

The approach of GAC-va involves visiting both lists of valid and allowed tuples in
an alternating fashion when looking for a support (i.e., a tuple that is both allowed and
valid). Its principle is to avoid considering irrelevant tuples by jumping over sequences
of valid tuples containing no allowed tuple and over sequences of allowed tuples con-
taining no valid tuple. This is made possible because of the lexicographic ordering of
tuples. The core operation of GAC-va, which is also exploited by our algorithm, is the
construction of a valid tuple that is verified for being a GAC-support by searching for
it in the list of allowed tuples using binary search. If it is not found, then the smallest
allowed tuple that is greater than the aforementioned valid one is considered and its
validity is checked. If it is not valid, then next valid tuple is constructed and so on.

Algorithm maxRPWC+ uses the following data structures:

• For each constraint c and each value ai ∈ D(xi), where xi ∈ scp(c), allowed(c,
xi, ai) is the list of allowed tuples in c that include the assignment (xi, ai).

• For each constraint c and each value ai ∈ D(xi), where xi ∈ scp(c), Lastc,xi,ai

gives the most recently discovered (and thus lexicographically smallest) maxRPWC-
support of ai in c. The same data structure is used by maxRPWC1 but it is ex-
ploited in a less sophisticated way as will be explained in Section 3.1.

Before going into the details of the algorithm we describe a simple modification
that can be incorporated into any maxRPWC algorithm to boost its performance.

Restricted maxRPWC From the definition of maxRPWC we can see that the value
deletions from someD(xi) may trigger the deletion of a value b ∈ D(xj) in two cases:

1. b may no longer be maxRPWC because its current maxRPWC-support in some
constraint c is no longer valid and it was the last such support in c. We call this
case maxRPWC-support loss.

2. The last maxRPWC-support of b in some constraint c may have lost its last PW-
support in another constraint c′ intersecting with c. We call this case PW-support
loss.

Although detecting PW-support loss is necessary for an algorithm to achieve maxR-
PWC, our experiments have shown that the pruning it achieves rarely justifies its
cost. Hence, maxRPWC+ applies maxRPWC in a restricted way by only detecting
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maxRPWC-support loss. However, the resulting method is still strictly stronger than
GAC. This is clear if we consider that the “stronger” relationship is immediately de-
rived by the definitions. Now consider a problem with constraints alldiff(x1, x2, x3)
and x1 = x2, and domains {0, 1, 2} for all variables. This problem is GAC but the
application of restricted maxRPWC will detect its inconsistency. Although a restricted
version of maxRPWC is stronger than GAC, it obviously only achieves an approxi-
mation of maxRPWC. A similar approximation of the related binary local consistency
maxRPC has also been shown to be efficient compared to full maxRPC [36, 1].

3.1 Algorithm description
Given a table constraint ci, we now describe how algorithm maxRPWC+ can be used
to filter the domain of any variable xj ∈ scp(ci). We assume that the domain of some
variable in scp(ci) (different from xj) has been modified and as a result the propagation
engine will revise all other variables in scp(ci). Initially, Function 1 is called.

For each value aj ∈ D(xj) Function 1 first searches for a GAC-support. This is
done by calling function seekSupport-va which is an adaptation of Algorithm 12 of
GAC-va [23]. This function makes an additional first check to verify if Lastci,xj ,aj ,
which is the most recently found maxRPWC-support, and thus also GAC-support, is
still valid. Note that the search starts from the first valid tuple. If Lastci,xj ,aj is
valid, τ = Lastci,xj ,aj is returned, else the valid and allowed tuples of ci are vis-
ited in an alternating fashion. This is done by applying a dichotomic search in the list
allowed(ci, xj , aj) to locate the lexicographically smallest valid and allowed tuple τ
of ci, such that τ > Lastci,xj ,aj and τ [xj ] = aj . More precisely, τ can be either a
valid tuple found in the list of allowed tuples of ci or >, in case of validity or sup-
port check failure. If such a tuple τ is found, we then check it for PW consistency
through Function isPWconsistent+ (Function 2). If aj does not have a GAC-support
(i.e., seekSupport-va returns >) or none of its GAC-supports is a PW-support, then it
will be removed from D(xj).

Function 1 revisePW+ (ci, xj)

1: for each aj ∈ D(xj) do
2: τ ←seekSupport-va(ci, xj , aj);
3: while τ 6= > do
4: if isPWconsistent+(ci, τ ) then break;
5: τ ←seekSupport-va(ci, xj , aj);
6: if τ = > then remove aj from D(xj);

The process of checking if a tuple τ of a constraint ci is PW consistent involves
iterating over each constraint ck that intersects with ci on at least two variables and
searching for a PW-support for τ (Function 2 line 1). For each such constraint ck
maxRPWC+ first tries to quickly verify if a PW-support for τ exists by exploiting the
Last data structure as we now explain.
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3.1.1 Fast check for PW-support

For each variable xk belonging to the intersection of ci and ck, we check if τ ′ =
Lastck,xk,τ [xk] is valid and if it includes the same values for the rest of the variables in
the intersection as τ (line 6 in Function 2). Function isValid simply checks if all values
in the tuple are still in the domains of the corresponding variables. If these conditions
hold for some variable xk in the intersection then τ is PW-supported by τ ′. Hence, we
move on to the next constraint intersecting ci.

Function 2 isPWconsistent+ (ci, τ): boolean
1: for each ck 6= ci s.t. |scp(ck) ∩ scp(ci)| > 1 do
2: PW← FALSE;
3: max τ ′ ← ⊥;
4: for each xk ∈ scp(ck) ∩ scp(ci) do
5: τ ′ ← Lastck,xk,τ [xk];
6: if isValid(ck, τ ′) AND τ ′[scp(ck) ∩ scp(ci)] = τ [scp(ck) ∩ scp(ci)] then
7: PW← TRUE; break;
8: if τ ′ > max τ ′ then max τ ′ ← τ ′;
9: if ¬PW then

10: if seekPWSupport(ci, τ, ck,max τ ′) = > then
11: return FALSE;
12: return TRUE;

Else, we find max τ ′ the lexicographically greatest Lastck,xk,τ [xk] among the vari-
ables that belong to the intersection of ci and ck and we search for a new PW-support in
Function seekPWSupport (line 10). In case seekPWSupport returns> for some ck then
isPWconsistent+ returns FALSE and a new GAC-support must be found and checked
for PW consistency.

3.1.2 Fast check for lack of PW-support

Function 3 seekPWsupport (ci, τ, ck, max τ ′)
1: if ¬ isValid(ck,max τ ′) then max τ ′ ← setNextTuple(ci, τ, ck,max τ ′);
2: if max τ ′ 6= > then τ ′ ← checkPWtuple(ci, τ, ck,max τ ′);
3: else return >;
4: xch ← select a variable ∈ scp(ci) ∩ scp(ck)
5: while τ ′ 6= > do
6: τ ′′ ← binarySearch(allowed(ck, xch, τ ′[xch]),τ ′);
7: if τ ′′ = τ ′ OR isValid(ck, τ ′′) then return τ ′′;
8: if τ ′′ = > then return >;
9: τ ′ ← setNextTuple(ci, τ, ck, τ ′′);

10: return >;

Function 3 seeks a PW-support for τ in rel[ck]. Before commencing with this
search, it performs a fast check aiming at detecting a possible inconsistency (and thus
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avoiding the search). In a few words, this check can sometimes establish that there
cannot exist a PW-support for τ . This is accomplished by exploiting the lexicographical
ordering of the tuples in the constraints’ relations.

In detail, the validity of max τ ′ is first checked in line 1. If isValid returns FALSE,
then function setNextTuple is called to find the lexicographically smallest valid tuple in
ck that is greater thanmax τ ′ and is such thatmax τ ′[scp(ck)∩scp(ci)] = τ [scp(ck)∩
scp(ci)]. If no such tuple exists, setNextTuple returns >, and the search terminates
since no PW-support for τ exists in ck. If a tuple max τ ′ is located then Function
checkPWtuple is called to essentially perform a lexicographical comparison between
max τ ′ and τ taking into account the intersection of the two constraints (line 2 in
Function 3). According to the result we may conclude that there can be no PW-support
of τ in ck and thus Function 3 will return >. Consequently, lines 2-3 of Function 3
perform the fast check for lack of PW-support.

The addition of this simple check enables maxRPWC+ to perform extra pruning
compared to a typical maxRPWC algorithm. Before explaining how checkPWtuple
works, we demonstrate this with an example.

Example 1 Consider a problem that includes two constraints c1 and c2 with scp(c1) =
{x1, x2, x3, x4} and scp(c2) = {x3, x4, x5, x6}. Assume that the GAC-support τ =
(0, 2, 2, 1) has been located for value 0 of x1 and that there exists a valid PW-support
for τ in c2 (e.g., {2, 1, 2, 2}). Also, assume that Lastc2,x3,2 and Lastc2,x4,1 are tuples
τ ′ = (2, 2, 0, 1) and τ ′′ = (1, 1, 2, 3), meaning that max τ ′ = τ ′. Since τ has a
PW-support, a maxRPWC algorithm will discover this and will continue to check the
next constraint intersecting c1. However, since τ ′[x4] is greater than τ [x4], it is clear
that there is no PW consistent tuple in c2 that includes values 2 and 1 for x3 and x4
respectively. If we assume that τ is the last GAC-support of (x1, 0) then maxRPWC+
will detect this and will delete 0 from D(x1), while a maxRPWC algorithm will not.

Function 4 checkPWtuple (ci, τ, ck,max τ
′)

1: for each xk ∈ scp(ck) do
2: if xk /∈ scp(ck) ∩ scp(ci) then
3: if max τ ′[xk] is last value in D(xk) then continue;
4: else break;
5: else
6: if max τ ′[xk] < τ [xk] then break;
7: if max τ ′[xk] > τ [xk] then return >;
8: return max τ ′;

Function checkPWtuple (Function 4) checks if there can exist a tuple greater or
equal tomax τ ′ that has the same values for the variables of the intersection as τ . Cru-
cially, this check is done in linear time as follows: Assuming max τ ′ = 〈(x1, a1), ...,
(xm, am)〉 then this tuple is scanned from left to right. If the currently examined vari-
able xk belongs to scp(ck) ∩ scp(ci) and ak > τ [xk], where ak is the value of xk in
max τ ′, then we conclude that there can be no PW-support for τ in ck (line 7). If xk
does not belong to scp(ck)∩scp(ci) then if the value it takes inmax τ ′ is the last value
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in its domain, we continue searching (line 3). Otherwise, the scan is stopped because
there may exist a tuple larger or equal to max τ ′ that potentially is a PW-support of τ .
However, max τ ′ can still be used to avoid searching for a PW-support from scratch.
Hence it is returned to seekPWsupport.

The soundness of the described process is guaranteed by the assumption that tuples
in relations are stored in lexicographical order, which is typically the case. Given this
assumption, it is certain that if a tuple τ which we try to extend to a PW-support is lex-
icographically smaller than max τ ′, with respect to the values of the shared variables,
then there can be no PW-support for τ . Otherwise, the lexicographical order would be
violated.

3.1.3 Searching for PW-support

In case no inconsistency is detected through the fast check, then the search for a PW-
support for τ begins, starting with the tuple τ ′ returned from checkPWtuple. We first
check if τ ′ is an allowed tuple using binary search in a similar way to GAC-va. How-
ever, since there are more than one variables in the intersection of ci and ck, the ques-
tion is which list of allowed tuples to consider when searching. Let us assume that the
search will be performed on the list allowed(ck, xch, τ ′[xch]) of variable xch. After
describing the process, we will discuss possible criteria for choosing this variable.

Binary search will either return τ ′ if it is indeed allowed, or the lexicographically
smallest allowed tuple τ ′′ that is greater than τ ′, or> if no such tuple exists. In the first
case a PW-support for τ has been located and it is returned. In the third case, no PW-
support exists. In the second case, we check if τ ′′ is valid, by using function isValid and
if so, then it constitutes a PW-support for τ . Otherwise, function setNextTuple is called
taking τ ′′ and returning the smallest valid tuple for scp(ck) that is lexicographically
greater than τ ′′, such that τ ′[scp(ck) ∩ scp(ci)] = τ [scp(ck) ∩ scp(ci)] (line 9). If
setNextTuple returns > the search terminates, otherwise, we continue to check if the
returned tuple is allowed as explained above, and so on.

3.1.4 Selecting the list of allowed tuples

Since there are |scp(ck)∩scp(ci)| variables in the intersection of ci and ck, there is the
same number of choices for the list of allowed tuples to be searched. Obviously, the
size of the lists is a factor that needs to be taken into account. The selection of xch (line
4 of Function 3) can be based on any of the following (and possibly other) criteria:

1. Select the variable xch having minimum size of allowed(ck, xch, τ ′[xch]).

2. Select the variable xch having the minimum number of tuples between τ ′ and >
in allowed(ck, xch, τ ′[xch]).

3. Select the leftmost variable in scp(ck) ∩ scp(ci).

4. Select the rightmost variable in scp(ck) ∩ scp(ci).

The first heuristic considers a static measure of the size of the lists. The second
considers a more dynamic and accurate measure. In the experiments, presented below,
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we have used the fourth selection criterion. Although this seems simplistic, as Exam-
ple 2 demonstrates, there are potentially significant benefits in choosing the rightmost
variable.

Example 2 Consider a constraint ck on variables x1, . . . , x4 with domains D(x1) =
D(x4) = {0, . . . , 9} and D(x2) = D(x3) = {0, 1}. Assume that we are seeking a
PW-support for tuple τ of constraint ci in ck. Also, scp(ck) ∩ scp(ci) = {x1, x4},
τ [x1] = 1, τ [x4] = 0, and |allowed(ck, x1, 1)| = |allowed(ck, x4, 0)|. Figure 1
(partly) shows the lists allowed(ck, x1, 1) and allowed(ck, x4, 0). If we choose to
search for a PW-support in allowed(ck, x1, 1) then in the worst case binary search will
traverse the whole list since tuples with value 0 for x4 are scattered throughout the list.
In contrast, if we choose allowed(ck, x4, 0) then search can focus in the highlighted
part of the list since tuples with value 1 for x1 are grouped together.

1           0          0          0 

1           0          0          9 
....         ...         ...         ... 

1           1          0          0 

1           1          0          9 

1           1          1          9 
....         ...         ...         ... 

....         ...         ...         ... 

0           0          0          0 

0           1          1          0 
1           0          0          0 
....         ...         ...         ... 

....         ...         ...         ... 

1           1          1          0 
....         ...         ...         ... 
9           1          1          0 

x1 x2 x3 x4 x1 x2 x3 x4 

Figure 1: allowed(ck, x1, 1) and allowed(ck, x4, 0).

3.2 Theoretical Results
We now analyze the worst-case complexity of the revisePW+ function of maxRPWC+.
The symbols M , N , S are explained in the proof.

Proposition 1 The worst-case time complexity of revisePW+(ci, xj) is O(d.e.N.M(d+
k.log(S))).

Proof: Let us first consider the complexities of the individual functions called by
seekPWsupport. The cost of setNextTuple to construct a valid tuple for the variables
that do not belong to the intersection is O(d+(k−fmin)). The cost of checkPWtuple is
linear, since it requires at most O(k) checks to determine if any of xk ∈ ck is inconsis-
tent with τ [xk]. The worst-case time complexity of binarySearch is O(k.log(S)) with
S = |allowed(ck, xch, τ ′[xch])|. The worst-case time complexity for one execution of
the loop body is then O(d+(k−fmin)+k.log(S))=O(d+k.log(S)). Let us assume that
M is the number of sequences of valid tuples that contain no allowed tuple, and for each
tuple τ ′′ belonging to such a sequence τ ′′[scp(ck) ∩ scp(ci)] = τ [scp(ck) ∩ scp(ci)].
Then M bounds the number of iterations of the while loop in seekPWsupport. There-
fore the worst time complexity of seekPWsupport is O(M(d+ k.log(S))).

The cost of isPWconsistent+ is O(e.M(d + k.log(S))), since in the worst case
seekPWsupport is called once for each of the at most e intersecting constraints. The
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maximum number of iterations for the while loop in revisePW+ is N , where N is the
number of sequences of valid tuples in ci containing no allowed tuple. The cost of one
call to seekSupport-va is O(d+ k.log(S)) [23]. Therefore, for d values the complexity
of revisePW+ is O(d.N(e.M(d + k.log(S)) + (d + k.log(S))))=O(d.e.N.M(d +
k.log(S))).2

Note that M and N are at most tck + 1 and tci + 1 respectively, since in the worst
case there is a sequence of valid tuples in between every pair of consecutive allowed
tuples in a constraint’s relation.

The complexity given by Proposition 1 concerns one call to revisePW+ for one
constraint. If revisePW+ is embedded within an AC3-like algorithm (as maxRPWC1
is) to achieve the propagation of all constraints in the problem then the worst-case
time complexity of maxRPWC+ will be O(e2.k.d2.N.M(d + k.log(S)))) since there
are e constraints and each one is enqueued dk times in the worst case (i.e., once for
each value deletion from a variable in its scope). Assuming the implementation of
described by Lecoutre and Szymanek [23], the space complexity of maxRPWC+ is
O(e.k.|allowed(c, x, a)| + e.k.d), where |allowed(c, x, a)| is the maximum size of
any constraint’s relation and ekd is the space required for the Last structure.

Regarding the pruning power of maxRPWC+, it is easy to show that the local con-
sistency it achieves is strictly stronger than GAC (the arguments in the discussion on
the pruning power of restricted maxRPWC are directly applicable). Also, the local
consistency achieved by maxRPWC+ is incomparable to maxRPWC. This is because a
maxRPWC algorithm may achieve stronger pruning than maxRPWC+ due to the detec-
tion of PW-support loss in addition to maxRPWC-support loss. On the other hand, the
fast check for lack of PW-support enables maxRPWC+ to prune extra values compared
to maxRPWC.

Proposition 2 maxRPWC+ achieves a local consistency that is incomparable to maxR-
PWC.

Proof: For an example where maxRPWC+ achieves more pruning than a maxRPWC
algorithm consider Example 1. For the opposite consider a problem with 0-1 domains
that includes two constraints c1 and c2 with scp(c1) = {x1, x2, x3} and scp(c2) =
{x2, x3, x4} having the allowed tuples {(0, 0, 0), (1, 0, 1), (1, 1, 0)} and {(0, 0, 0),
(0, 1, 1), (1, 0, 1)} respectively. Now assume that value 0 is deleted from D(x4) which
means that tuple (0, 0, 0) of c2 will be invalidated. maxRPWC+ will revise all other
variables involved in c2 and only check for maxRPWC-support loss. Both values for
x2 and x3 have maxRPWC-supports on c2 so no deletion will be made. On the other
hand, a maxRPWC algorithm will also check for PW-support loss by looking at con-
straint c1. It will discover that value 0 of x1 is no longer maxRPWC (its GAC-support
has no PW-support on c2) and will therefore delete it. 2

3.3 A lighter version of maxRPWC+
Although maxRPWC+ removes many redundancies that are inherent to generic algo-
rithms through the exploitation of the Last data structure, it suffers from an important
drawback: the overhead required for the restoration of Last after a failed instantiation.
One way around this problem is to use Last as a residue. That is, as a list of supports
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that have been most recently discovered but are not maintained/restored during search.
The resulting algorithm does not remove all the redundancies that maxRPWC+ does, but
it is much cheaper to apply during search. This is similar to the relation between the op-
timal AC algorithm AC2001/3.1 [6] and the residue-based AC3rm [21], as well as,
the optimal maxRPC algorithm maxRPC3 and its corresponding residue-based version
maxRPC3rm [2].

The residue-based version of maxRPWC+, which hereafter is called maxRPWC+r,
is an algorithm that exploits backtrack-stable data structures inspired from AC3rm and
maxRPC3rm (rm stands for multidirectional residues). The Last structure is not
maintained incrementally as by maxRPWC+, but it is only used to store residues. As
explained, a residue is a support which has been located and stored during the execu-
tion of the procedure that proves that a given tuple is maxRPWC. The algorithm stores
the most recently discovered support, but does not guarantee that any lexicographically
smaller value is not a maxRPWC-support. Consequently, when we search for a new
maxRPWC-support in a table, we always start from scratch. Last need not be restored
after a failure; it can remain unchanged, hence a minimal overhead on the management
of data.

To obtain the residue-based maxRPWC+r algorithm, we need to make the following
simple modifications. In Function 2 we omit line 8, since Lastck,xk,τ [xk] may not be
the lexicographically smallest tuple in ck and thus, we cannot locate the max τ ′ tuple.
Subsequently, in Function 3 max τ ′ is set to setNextTuple(ci, τ, ck,⊥) (namely the
search for a PW-support in ck starts from scratch). Additionally, the fast check for lack
of PW-support, handled in checkPWtuple (line 2) is not feasible. Lines 1-3 of Function
3 are replaced with the following two:

1: max τ ′ ← setNextTuple(ci, τ, ck,⊥);
2: if max τ ′ = > then return >;
Regarding the time complexity of maxRPWC+r, the cost of calling Function re-

visePW+ once is the same as in maxRPWC+. However, if we consider that repeated
calls may be required due to the effects of constraint propagation then the complexity
of maxRPWC+r for the whole problem is O(e2.k.d3.N.M(d+ k.log(S)))).

Finally, regarding the pruning power of maxRPWC+r it is easy to see that this
algorithm achieves a local consistency that is stronger than GAC (again the arguments
in the discussion on the pruning power of restricted maxRPWC are directly applicable).
Also, it achieves a local consistency weaker than maxRPWC+ since the two algorithms
are essentially the same, minus the fast check for lack of PW-support.

4 Extending STR to a higher-order consistency
Algorithms based on STR, especially STR2 and STR3, have been shown to be the
most efficient GAC algorithms for table constraints, along with the MDD approach of
[9]. The idea of STR algorithms is to dynamically maintain the tables of supports
while enforcing GAC, based on an optimization of simple tabular reduction (STR), a
technique proposed by J. Ullmann [34].
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4.1 The HOSTR* algorithm
In this section we present ways to extend STR algorithms in order to achieve more
pruning than GAC. From now on we call these algorithms HOSTR*, which is derived
from higher-order STR. The ’*’ stands for a particular STR algorithm (i.e., when ex-
tending STR2 we name the algorithm HOSTR2).

Algorithm 5 presents the main framework for HOSTR by extending the basic STR
algorithm to achieve a stronger consistency. We choose to present an extension of STR
as opposed to STR2 and STR3 because of STR’s simplicity. STR2 and STR3 can be
extended in a very similar way.

We now present the data structures used by STR and HOSTR.

• rel[c] : is the set of allowed tuples associated with a positive table constraint c.
This set is represented by an array of tuples indexed from 1 to tc which denotes
the size of the table (i.e., the number of allowed tuples).

• position[c]: is an array of size tc that provides indirect access to the tuples of c.
At any given time the values in position[c] are a permutation of {1, 2, . . . , tc}.
The ith tuple of c is rel[c][position[c][i]]. The use of this data structures enables
restoration of deleted tuples in constant time.

• currentLimit[c]: is the position of the last current tuple in rel[c]. The cur-
rent table of c is composed of exactly currentLimit[c] tuples. The values in
position[c] at indices ranging from 1 to currentLimit[c] are positions of the
current tuples of c.

• pwV alues[x]: is a set for each variable x, that contains all values inD(x) which
are proved to have a PW-support when HOSTR is applied on a constraint c. STR
uses a similar data structure to store the values that are GAC-supported.

• Xevt is a set of variables. After HOSTR has finished processing a constraint c,
Xevt will contain each variable x ∈ scp(c) s.t. at least one value was removed
from D(x).

Propagation in STR based algorithms can be implemented by means of a queue
that handles constraints. Once a constraint is removed from the queue, STR iterates
over the valid tuples in the constraint until currentLimit[c] is reached. STR removes
any tuple that has become invalid through the deletion of one of its values (just like the
while loop in Algorithm 5). Importantly, when a tuple is removed it still remains in
rel[c]; its index is swapped in position[c] with the index pointed by currentLimit[c]
(i.e., the index of the last valid tuple of rel[c]) in constant time. Additionally, the
only information that is restored upon backtracking is currentLimit[c] instead of the
removed tuples. Thus, after finishing the while loop iteration, only valid and allowed
tuples are kept in tables. Any value that are no longer supported, are deleted (the for
loop in Algorithm 5).

HOSTR is identical to STR, except for the extra PW-check it applies when a tuple
is verified as valid. To be precise, if an allowed tuple τ is proved valid by function
isValid then HOSTR checks if it is also PW-consistent. This is done by calling the
isPWConsistent-STR function (line 7).
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We omit the detailed description of functions isValid and removeTuple, which can
be found in [18]. Briefly, isValid takes a tuple τ and returns true iff none of the values in
τ has been removed from the domain of the corresponding variable. removeTuple again
takes a tuple τ and removes it in constant time by replacing position[c][i], where i is
the position of τ in rel[c], with position[c][currentLimit[c]] (namely by swapping in-
dexes and not tuples) and then decrementing currentLimit[c] by one. As a result this
procedure violates the lexicographic ordering of the remaining tuples in position[c].

Algorithm 5 HOSTR* (c: constraint): set of variables
1: for each unassigned variable x ∈ scp(c) do
2: pwV alues[x]← ∅;
3: i← 1;
4: while i ≤ currentLimit[c] do
5: index← position[c][i];
6: τ ← rel[c][index];
7: if isValid(c, τ ) AND isPWconsistent-STR(c,τ ) then
8: for each unassigned variable x ∈ scp(c) do
9: if τ [x] /∈ pwValues[x] then

10: pwValues[x]← pwValues[x] ∪{τ [x]};
11: i← i + 1;
12: else
13: removeTuple(c, i); // currentLimit[c] decremented

// domains are now updated and Xevt computed
14: Xevt ← ∅;
15: for each unassigned variable x ∈ scp(c) do
16: if pwValues[x] ⊂ D(x) then
17: D(x)← pwValues[x];
18: if D(x) = ∅ then
19: throw INCONSISTENCY;
20: Xevt ← Xevt ∪ {x};
21: return Xevt;

Once a tuple τ of constraint c has been verified as valid, Function isPWconsistent-
STR of HOSTR is called. This function iterates over each constraint ck that intersects
with c on at least two variables and searches for a PW-support for τ . If τ has no PW-
support on some ck then it will be removed in line 13 of Algorithm 5.

Once the traversal of the valid tuples has terminated, HOSTR (and STR) updates the
Xevt set to include any variable that belongs to scp(c) and has had its domain reduced
(lines 14-21). Thereafter, all constraints that involve at least one variable in Xevt will
be added to the propagation queue.

Concerning the implementation of isPWconsistent-STR, there are several options,
with each one resulting in a different variant of HOSTR. The following variants differ
in the way search for a PW-support is implemented.

1. Linear: For each constraint ck isPWconsistent-STRl iterates in a linear fashion
over each τ ′ that currently belongs to rel[ck] to locate a valid tuple such that
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τ ′[scp(ck) ∩ scp(c)] = τ [scp(ck) ∩ scp(c)], until currentLimit[ck] is reached.
This version does not require the use of any additional data structures.

2. Binary: For each constraint ck isPWconsistent-STRb locates a τ ′ by applying
a binary search on the initial rel[ck]. Then it checks its validity and whether it
satisfies the condition τ ′[scp(ck)∩scp(c)] = τ [scp(ck)∩scp(c)]. A requirement
of this version is that the original table is stored. Note that binary search on the
current tables as they are stored by STR is not possible since the lexicographic
ordering of the tuples is violated.

3. STR/maxRPWC+ Hybrid: In addition to the data structures of STR, this ver-
sion keeps the allowed(c, x, a) lists of maxRPWC+ (see Section 3). Then, fol-
lowing maxRPWC+, for each constraint ck isPWconsistent-STRh visits the lists
of valid and allowed tuples in an alternating fashion, using binary search, to lo-
cate a valid tuple τ ′ such that τ ′[scp(ck) ∩ scp(c)] = τ [scp(ck) ∩ scp(c)].

Hereafter, we denote by HOSTRl (respectively HOSTRb, HOSTRh) the HOSTR al-
gorithm that utilizes the function isPWconsistent-STRl (respectively isPWconsistent-
STRb, isPWconsistent-STRh).

In practice, the STR/maxRPWC+ hybrid approach (i.e., HOSTRh) is by far the
most efficient among the above methods. isPWconsistent-STRh which implements this
method closely follows the operation of maxRPWC+ when looking for a PW-support,
minus the usage of the Last structure. This is displayed in Function 6. For each ck
isPWconsistent-STRh calls function setNextTuple to find the lexicographically smallest
valid tuple in ck, such that τ ′[scp(ck) ∩ scp(c)] = τ [scp(ck) ∩ scp(c)]. The search in
ck (line 2) starts from scratch (i.e., ⊥), since HOSTR does not store information about
recently found maxRPWC-supports. If no such tuple exists, setNextTuple returns >,
and the search terminates since no PW-support for τ exists in ck. Else, we check if τ ′

is an allowed tuple using binary search as explained in Function 3.

Function 6 isPWconsistent-STRh(c, τ): boolean
1: for each ck 6= c s.t. |scp(ck) ∩ scp(c)| > 1 do
2: τ ′ ← setNextTuple(c, τ, ck,⊥);
3: xch ← select a variable ∈ scp(c) ∩ scp(ck);
4: while τ ′ 6= > do
5: τ ′′ ← binarySearch(allowed(ck, xch, τ ′[xch]),τ ′);
6: if τ ′′ = τ ′ OR isValid(ck, τ ′′) then return TRUE;
7: if τ ′′ = > then return FALSE;
8: τ ′ ← setNextTuple(c, τ, ck, τ ′′);
9: return TRUE;

4.2 Theoretical Results
For a given constraint c, the worst-case time complexity of STR is O(k′d+kt′), where
k′ denotes the number of uninstantiated variables in scp(c) and t′ denotes the size
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of the current table of c [18]. The worst-case space complexity of STR is O(ekt).
We now give the worst-case time complexity of HOSTR when implemented using the
STR/maxRPWC+ Hybrid approach.

Proposition 3 The worst-case time complexity of HOSTR for the processing of one
constraint is O(k′.d+ k.t′(e.M(d+ k.log(S)))).

Proof: HOSTR is identical to STR with the addition of the call to isPWconsistent-STRh

each time a valid tuple is verified. The time complexity of Function isPWconsistent-
STRh is O(e.M(d+ k.log(S))) (see the proof of Proposition 1 for details). Therefore,
the worst-case time complexity of HOSTR is O(k′.d+ k.t′(e.M(d+ k.log(S)))). 2

If HOSTR is embedded within an AC-3 like algorithm to propagate all constraints
then the time complexity will be O(e.d.k.(k′.d + k.t′(e.M(d + k.log(S))))) since
there are e constraints and each one is enqueued dk times in the worst case (i.e., once
for each value deletion from a variable in its scope). The space complexity of HOSTR
is O(e(kt + k.|allowed(c, x, a)|)) since in addition to the original tables we need the
allowed(c, x, a) lists.

Now we prove that HOSTR, implemented in any of the above ways, achieves a local
consistency that is incomparable to that achieved by maxRPWC+ and to maxRPWC,
and is weaker than FPWC.

Proposition 4 The local consistency achieved by HOSTR is incomparable to that achie-
ved by maxRPWC+.

Proof: First, consider the problem in Example 1. Since max τ ′ is lexicographically
greater than the PW-support of τ on c2 (let us assume that this is the only PW-support
for τ ), this tuple must be PW inconsistent. This means that when HOSTR processes c2
it will delete this tuple. If, however, this does not cause any value deletions then it will
not be propagated any further and c1 will not be processed. Hence, HOSTR will not be
able to delete 0 from D(x1). As explained in Example 1, maxRPWC+ will be able to
make this deletion.

To show that HOSTR can delete values that maxRPWC+ cannot delete, consider the
problem depicted in Figure 2. There are five variables x1, . . . , x5 with {0, 1} do-
mains and one variable (x6) with domain 0. There are three table constraints with their
allowed tuples shown in Figure 2. Value 0 of x1 has tuple (0,0,0) as GAC-support in
rel[c1]. This tuple has the PW-support (0,0,0,0) in rel[c2], and therefore if maxRPWC+
is applied it will not delete it (as it will not delete any other value). Now assume that
HOSTR processes c2 first. Tuple (0,0,0,0) does not have a PW-support in c3, and there-
fore it will be removed. When c1 is processed, HOSTR will determine that tuple (0,0,0)
has no PW-support in c2, since (0,0,0,0) has been deleted, and will therefore be re-
moved. As a result, value 0 of x1 will loose its only GAC-support in c1 and will be
deleted. 2

The extra pruning achieved by HOSTR compared to maxRPWC+ in the above ex-
ample is a direct consequence of the fact that HOSTR, like STR, removes tuples from
constraint relations. Now note that if constraint c1 is processed first in the example
then no value deletion will be made. This is because when c1 is processed tuple (0,0,0)
in rel[c1] will have the PW-support (0,0,0,0) in rel[c2] and therefore value 0 of x1 will
not be deleted. When c2 is later processed, tuple (0,0,0,0) will indeed be removed but
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no value from any of the variables in scp(c2) will be deleted. This means that Xevt

will be empty and as a result no constraint will be added to the propagation queue.
Therefore, c1 will not be processed again. Hence, the pruning power of HOSTR cannot
be characterized precisely because it depends on the ordering of the propagation queue.

C1: {X1, X2, X3}    C2:{X2, X3, X4, X5}    C3: {X4, X5, X6} 
        0    0    0             0    0    0    0                0    1    0 
        1    0    1             0    1    1    0                1    0    0 
        1    1    0             1    0    0    1 

C1                                        C3C2

C1: {X1, X2, X3}    C2:{X2, X3, X4, X5}    C3: {X4, X5, X6} 
       0    0    0           0    0    0    0              0    1    0 
       1    0    1           0    1    1    0              1    0    0 
       1    1    0           1    0    0    1 

Example 1

 X1        X2        X3              X4       X5         X6

C1                                             C3
C2

Example 2

X1 is extracted from Q and all its values are 
checked for being maxRPWC. For X12=0  
maxRPWC+ will detect that (0,0,0,0)  is a PW-
support fro it in C2 and move to X1=1.  On the 
other hand, maxRPWC1 will check if all variables 
of C2 are maxRPWC. 

X1       X2       X3          X4       X5       X6

Figure 2: HOSTR vs. maxRPWC+.

Proposition 5 The local consistency achieved by HOSTR is incomparable to maxR-
PWC.

Proof: First, consider the example of Figure 2. If maxRPWC is applied on this problem
it will achieve no pruning. But as explained in the proof of Proposition 4, HOSTR
will delete value 0 of x1 if c2 is processed before c1. Therefore, HOSTR can achieve
stronger pruning than a maxRPWC algorithm.

Now consider the example in the proof of Proposition 2. After the deletion of value
0 from D(x4), HOSTR will add x4 to Xevt and enqueue c2. When c2 is then processed
no value deletion will be made and therefore propagation will stop. On the other hand,
as explained, a maxRPWC algorithm will delete value 0 from D(x1). 2

Proposition 6 HOSTR achieves a local consistency that is strictly weaker than PWC+
GAC.

Proof: We first show that any deletion made by HOSTR will also be made by an al-
gorithm that applies FPWC. HOSTR will delete a tuple τ ∈ rel[c] if τ is invalid or if
Function isPWconsistent-STRh cannot find a PW-support for τ on some constraint c′.
By definition, applying PWC deletes any value that is invalid or not PWC. Hence, it
will also delete τ . Correspondingly, HOSTR will delete a value a ∈ D(x) if it does
not participate in any valid and PW consistent tuple on some constraint c that involves
x. Considering an algorithm that applies FPWC, the PWC phase will delete all invalid
and PW inconsistent tuples from rel[c]. Hence, the application of GAC that follows
will delete a.

Finally, consider the example in Figure 2. As explained, if c1 is processed before
c2, HOSTR will achieve no pruning. In contrast, and independent of the order in which
constraints are processed, the application of PWC will remove tuple (0,0,0,0) from
rel[c2] and because of this tuple (0,0,0) will be removed from rel[c1]. Then when
GAC is applied value 0 will be removed from D(x1) because it will have no support in
c1. Hence, FPWC is strictly stronger than HOSTR. 2
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4.3 A stronger version of HOSTR
Motivated by the inability to precisely characterize the pruning power of HOSTR due to
its dependence on the propagation order, we propose a simple modification to HOSTR
which achieves a stronger consistency property that can be precisely characterized.
This algorithm, which we call full HOSTR (fHOSTR) differs from HOSTR in the fol-
lowing: If after traversing the tuples of a constraint c, at least one tuple has been re-
moved then all variables that belong to scp(c) are added to Xevt. This means that all
constraints that involve any of these variables will be then added to the propagation
queue. Recall that HOSTR adds a variable to Xevt only if a value has been deleted
from the domain of this variable.

It is easy to see that in the example in Figure 2 fHOSTR will make the same
value and tuple deletions as a FPWC algorithm. Generalizing this, we now prove that
fHOSTR achieves the level of consistency of FPWC.

Proposition 7 Algorithm fHOSTR achieves FPWC.

Proof: We show that any deletion made by applying FPWC will also be made by
fHOSTR. Consider any value a that is removed from a domain after FPWC is applied.
This is because all supports for this value on some constraint c have been deleted.
These tuples were deleted because they are not valid or not PWC. In the former case,
since fHOSTR fully includes the operation of STR, it will delete any invalid tuple
when processing constraint c and therefore will also delete value a. In the latter case,
consider the deletion of any tuple τ because it is not PWC. This means that all of τ ’s
PW-supports on some constraint c′ have been deleted. When processing c′, once the
last PW-support of τ is deleted, fHOSTR will enqueues all constraints that intersect
with c′, including c. Then when c is processed, fHOSTR will not be able to find a
PW-support for τ on c′ and will thus delete it. Hence, all support of a will be deleted
and as a result a will be deleted. 2

To complete the theoretical analysis of the algorithm’s pruning power, we now
show that fHOSTR achieves a local consistency that is strictly stronger than that achieved
by maxRPWC+.

Proposition 8 The local consistency achieved by fHOSTR is strictly stronger than that
achieved by maxRPWC+.

Proof: First we show that any deletion made by maxRPWC+ will be also made by
fHOSTR. Consider a value a that is removed from D(x) after maxRPWC+ is applied.
This is because either:

1. a is not GAC,

2. no GAC-support of a on a constraint c has a PW-support on some constraint ck,

3. the deletion is triggered by the “fast check for lack of PW-support”.

In the first case, the STR step of fHOSTR will obviously discover that a is not GAC. In
the second case, the lack of PW-support for a tuple τ that includes a on some constraint
ck means that no potential PW-support for τ is valid. When fHOSTR processes tuple τ
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of c it will try to extend it to a PW-support in all intersecting constraints. Hence, it will
consider ck and recognize that τ has no valid PW-support in ck. The same argument
holds for all the GAC-supports of a in c.

Finally, if a is deleted by the “fast check for lack of PW-support” then the following
must hold for each PW-consistent GAC-support τ for a in some constraint c. Any
PW-support τ ′ of τ in some ck is lexicographically smaller than Lastck,xi,b, where
xi ∈ scp(ck) is a variable that belongs to the intersection of c and ck and b is its value
in τ ′. maxRPWC+ must have moved the pointer Lastck,xi,b to some tuple τ ′′ beyond
the PW-supports of τ because when trying to find a PW consistent GAC-support for
b in ck, all tuples lexicographically smaller than τ ′′, including all the PW-supports
of τ , were determined as PW inconsistent. Now when fHOSTR processes ck it will
determine that all the PW-supports of τ are not themselves PW consistent and will
thus delete them. Therefore, all constraints that involve variables in scp(ck), including
c, will be enqueued. When c is later processed, no PW-support for τ (or any of a’s
GAC-supports in general) will be found, and thus a will be deleted.

For an example where fHOSTR achieves stronger pruning than maxRPWC+ con-
sider the second example in the proof of Proposition 4. 2

Algorithm fHOSTR achieves a stronger local consistency than maxRPWC+ and
HOSTR but has a serious drawback: Its time complexity, when embedded within an AC-
3 like algorithm to propagate all constraints, is O(e2.t.(k′.d+k.t′(e.M(d+k.log(S)))))
since there are e constraints and each constraint c is enqueued O(et) times in the worst
case (i.e., once for each tuple deletion from a constraint intersecting c). This complex-
ity is prohibitive for large table constraints.

Figure 3 summarizes the relationships between the algorithms discussed throughout
this paper with respect to their pruning power. Note that by GAC, maxRPWC, and
FPWC we mean any algorithm that achieves these local consistency properties.

FPWC fHOSTR HOSTR maxRPWC+r GAC

maxRPWC maxRPWC+

equivalent strictly stronger incomparable

Figure 3: Summary of the relationships between algorithms.

5 Experiments
We ran experiments on benchmark non-binary problems with table constraints from
the CSP Solver Competition2. The arities of the constraints in these problems range
from 3 to 18. We tried the following classes: forced random problems, random prob-
lems, positive table constraints, BDD, Dubois, and Aim. These classes represent a large
spectrum of instances with positive table constraints that are very commonly used for

2http://www.cril.univ-artois.fr/CPAI08/
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the evaluation of GAC algorithms and additionally, non-trivial intersections exist be-
tween their constraints. The first two classes only include constraints of arity 3, while
the others include constraints of large arity (up to 18). Note that there exist classes
of problems with table constraints where maxRPWC and similar methods do not offer
any advantage compared to GAC because of the structure of the constraints. For exam-
ple, on crossword puzzles constraints intersect on at most one variable. Our algorithms
cannot achieve extra filtering compared to GAC in such problems and thus we have not
included them in this study.

In more detail, the 150 tried instances belong to classes that have the following
attributes:

• The first two series Random-fcd and Random involve 20 variables and 60 ternary
relations of almost 3,000 tuples each.

• The series BDD involves 21 Boolean variables and 133 constraints generated
from binary decision diagrams of arity 18 that include 58,000 tuples.

• The two series Positive table-8 and Positive table-10 contain instances that in-
volve 20 variables. Each instance of the series Positive table-8 (resp.,Positive
table-10) involves domains containing 5 (resp. 10) values and 18 (resp. 5) con-
straints of arity 8 (resp. 10). The constraint tables contain about 78,000 and
10,000 tuples, respectively.

• The Dubois class contains instances involving 80 Boolean variables and quater-
nary constraints.

• The Aim-100 and Aim-200 series involve 100 and 200 Boolean variables respec-
tively, with constraints of small arities (mainly ternary and a few binary).

The algorithms were implemented within a CP solver, written in Java, and tested on
an Intel Core i5 of 2.40GHz processor and 4GB RAM. A CPU time limit of 6 hours was
set for all algorithms and all instances. Search used the dom/ddeg heuristic for variable
ordering and lexicographical value ordering. We have chosen dom/ddeg [5] as opposed
to the generally more efficient dom/wdeg [8] because the decisions made by the latter
are influenced by the ordering of the propagation queue making it harder to objectively
compare the pruning efficiency of the algorithms [3]. Having said this, experiments
with dom/wdeg did not give significantly different results compared to dom/ddeg as far
as the relative efficiency of the algorithms is concerned.

We present results from our baseline implementations of STR2 and maxRPWC1,
upon which the new algorithms were built, compared to the proposed algorithms,
HOSTR2h, maxRPWC+ and maxRPWC+r. For maxRPWC1 we used its residual ver-
sion in order to avoid the maintenance of the LastGAC structure during search. This
resulted in faster run times. We also include results from our later designed algorithm
eSTR2w. We do not include results from fHOSTR2h, since its restricted version, that
approximates FPWC, is always more efficient. The differences between fHOSTR2h

and HOSTR2h in favour of the latter range from being marginal to 3 times faster. As
explained in Section 4.3 this is due to the high cost of applying the full algorithm.
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Finally, we also compare our algorithms to the state-of-the-art solver Abscon3.
Specifically, we compare against Abscon’s implementations of the GAC algorithms
GAC-va and STR2, denoted by GAC-va abs and STR2 abs respectively. Although
Abscon’s implementation is much more optimized than ours, these results help to put
our contributions in context of modern CP solvers and point out classes of problems
where our methods are very effective.

5.1 Preprocessing
Table 1 shows the mean CPU times (in milliseconds) obtained by the tested algorithms
on each problem class for the initialization (i) and the preprocessing (p) phase. During
initialization, the data structures of a specific algorithm are initialized, while prepro-
cessing includes one run of a specific filtering algorithm before the search commences.
Therefore, initialization time is the time required for each algorithm to construct all
its structures, while preprocessing time is the time for a stand alone use of a specific
algorithm.

Our implementation for STR2 is the fastest algorithm in the initialization phase in
all tested classes, while both Abscon’s GAC algorithms are faster in the preprocessing
phase. It is notable that STR2 abs and GAC-va abs require at least one order of
magnitude more time to construct their structures compared to our STR2, hinting that
they utilize intricate data structures that are later exploited throughout search (e.g., for
fast restoration upon backtracking).

Table 1: Mean CPU times of the initialization (i) and the preprocessing (p) phase in
milliseconds from various problem classes.

Problem Class STR2 STR2 abs GAC-va abs maxRPWC1 HOSTR2h maxRPWC+r maxRPWC+ eSTR2w

Random-fcd i 31 646 678 115 345 202 263 689
p 111 15 0 696 399 154 250 97

Random i 19 644 677 10 249 249 272 616
p 87 17 0 738 291 186 247 85

Positive table-8 i 83 2,654 3,280 5 1,305 1,510 1,628 76,062
p 271 82 0 2,891 36,621 343 359 952

Positive table-10 i 2 601 653 0 236 263 304 12,214
p 47 34 2 4,997,817 363,000 620,210 772,193 20

BDD i 237 697 755 123 10,017 8,530 8,334 mem
p 1,415 622 6 477,497 2,218 6,159 16,875 mem

Dubois i 10 423 415 12 13 10 12 10
p 0 2 0 5 0 2 2 2

Aim-100 i 108 431 435 126 244 111 195 213
p 2 3 2 160 19 19 38 12

Aim-200 i 397 513 492 303 465 270 280 319
p 4 1 4 174 30 53 97 11

Algorithms for strong local consistencies, as expected, spend extra time to record
the intersections of the constraints during the initialization, while they are more ex-
pensive when they are applied stand-alone (i.e., during preprocessing). Interestingly,
maxRPWC1 has low initialization times, since it does not use the allowed data struc-
ture that most proposed strong local consistency algorithms use. On the contrary,

3http://www.cril.univ-artois.fr/∼lecoutre/software
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maxRPWC1 is by far inferior compared to all other algorithms during preprocessing.
Particularly, on Positive table-8 and Positive table-10 it is more than two orders of
magnitude worse than all proposed algorithms.

Regarding the initialization times of the three proposed strong consistency algo-
rithms, maxRPWC+r appears to be the fastest. HOSTR2h needs more time for the
initialization since it uses the structures of both STR2 and maxRPWC+. Concerning
the preprocessing, results are more varied since there are classes where maxRPWC+r
dominates HOSTR2h and vice versa. This is due to the different approaches of STR-
like and GAC-va-like algorithms, as the former iterate over tuples and the latter over
values and tuples, thus it is not clear which one is preferable for stand-alone use. On
the other hand, it is clear that maxRPWC+r, being lighter, is faster than maxRPWC+.

eSTR2w is the fastest algorithm during preprocessing among the strong algo-
rithms. Particularly, its times are very close to the ones of STR2 due to their close
time-complexity. On the contrary, it requires more time for the initialization phase in
order to build its structures. This is evident especially on Positive table-8 and Positive
table-10 because the tables are long and constraints intersect on many variables (7 and
8 respectively). On BDD, where constraints intersect on 16 variables, eSTR2w reveals
its main drawback as it exhausts all of the available memory.

Finally, the high preprocessing times for all proposed methods on the Positive table-
10 class are due to the high memory consumption on these large instances. However,
as we show below, preprocessing by these algorithms is able to determine the unsatis-
fiability of the instances without requiring search. However, on Positive table-8 both
maxRPWC+ and maxRPWC+r are very close to STR2 and two (resp. one) orders of
magnitude faster compared to HOSTR2h (resp. maxRPWC1) preprocessing times.

5.2 Search
In Table 2 we present selected representative results from search algorithms that apply
the tested filtering algorithms throughout search, while in Table 3 we give the mean and
median performance of the search algorithms in each problem class4. Note that results
from class Aim-200 were obtained using the dom/wdeg variable ordering heuristic. This
is because our algorithms were unable to solve these problems within the time limit
using dom/ddeg.

All of the tried algorithms completed all instances within the cutoff limit except
for maxRPWC1, which did not solve 13 instances out of 20 from the Positive table-8
class. Also, eSTR2w solved none of the BDD instances since it exhausted the available
memory on each one of them.

Among the three proposed algorithms, maxRPWC+r is the most efficient with
HOSTR2h being a close second. maxRPWC+r is faster than HOSTR2h on Random,
Random-fcd and especially on Positive table-8 (e.g., on the rand-8-20-5-18-800-12 in-
stance it is over 6 times faster), while it is slower on Positive table-10. On the rest of
the classes HOSTR2h is better than maxRPWC+r, but without considerable differences.
maxRPWC+r is also constantly faster compared to maxRPWC+, with the differences
being considerable in the Dubois and Aim classes.

4These results include initialization and preprocessing times.
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Comparing our algorithms against maxRPWC1we observe that they are particularly
efficient on instances of large arities. These are the instances of the Positive Table and
BDD classes, whose arities vary from 8 to 18. Both maxRPWC+r and maxRPWC+ are
notably faster, especially on Positive table-10 and BDD they are superior by over one
order of magnitude. There are also cases (i.e., Positive table-8), where maxRPWC1 was
not able to solve the majority of the instances within the cutoff limit.

Table 2: CPU times (t) in secs and nodes (n) from various representative problem
instances. A slash (-) means that the instance was not completed within the time limit.
mem means that memory was exhausted.
Instance STR2 STR2 abs GAC-va abs maxRPWC1 HOSTR2h maxRPWC+r maxRPWC+ eSTR2w

rand-3-20-20 t 242 53 30 308 291 237 195 79
60-632-fcd-5 n 160,852 156,394 156,394 66,335 66,601 66,469 66,585 86,110
rand-3-20-20 t 90 20 13 174 131 78 82 31
60-632-fcd-7 n 73,536 72,178 72,178 19,680 19,791 19,988 18,668 16,432
rand-3-20-20 t 472 178 91 867 879 567 564 200
60-632-5 n 501,583 479,945 479,945 152,712 152,763 153,138 152,892 150,893
rand-3-20-20 t 16 6 4 32 38 18 17 11
60-632-14 n 19,996 16,511 16,511 3,976 3,986 4,002 3,898 3,578
rand-8-20-5 t 17 8 7 1,616 1,860 494 754 246
18-800-7 n 17,257 19,341 19,341 3,424 3,444 3,447 3,430 1,001
rand-8-20-5 t 19 12 16 - 12,625 2,823 3,654 147
18-800-12 n 105,521 95,895 95,895 - 28,830 28,752 28,662 15,517
rand-10-20 t 0.4 0.6 6 3,811 174 203 208 11
10-5-10000-1 n 1,110 1,111 1,111 0 0 0 0 0
rand-10-20 t 0.3 0.6 2.5 6,438 1,283 1,212 1,298 10
10-5-10000-4 n 1,110 1,110 1,110 0 0 0 0 0
bdd-21-133 t 30 11 18 2.4 0.6 1.5 2 mem
18-78-6 n 20,582 20,617 20,617 0 0 0 0 -
bdd-21-133 t 39 11 21 1,714 1.2 11.6 16.8 mem
18-78-11 n 19,364 19,670 19,670 21 21 21 21 -
dubois-21 t 110 69 49 56 40 53 314 50

n 58M 56M 56M 19M 23M 23M 23M 23M
dubois-26 t 4,044 2,898 1,799 3,427 1,463 1,830 12,174 2,183

n 1,823M 2,147M 2,147M 808M 744M 744M 744M 744M
aim-100 t 6,423 336 169 0.4 0.15 0.18 0.25 0.2
1-6-sat-2 n 29M 59M 59M 100 100 100 100 100
aim-100 t 14,862 185 99 3,378 5,211 3,766 15,617 3,334
2-0-sat-4 n 1,729M 20M 20M 51M 149M 149M 149M 149M
aim-200 t 57 9 3.6 0.5 0.4 0.5 0.6 0.9
2-0-sat-1 n 2M 575,943 575,943 257 2,210 2,210 1,782 9,847
aim-200 t 0.7 2.2 1.3 2.7 2.5 5.9 1.3 1.8
2-0-unsat-1 n 23,715 97,558 97,558 16,091 46,893 34,671 34,671 41,177

eSTR2w is superior to the proposed algorithms by a factor of 3 on Random and
Random-fcd while on Aim it displays a close performance. Also, it is one order of
magnitude faster on Positive table-8 and Positive table-10. These results are not sur-
prising given than eSTR2w is a more recent algorithm based on a different concept
than the algorithms presented here. However, as noted before, eSTR2w suffers from
a serious drawback: its high memory consumption in the presence of large constraint
intersections. Hence, on the BDD class it fails to even construct its data structures. This
is because in this class constraints intersect on 16 variables and along with the big size
of the tables the use of eSTR2 becomes prohibitive. In such kind of problems the need
for algorithms with lighter data structures is mandatory and demonstrates the practical
advantages of our approaches.
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Now comparing Abscon to our algorithms, both STR2 abs and GAC-va abs are
much faster on the Random and Positive table classes. Counterwise, our algorithms
typically outperform Abscon on BDD and Dubois, even by orders of magnitude in
some cases (e.g., HOSTR2h on bdd-21-133-18-78-6). This is the class where none of
the GAC algorithms could detect unsatisfiability through preprocessing unlike strong
consistency algorithms. In comparison with our implementation of STR2, the differ-
ences are even larger in favor of HOSTR2h and maxRPWC+r on the same classes, albeit
they are significantly outperformed on Positive table instances. We believe that our ap-
proaches will become more efficient and competitive as soon as they are integrated in
an optimized implementation, such as that of Abscon. Albeit, even with the current
implementation, they display important gains in many cases (i.e., in BDD, Dubois, and
Aim instances).

Table 3: Mean CPU times (t) in secs, mean node visits (n), median CPU times (tm)
and median node visits (nm) from various problem classes.
Class STR2 STR2 abs GAC-va abs maxRPWC1 HOSTR2h maxRPWC+r maxRPWC+ eSTR2w

Random t 152 43 28 310 305 176 171 71
-fcd n 132,492 156,326 156,326 49,009 49,317 49,420 48,608 45,272

tm 131 28 18 214 256 126 117 51
nm 105,423 95,995 95,995 31,399 31,503 31,610 30,727 27,222

Random t 54 63 39 461 501 298 288 116
n 211,456 215,763 215,763 79,928 80,172 80,316 78,802 73,533
tm 89 36 18 269 318 157 155 75
nm 102,327 95,417 95,417 41,243 41,301 41,322 41,107 40,715

Positive t 15 9 11 - 5,002 1,168 1,576 134
table-8 n 52,313 46,478 46,478 - 10,087 9,787 10,039 4,818

tm 18 10 11 2,416 4,194 1,089 1,470 133
nm 45,880 39,923 39,923 7,721 8,134 7,979 8,112 3,274

Positive t 0.3 0.8 3.5 4,998 363 620 773 12
table-10 n 1,110 1,110 1,110 0 0 0 0 0

tm 0.4 0.8 2 5,723 367 1,240 1,381 10
nm 1,110 1,110 1,110 0 0 0 0 0

BDD t 30 10 19 924 3 18 24 mem
n 19,139 19,012 19,012 11 11 11 11 -
tm 30 11 20 634 1 6 9 mem
nm 20,956 20,587 20,587 11 11 11 11 -

Dubois t 2,026 1,432 906 1,413 807 1,005 6,751 1,084
n 1,008M 1,070M 1,070M 419M 401M 401M 401M 401M
tm 673 481 318 563 264 369 2,372 371
nm 359M 373M 373M 156M 141M 141M 141M 141M

Aim-100 t 6,390 136 70 748 1,019 863 3,899 674
n 643M 18M 18M 10M 34M 34M 34M 32M
tm 1,435 97 50 0.8 22 14 94 0.2
nm 103M 13M 13M 1,131 875,979 875,985 875,985 1,522

Aim-200 t 13 11 5 3 4 3 15 4
n 479,073 846,357 846,357 14,937 97,529 104,748 88,541 75,209
tm 2.7 2.5 1.5 0.6 0.6 0.4 1.3 0.6
nm 159,591 120,897 120,897 937 2,887 2,887 3,236 4,276

The results are more varied on the Aim classes where the winning algorithm is
not clear. On most instances there are (often huge) differences in favor of our meth-
ods compared to Abscon. However, there are cases where Abscon visits considerably
fewer nodes than our algorithms, resulting in much better run times. This is contrary to
what is expected since a stronger local consistency should typically result in a smaller
tree size. However, the interaction with the variable ordering heuristic is sometimes

25



unpredictable, given also the different implementations of Abscon and our solver. For
example, if we look at the results from aim-100-2-0-sat-4 we can see a huge differ-
ence in node visits between Abscon and our implementation of STR2. This is because,
despite both applying GAC, the two solvers follow quite different search paths. Con-
sequently, the comparison of our methods on Aim is more meaningful against our own
implementation of STR2. In this case, our methods typically outperform STR2 by very
large margins.

Looking at the mean and median performances in Table 3, maxRPWC+r (and
HOSTR2h) is faster than STR2 in the BDD, Dubois and Aim classes with the differ-
ences being considerable in the two Aim classes. On the other hand, STR2 dominates
in the Random and Positive table classes, with the differences being very significant
in the latter. Median CPU times follow the average CPU times in the majority of the
classes, but they are more representative on Aim where results are diverse, since there
are instances solved very quickly and instances solved in thousands of seconds.

Regarding the pruning power of the strong local consistency algorithms, which is
to some extent reflected on node visits, it is worth noticing that the differences between
the strong consistency methods are negligible in the majority of the classes. The Aim
classes are exceptions as maxRPWC1 visits significantly less nodes compared to our
algorithms, and this results in competitive CPU times. Importantly, the very small
differences in node visits between maxRPWC1 and our algorithms on problems with
constraints of large arity (Positive table and BDD) mean that the very large differences
in run times can only be explained by the algorithmic optimizations that we propose in
this paper.

5.2.1 Pairwise comparisons

CPU times from all tested instances comparing maxRPWC+r to HOSTR2h, maxRPWC1,
STR2, and STR2 abs are presented in Figures 4, 5, 6, 8, respectively, in a logarithmic
scale. Different signs display instances from different problem classes and are calcu-
lated by CPU time ratios of the compared algorithms. Points placed above the diagonal
correspond to instances that were solved faster by maxRPWC+r.

In Figure 4 most instances are gathered around the diagonal indicating closely
matched performance between maxRPWC+r and HOSTR2h. maxRPWC+r is superior
to HOSTR2h, as detailed above, on Positive table-8 and inferior on BDD and Aim-100,
but without significant differences.

Comparing maxRPWC+r to maxRPWC1 in Figure 5, we can see the benefits of our
approach: Only a few instancesfrom BDD and Aim are below the diagonal indicating
that maxRPWC+r is clearly superior to maxRPWC1. Also, there are many instances
where maxRPWC1 thrashes while maxRPWC+r does not.

Looking at Figure 6 we see a more varied picture. Although on most instances
maxRPWC+r and STR2 are closely matched, there are numerous instances where one
of the two methods thrashes and vice versa. This demonstrates that efficient algorithms
for strong local consistencies on table constraints constitute a useful addition to the
standard GAC approach, but at the same time further research is required to develop
methods that can be more robust than state-of-the-art GAC algorithms such as STR2
on a wider range of problems.
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Figure 4: HOSTR2h vs. maxRPWC+r.
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Figure 5: maxRPWC1 vs. maxRPWC+r.

A similar pattern emerges when comparing HOSTR2h to STR2. This is shown in
Figure 7. Specifically, HOSTR2h is superior on instances with constraints of small arity
but many constraint intersections, like Dubois and Aim. On the other hand, despite
being inferior on many instances from both the Positive table classes, it is faster by
an order of magnitude on BDD instances where the intersections between constraints
include up to 16 variables.

27



101 102 103 104 105 106 107 108
101

102

103

104

105

106

107

108

maxRPWC+r

ST
R
2

100 102 104 106 108
101

102

103

104

105

106

107

108

maxRPWC+r
m
ax
R
PW

C
1

rand−fcd
random
pt−8
pt−10
bdd
dubois
aim−100
aim−200

Figure 6: STR2 vs. maxRPWC+r.
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Figure 7: STR2 vs. HOSTR2h.

In Figure 8 we compare STR2 abs to maxRPWC+r. Results from a comparison
between GAC-va abs and maxRPWC+r are very similar and thus we do not present
the corresonding figure. Although Figure 8 displays significant differences in favor of
STR2 abs on some instances, there are still quite a few instances where maxRPWC+r
is superior, often by large margins. This shows the potential of strong local consisten-
cies on table constraints. As discussed, we believe that integrating an algorithm like
maxRPWC+r in Abscon, or some other state-of-the-art solver, would result in much
better run time performance.
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Figure 8: STR2 abs vs. maxRPWC+r.

5.2.2 Discussion

We now draw some general conclusions correlating the performance of the proposed
algorithms and the characteristics of the tested problems, based on the experimental
results.

First, it is evident that the performance of our methods is highly dependant on the
presence of non-trivial constraint intersections as their exploitation offers extra pruning
compared to GAC algorithms. The absense of non-trivial intersections makes these
methods obsolete.

Second, the arity of the constraints, the number of shared variables between con-
straints, and the size of the tables are important factors when comparing our algo-
rithms to existing maxRPWC algorithms. This is because for large arity constraints the
improvements in saving constraint checks and avoiding redundant operations on data
structures become more evident. Results from the classes that include constraints of
large arity (Positive table, BDD) confirm this.

However, the above factors do not appear to be decisive when comparing our meth-
ods to GAC algorithms. There are problems with small arities as well as others with
large arities where our methods are better (resp. worse) than GAC algorithms, i.e., the
last (resp. the first) four classes of Table 3. The same holds when considering the size
of the tables. Also, as explained, the number of shared variables is a decisive factor
when comparing against eSTR because this algorithm may run out of memory when
this number is high.

Third, the domain size of the variables seems to be an important factor when com-
paring our methods to GAC algorithms or eSTR. Our methods are mostly competitive
on problems with small domains (BDD, Dubois, Aim). This is because all of our meth-
ods include, to some extent, an interleaved exploration of valid and allowed tuples. For
problems with large domain sizes the number of valid tuples can be quite high, at least
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near the top of the search tree when only a few value deletions have been made. This
can slow down the interleaved search for supports significantly. eSTR does not have
this problem because it employs quite different reasoning.

6 Related Work
GAC algorithms for table constraints have attracted considerable interest dating back
to GAC-Schema [4]. This generic method can be instantiated to either a method that
searches the lists of allowed tuples for supports, or to one that searches the valid tuples.
The GAC-va algorithm improves on GAC-Schema by interleaving the exploration of
allowed and valid tuples using binary search [23]. The interleaved exploration of al-
lowed and valid tuples is also the main idea in [26]. However, in this case it is im-
plemented through the use of an elaborate data structure (Hologram) introduced by
Lhomme [25]. Recent algorithms are partly based on similar ideas as the Hologram
method [29]. That is, they hold information about removed values in the propagation
queue and utilize it to speed up support search.

Alternative data structures for storing and handling table constraints have been also
introduced [11]. In that paper, a Trie structure was the most efficient among the ones
tested. Katsirelos and Walsh used a compact representation for allowed and disallowed
tuples which can be constructed from a decision tree that represents the original tuples
[17].

Simple Tabular Reduction (STR) [34] and its variants, STR2 [18] and STR3 [22],
constitute an alternative and efficient approach to enforcing GAC based on the dynamic
maintenance of the support tables. Finally, multi-valued decision diagrams have been
used to store and process table constraints [9].

Experimental results show that the most competitive approaches are the ones based
on STR and the MDD approach. The algorithm of [23], which maxRPWC+ extends, is
very competitive with the Trie approach, outperforms the Hologram method and has
the advantage of easier implementation and lack of complex data structures over all
other methods. Albeit, it is clearly slower than the best methods on most problems.

With respect to strong local consistencies, there is considerable older work on rela-
tion filtering consistencies. Such methods take advantage of the intersections between
constraints in order to identify and remove inconsistent tuples or to add new constraints
to the problem (e.g., [35, 13]). Quite recently, strong domain filtering consistencies
have received attention [7, 32]. Moreover, efficient ways to apply relational consis-
tencies were proposed and new consistencies of this type were introduced for binary
constraints [19, 14, 38] and non-binary constraints [16, 37].

The works of Woodward et. al. concern the application of various relational con-
sistencies on (mainly) table constraints through the exploitation of a problem’s dual
encoding [16, 37]. Experimental results show that very high local consistencies (higher
than FPWC) can pay off when they are applied through efficient algorithms. However,
the proposed algorithms were not compared to state-of-the-art GAC methods such as
STR2. Interestingly, the so called index-tree data structure was proposed to efficiently
locate all tuples in a constraint’s relation that are consistent with a tuple of another in-
tersecting constraint [16]. This is a contribution that is orthogonal to ours and it would
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be interesting to use this data structure in the context of our algorithms.
The idea of avoiding checks for PW-support loss that algorithms maxRPWC+ and

maxRPWC+r employ is inspired by a similar idea concerning maxRPC, a related local
consistency property for binary constraints [36, 1, 2]. Although the restricted versions
of maxRPC algorithms (called light maxRPC [36]) achieve only an approximation
of maxRPC, they are much faster compared to full maxRPC algorithms, and they very
close in terms of pruning. In addition, the idea of making a lighter use of the Last
structure by not maintaining it during search, which is employed by maxRPWC+r, is
inspired by the residue-based AC3rm [21] and maxRPC3rm algorithms [2].

Furthermore, both fHOSTR and eSTR [24] achieve the same level of consistency,
namely GAC+PWC. Their difference lies in the different data structures they utilize
which results in a different handling of PW-checks in their respective isPWconsistent
function. Whenever a tuple τ ∈ rel[c] is verified as valid, both algorithms iterate over
each constraint ck that intersects with c to check if there exists a PW-support for τ
in rel[ck]. In eSTR, this is done through a look-up in the appropriate counter stored
for each intersection between any two constraints. At any time each counter holds
the number of valid tuples in ck’s relation table that include a specific combination
of values for the set of variables that are common to both c and ck. Importantly, this
check is done in constant time, while in fHOSTR we need to search between valid
and allowed tuples (for the case of function 6). However, experiments in this paper
showed that there are cases where while strong consistency methods outperform GAC,
the use of HOSTR or maxRPWC+r is inevitable (i.e., in problems with large constraint
intersections) because eSTR exhausts the memory resources.

Importantly, strong local consistency techniques for table constraints have recently
started to find their way into state-of-the-art CP solvers such as Abscon5. The latest
version of Abscon offers an unpublished algorithm which achieves FPWC and can be
regarded as a variant of eSTRw [24]. This development demonstrates that strong local
consistency methods, such as the ones presented in this paper, are compatible with CP
solvers from a software engineering point of view, and can used to extend the solvers’
arsenal of techniques for handling table constraints.

Finally, a simple and efficient way to incorporate strong local consistency reason-
ing into CP solvers, through the use of a reformulation, was very recently proposed
[27]. The main idea of the technique, called factor encoding, is to formulate new vari-
ables by extracting commonly shared variables from the constraints’ scopes and then to
reattach them back to the constraints where they come from. The reformulation trans-
forms a given problem into another equivalent one, and by enforcing GAC on the new
problem, a quite stronger consistency property is achieved on the original problem.
This approach was compared experimentally to the FPWC algorithm of Abscon with
favourable results.

7 Conclusion
We presented specialized algorithms for table constraints that achieve local consisten-
cies stronger than the standard GAC. These algorithms build on and extend existing

5http://www.cril.univ-artois.fr/∼lecoutre/software.html

31



algorithms for GAC and maxRWPC and contribute to both directions of domain and
relation filtering local consistencies. Experimental results demonstrated the usefulness
of the proposed algorithms in the presence of intersecting table constraints, showing
that the best among them can be competitive with a state-of-the art GAC algorithm
(STR2) and sometimes even with the state-of-the-art CP solver Abscon.

In some cases (e.g., Aim classes) there can be huge differences in the numbers of
search tree nodes which are reflected on important CPU time gains, even compared to a
highly optimized solver like Abscon. However on other problems the extra processing
performed by our methods slows down the solver, sometimes considerably (e.g the
Positive table classes).

Our paper binds together recent advances on GAC for table constraints and strong
local consistencies contributing to both directions. Specifically, we offer efficient meth-
ods for strong filtering in cases of intersecting table constraints, and we make strong
consistencies more practical by moving from generic to specialized algorithms.

We believe that the presented work can pave the way for the design and implemen-
tation of even more efficient strong consistency methods for table constraints. Also,
it can perhaps help initiate a wider study on specialized strong consistency algorithms
for specialized (global) constraints.
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