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Abstract
Partial singleton closure under weak composition, or partial ◆-consistency for short, is es-

sential for approximating satisfiability of qualitative constraints networks. Briefly put, partial◆-consistency ensures that each base relation of each of the constraints of a qualitative constraint
network can define a singleton relation in the corresponding partial closure of that network under
weak composition, or in its corresponding partially ù-consistent subnetwork for short. In partic-
ular, partial ◆-consistency has been shown to play a crucial role in tackling the minimal labeling
problem of a qualitative constraint network, which is the problem of finding the strongest implied
constraints of that network. In this paper, we propose a stronger local consistency that couples◆-consistency with the idea of collectively deleting certain unfeasible base relations by exploiting
singleton checks. We then propose an e�cient algorithm for enforcing this new consistency that,
given a qualitative constraint network, performs fewer constraint checks than the respective al-
gorithm for enforcing partial ◆-consistency in that network. We formally prove certain properties
of our new local consistency, and motivate its usefulness through demonstrative examples and a
preliminary experimental evaluation with qualitative constraint networks of Interval Algebra.
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1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major field of study in Artificial
Intelligence, and in particular in Knowledge Representation & Reasoning. This field has
received a lot of attention over the past decades, as it extends to a plethora of areas and do-
mains that include ambient intelligence, dynamic GIS, cognitive robotics, and spatiotemporal
design [6]. QSTR abstracts from numerical quantities of space and time by using qualitative
descriptions instead (e.g., precedes, contains, is left of ), thus providing a concise framework
that allows for rather inexpensive reasoning about entities located in space and time.

The problem of representing and reasoning about qualitative information can be modeled
as a qualitative constraint network (QCN) using a qualitative constraint language. Specifically,
a QCN is a network of constraints corresponding to qualitative spatial or temporal relations
between spatial or temporal variables respectively, and a qualitative constraint language is
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19:2 Collective Singleton-based Consistency for Qualitative Constraint Networks

used to define those constraints over a finite set of binary relations, called base relations (or
atoms) [19]. An example of such a qualitative constraint language is Interval Algebra (IA),
introduced by Allen [1]. IA considers time intervals (as its temporal entities) and each of its
base relations represents an ordering of the four endpoints of two intervals in the timeline.

The fundamental reasoning problems associated with a given QCN N are the problems
of satisfiability checking, minimal labeling (or deductive closure), and redundancy (or entail-
ment) [28]. In particular, the satisfiability checking problem is the problem of deciding if
there exists a spatial or temporal valuation of the variables of N that satisfies its constraints,
such a valuation being called a solution of N , the minimal labeling problem is the problem of
finding the strongest implied constraints of N , and the redundancy problem is the problem
of determining if a given constraint is entailed by the rest of N (that constraint being called
redundant, as its removal does not change the solution set of the QCN). In general, for most
qualitative constraint languages the satisfiability checking problem is NP-complete. Further,
the redundancy problem, the minimal labeling problem, and the satisfiability checking
problem are equivalent under polynomial Turing reductions [13].

The vast amount, if not all, of the published works that study the aforementioned
reasoning problems, use partial ù-consistency as a means to define practical algorithms for
e�ciently tackling them [2, 30, 29, 17, 27, 23, 15]. Given a QCN N and a graph G, partial
ù-consistency with respect to G, denoted by ù

G

-consistency, entails (weak) consistency for all
triples of variables in N that correspond to three-vertex cycles (triangles) in G. We note that
if G is complete, ù

G

-consistency becomes identical to ù-consistency [26]. Hence, ù-consistency
is a special case of ù

G

-consistency. In fact, earlier works have relied solely on ù-consistency;
it was not until the introduction of chordal (or triangulated) graphs in QSTR, due to some
generalized theoretical results of [14], that researchers started restricting ù-consistency to a
triangulation (or chordal completion) of the constraint graph of an input QCN and benefiting
from better complexity properties in more recent works.

Adding to the previous paragraph, and with respect to the satisfiability checking problem
in particular, the literature suggests that ù

G

-consistency alone is su�cient in most cases
to guarantee that a solution for a given QCN, should it exist, is e�ciently obtained (see
also [8]). However, for the more challenging problems of minimal labeling and redundancy,
a stronger local consistency is typically employed that builds upon ù

G

-consistency, called
singleton ù

G

-consistency and denoted by ◆
G

-consistency [2, 30]. Given a QCN N and a graph
G, ◆

G

-consistency holds on N if and only if each base relation of each of the constraints of
N is closed under ù

G

-consistency, i.e., after instatiating any constraint of that network with
one of its base relations b and closing the network under ù

G

-consistency, the corresponding
constraint in the ù

G

-consistent subnetwork will continue being defined by b.
It is then natural to ask whether we can have an even stronger local consistency than◆

G

-consistency (and ù
G

-consistency) for QCNs that can also be enforced more e�ciently than◆
G

-consistency, as a positive answer to that question would suggest an immediate improvement
for any algorithm that currently employs ◆

G

-consistency. In this paper, we contribute towards
obtaining such a positive answer. In particular, we enrich the family of consistencies for
QCNs by proposing a new singleton style consistency inspired by k-partitioning consistency
for constraint satisfaction problems (CSPs) [4]. This filtering technique is based on domain
partitioning combined with a local consistency, typically arc consistency [5], and allows for
improved pruning capability over singleton arc consistency [9]. Similarly to k-partitioning
consistency, our new consistency, denoted by ◆fi

G

-consistency, combines singleton checks and
ù
G

-consistency to present itself as a better alternative to ◆
G

-consistency. With respect to our
new consistency, we also propose an algorithm for applying it on a given QCN, which turns
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Figure 1 The base relations of IA

out being more e�cient than the respective algorirthm for applying ◆
G

-consistency on that
same QCN. As a brief intuitive explanation of this, ◆fi

G

-consistency allows for proactively
eliminating base relations anywhere in a given QCN and not only in the set of base relations of
the constraint at hand that is singleton checked. Further, we obtain several theoretical results
and show, among other things, that ◆fi

G

-consistency is strictly stronger than ◆
G

-consistency
and, hence, than ù

G

-consistency. Finally, we present a preliminary experimental evaluation
of ◆fi

G

-consistency and ◆
G

-consistency using QCNs of IA, in support of our argument that◆fi

G

-consistency can be enforced more e�ciently than ◆
G

-consistency for a given QCN.
The rest of the paper is organized as follows. In Section 2 we give some preliminaries

on qualitative spatial and temporal reasoning, and in Section 3 we focus on ù
G

-consistency
and ◆

G

-consistency and, in particular, recall some related result from the literature, but also
provide some new results of our own. Then, in Section 4 we introduce, formally define, and
thoroughly study our new local consistency, namely, ◆fi

G

-consistency. In Section 5 we present
an algorithm for e�ciently applying ◆fi

G

-consistency on a given QCN N , and in Section 6 we
evaluate this algorithm against the state-of-the-art algorithm for achieving ◆

G

-consistency.
Finally, in Section 7 we conclude the paper and give some directions for future work.

2 Preliminaries

A (binary) qualitative spatial or temporal constraint language, is based on a finite set
B of jointly exhaustive and pairwise disjoint relations defined over an infinite domain D,
which is called the set of base relations [19]. The base relations of a particular qualitative
constraint language can be used to represent the definite knowledge between any two of
its entities with respect to the level of granularity provided by the domain D. The set B
contains the identity relation Id, and is closed under the converse operation (≠1). Indefinite
knowledge can be specified by a union of possible base relations, and is represented by the
set containing them. Hence, 2B represents the total set of relations. The set 2B is equipped
with the usual set-theoretic operations of union and intersection, the converse operation,
and the weak composition operation denoted by the symbol ù [19]. For all r œ 2B, we have
that r≠1 =

t
{b≠1 | b œ r}. The weak composition (ù) of two base relations b, bÕ œ B is

defined as the smallest (i.e., strongest) relation r œ 2B that includes b ¶ bÕ, or, formally,
b ù bÕ={bÕÕ œ B | bÕÕfl(b ¶ bÕ) ”= ÿ}, where b ¶ bÕ={(x, y) œ D ◊ D | ÷z œ D such that (x, z) œ
b · (z, y) œ bÕ} is the (true) composition of b and bÕ. For all r, rÕ œ 2B, we have that r ù rÕ =t

{b ù bÕ | b œ r, bÕ œ rÕ}.
As an illustration, consider the well known qualitative temporal constraint language of

Interval Algebra (IA) introduced by Allen [1]. IA considers time intervals (as its temporal
entities) and the set of base relations B = {eq, p, pi, m, mi, o, oi, s, si, d, di, f, fi}; each base
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Figure 2 Figurative examples of QCN terminology using IA

relation of IA represents a particular ordering of the four endpoints of two intervals in the
timeline, as demonstrated in Figure 1. The base relation eq is the identity relation Id of
IA. As another illustration, the Region Connection Calculus (RCC) is a first-order theory
for representing and reasoning about mereotopological information [24]. The domain D of
RCC comprises all possible non-empty regular subsets of some topological space. These
subsets do not have to be internally connected and do not have a particular dimension, but
are commonly required to be regular closed [25]. Other notable and well known qualitative
spatial and temporal constraint languages include Point Algebra [35], Cardinal Direction
Calculus [18, 11], and Block Algebra [3].

The weak composition operation ù, the converse operation ≠1, the union operation fi,
the complement operation {, and the total set of relations 2B along with the identity relation
Id of a qualitative constraint language, form an algebraic structure (2B, Id, ù,≠1 ,{ , fi) that
can correspond to a relation algebra in the sense of Tarski [33].

I Proposition 1 ([10]). The languages of Point Algebra, Cardinal Direction Calculus, Interval
Algebra, Block Algebra, and RCC-8 are each a relation algebra with the algebraic structure
(2B, Id, ù, ≠1, {, fi).

In what follows, for a qualitative constraint language that is a relation algebra with the
algebraic structure (2B, Id, ù, ≠1, {, fi), we will simply use the term relation algebra, as the
algebraic structure will always be of the same format.

The problem of representing and reasoning about qualitative information can be modeled
as a qualitative constraint network (QCN), defined in the following manner:

I Definition 1. A qualitative constraint network (QCN) is a tuple (V, C) where:

V = {v
1

, . . . , v
n

} is a non-empty finite set of variables, each representing an entity;
and C is a mapping C : V ◊ V æ 2B such that C(v, v) = {Id} for all v œ V and
C(v, vÕ) = (C(vÕ, v))≠1 for all v, vÕ œ V .

An example of a QCN of IA is shown in Figure 2a; for simplicity, converse relations as
well as Id loops are not mentioned or shown in the figure.

I Definition 2. Let N = (V, C) be a QCN, then:

a solution of N is a mapping ‡ : V æ D such that ’(u, v) œ V ◊ V , ÷b œ C(u, v) such
that (‡(u), ‡(v)) œ b (see Figure 2b);
N is satisfiable i� it admits a solution;
a QCN is equivalent to N i� it admits the same set of solutions as N ;
a sub-QCN N Õ of N , denoted by N Õ ™ N , is a QCN (V, C Õ) such that C Õ(u, v) ™ C(u, v)
’u, v œ V ; if in addition ÷u, v œ V such that C Õ(u, v) µ C(u, v), then N Õ µ N ;
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N is atomic i� ’v, vÕ œ V , C(v, vÕ) is a singleton relation, i.e., a relation {b} with b œ B;
a scenario S of N is an atomic satisfiable sub-QCN of N (see Figure 2c);
a base relation b œ C(v, vÕ) with v, vÕ œ V is feasible (resp. unfeasible) i� there exists
(resp. there does not exist) a scenario S = (V, C Õ) of N such that C Õ(v, vÕ) = {b};
N is minimal i� ’v, vÕ œ V and ’b œ C(v, vÕ), b is a feasible base relation of N ;
the constraint graph of N , denoted by G(N ), is the graph (V, E) where {u, v} œ E i�
C(u, v) ”= B and u ”= v;
N is trivially inconsistent i� ÷u, v œ V such that C(u, v) = ÿ;
N is the empty QCN on V , denoted by ‹V , i� C(u, v) = ÿ for all u, v œ V .

Let us further introduce the following operations with respect to QCNs:

given a QCN N = (V, C) and v, vÕ œ V , we have that N
[v,v

Õ
]/r

with r œ 2B yields the QCN
N Õ = (V, C Õ) defined by C Õ(v, vÕ) = r, C Õ(vÕ, v) = r≠1 and C Õ(y, w) = C(y, w) ’(y, w) œ
(V ◊ V ) \ {(v, vÕ), (vÕ, v)};
given two QCNs N = (V, C) and N Õ = (V, C Õ) on the same set of variables V , we have
that N fi N Õ yields the QCN N ÕÕ = (V, C ÕÕ), where C ÕÕ(v, vÕ) = C(v, vÕ) fi C Õ(v, vÕ) for all
v, vÕ œ V .

We recall the following definition of ù
G

-consistency, which, as noted in the introduction, is
the basic local consistency used in the literature for solving fundamental reasoning problems
of QCNs, such as the satisfiability checking problem.

I Definition 3. Given a QCN N = (V, C) and a graph G = (V, E), N is said to be
ù
G

-consistent i� ’{v
i

, v
j

}, {v
i

, v
k

}, {v
k

, v
j

} œ E we have that C(v
i

, v
j

) ™ C(v
i

, v
k

) ù C(v
k

, v
j

).

We note again that if G is complete, ù
G

-consistency becomes identical to ù-consistency [26],
and, hence, ù-consistency is a special case of ù

G

-consistency.
Given a graph G = (V, E), a QCN N = (V, C) is ◆

G

-consistent i� for every pair of variables
{v, vÕ} œ E and every base relation b œ C(v, vÕ), after instantiating C(v, vÕ) with {b} and
computing the closure of N under ù

G

-consistency, the revised constraint C(v, vÕ) is always
defined by {b}. Formally, ◆

G

-consistency of a QCN is defined as follows:

I Definition 4. Given a QCN N = (V, C) and a graph G = (V, E), N is said to be ◆
G

-consistent
i� ’{v, vÕ} œ E and ’b œ C(v, vÕ) we have that {b} = C Õ(v, vÕ), where (V, C Õ) = ù

G

(N
[v,v

Õ
]/{b}).

If G is a complete graph, i.e., G = K
V

, we can easily verify that ◆
G

-consistency corresponds
to ù

B-consistency of the family of ù
f

-consistencies studied in [8]. Interestingly, ◆
G

-consistency
can also be seen as a counterpart of singleton arc consistency (SAC) [9] for QCNs. Given a
QCN N = (V, C) and a graph G = (V, E), for every b œ B and every {v, vÕ} œ E, we will say
that b is ◆

G

-consistent for C(v, vÕ) i� {b} = C Õ(v, vÕ), where (V, C Õ) = ù
G

(N
[v,v

Õ
]/{b}).

I Definition 5. A subclass of relations is a subset A ™ 2B that contains the singleton
relations of 2B and is closed under converse, intersection, and weak composition.

Given three relations r, rÕ, rÕÕ œ 2B, we say that weak composition distributes over
intersection if we have that r ù (rÕ fl rÕÕ) = (r ù rÕ) fl (r ù rÕÕ) and (rÕ fl rÕÕ) ù r = (rÕ ù r) fl (rÕÕ ù r).

I Definition 6. A subclass A is distributive i� weak composition distributes over non-empty
intersection ’r, rÕ, rÕÕ œ A.

Distributive subclasses of relations are defined for all of the qualitative constraint languages
mentioned in Proposition 1 [20].

Finally, for the sake of simplicity in phrasing some results, in what follows we assume
that all considered graphs are biconnected.
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3 A closer look at ù
G-consistency and ◆

G-consistency

Let us come back to ù
G

-consistency and ◆
G

-consistency and recall in this section some results
from the literature that will be relevant in the rest of the paper, but also provide some new
results of our own.

In order to compare the pruning (or inference) capability of di�erent consistencies, we
introduce a preorder. Let „

G

and Â

G

be two consistencies defined by some operations „ and Â

respectively and a graph G. Then, „

G

is stronger than Â

G

, denoted by „

G

DÂ

G

, i� whenever „

G

holds on a QCN N with respect to a graph G, Â

G

also holds on N with respect to G, and „

G

is
strictly stronger than Â

G

, denoted by „

G

ÛÂ

G

, i� „

G

D Â

G

and there exists at least one QCN N and
a graph G such that Â

G

holds on N with respect to G but „

G

does not hold on N with respect
to G. Finally, „

G

and Â

G

are equivalent, denoted by „

G

© Â

G

, i� we have both „

G

DÂ

G

and Â

G

D„

G

.
We now recall the definition of a well-behaved consistency [8].

I Definition 7. A consistency „

G

is well-behaved i� for any QCN N = (V, E) and any graph
G = (V, E) the following properties hold:

„

G

(N ) ™ N (viz., the „

G

-closure of N w.r.t. G) is the largest (w.r.t. ™) „

G

-consistent
sub-QCN of N (Dominance);
„

G

(N ) is equivalent to N (Equivalence);
„

G

(„

G

(N )) = „

G

(N ) (Idempotence);
if N Õ ™ N then „

G

(N Õ) ™ „

G

(N ) (Monotonicity).

It is routine to formally prove the following result for ù
G

-consistency:

I Corollary 1 (cf. [8]). We have that ù
G

-consistency is well-behaved.

It is routine to formally prove the following result for ◆
G

-consistency as well:

I Corollary 2 (cf. [8]). We have that ◆
G

-consistency is well-behaved.

The aforementioned two results are derived from respective results of [8] where complete
graphs are used in all cases. The generalization to an arbitrary graph G is trivial.

We recall the following general result regarding the pruning capability of ù
G

-consistency
in comparison with that of ◆

G

-consistency:

I Proposition 2 ([8]). We have that ◆
G

-consistency Û ù
G

-consistency.

Before we proceed, we introduce the following lemma to be used in the next proposition:

I Lemma 1 (cf. [20]). Let A be a distributive subclass of relations of a relation algebra.
Then, for any QCN N = (V, C) over A and any graph G = (V, E), if ù

G

(N ) = (V, C Õ) is
not trivially inconsistent, we have that ’u, v œ V and ’b œ C Õ(u, v) there exists an atomic
ù
G

-consistent sub-QCN (V, C ÕÕ) of N such that {b} = C ÕÕ(u, v).

Proof. (Sketch.) The proof can be obtained by concatenating the proofs of Theorems 2
and 5 in [20] and applying that merged proof on each maximal chordal subgraph of G. The
only major di�erence is that in those proofs the property that any atomic QCN of a relation
algebra that is ù-consistent is satisfiable is used in addition to guarantee a stronger result,
which is of no use to us for proving this particular lemma. J

Next, we introduce a result that identifies the case where ù
G

-consistency and ◆
G

-consistency
are equivalent.
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I Proposition 3. Let A be a distributive subclass of relations of a relation algebra. Then,
for any QCN N = (V, C) over A and any graph G = (V, E), we have that ù

G

-consistency ©◆
G

-consistency.

Proof. If ù
G

(N ) = (V, C) is not trivially inconsistent, then by Lemma 1 we have that ’u, v œ V

and ’b œ C(u, v) there exists an atomic ù
G

-consistent sub-QCN (V, C Õ) of ù
G

(N ) such that
{b} = C Õ(u, v). This suggests that ù

G

(N ) is also ◆
G

-consistent and, hence, that ù
G

-consistency
D ◆

G

-consistency in this case. If ù
G

(N ) is trivially inconsistent, then due to the closure under
ù
G

-consistency there is no triangle in G containing both an edge {v, vÕ} such that C(v, vÕ) = ÿ
and an edge {u, uÕ} such that C(u, uÕ) ”= ÿ; we can prove that ù

G

-consistency D ◆
G

-consistency
in this case as well, by isolating the trivial inconsistencies and using the first part of the
proof. Finally, by Proposition 2 we have that ◆

G

-consistency D ù
G

-consistency in all cases. J

It is interesting to note that Proposition 3 is a more general result that the respective
one of [30], namely, Proposition 7 in that work. In particular, Proposition 7 in [30] requires
a chordal supergraph of the constraint graph of a QCN over a distributive subclass of
relations of a relation algebra to be used, along with the property that any such QCN that
is ù-consistent and not trivially inconsistent is minimal, in order to prove the equivalence
between ù

G

-consistency and ◆
G

-consistency for distributive subclasses of relations.
The following result shows the connection between ù

G

-consistency and minimal QCNs:

I Proposition 4 ([21]). Let A be a distributive subclass of relations of a relation algebra with
the property that any atomic QCN over A that is ù-consistent is satisfiable. Then, for any
QCN N = (V, C) over A and any chordal graph G = (V, E) such that G(N ) ™ G, we have
that ’{u, v} œ E and ’b œ C Õ(u, v), where (V, C Õ) = ù

G

(N ), the base relation b is feasible.

The property described in Proposition 4 is satisfied by all of the qualitative constraint
languages mentioned in Proposition 1 [10].

Finally, the following result shows the connection between ◆
G

-consistency and minimal
QCNs:

I Proposition 5 ([2]). Let A be a subclass of relations of a relation algebra with the property
that for any QCN N = (V, C) over A there exists a graph G = (V, E) such that, if ù

G

(N ) is
not trivially inconsistent, then N is satisfiable. Then, for any such N and G, we have that
’{u, v} œ E and ’b œ C Õ(u, v), where (V, C Õ) = ◆

G

(N ), the base relation b is feasible.

As a note, an interesting case where the property described in Proposition 5 can be
satisfied, is the case where the considered subclass of relations is obtained from a relation
algebra that has patchwork [22] for ù

G

-consistent and not trivially inconsistent QCNs over
that subclass, where G = (V, E) is any chordal graph such that G(N ) ™ G for a given QCN
N = (V, C). In that case, we will indeed have that N is satisfiable if ù

G

(N ) is not trivially
inconsistent [2]. As a matter of fact, patchwork holds for all the qualitative constraint
languages mentioned in Proposition 1 [14]. Of course, in general, the property may be
satisfied in other cases as well; for instance, patchwork may not hold, but the overall property
may hold for complete graphs (and, hence, when ù-consistency is used) or when constraints
in the structure of the constraint graphs of the QCNs are imposed (a trivial case being
restricting the constraint graphs of QCNs to being trees).

4 ◆fi
G -Consistency: a new local consistency for QCNs

We define a new local consistency for QCNs inspired by k-partitioning consistency for
constraint satisfaction problems (CSPs), where arc consistency is used as the underlying
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local consistency of choice, or k-Partition-AC for short [4]. This technique divides a variable
domain into disjoint domains, where each of them contains at most k elements. In the case
of QCNs, these elements correspond to base relations. With respect to k-Partition-AC, the
most common and preferred approach is dividing a domain into singleton sub-domains, which
is the case where k = 1, otherwise many questions arise, such as what should the size of
each sub-domain be, how should this size be fixed, and which elements should be considered
for a given use case. Although having many questions to deal with is not necessarily bad
in general, the most important aspect regarding 1-Partition-AC is that it o�ers the nice
property that it is strictly stronger than singleton arc consistency (SAC) [9].

In this work, we adapt the aforementioned technique to QCNs using ù
G

-consistency as our
underlying local consistency of choice.1 Given a QCN N , enforcing this consistency for k = 1
will eliminate every base relation that is not ◆

G

-consistent for some constraint in N , but also
every base relation that is not supported by some base relation in N through ù

G

-consistency.
We call this new local consistency ◆fi

G

-consistency, and better explain it with a demonstrative
example as follows. Consider the ◆

G

-consistent QCN N = (V, C) of IA in Figure 3. We can
see that the base relation d is ◆

G

-consistent for C(x
1

, x
2

), but it is not supported by any of
the base relations that define constraint C(x

1

, x
3

), namely, p and pi, through ù
G

-consistency.
In particular, by instatiating C(x

1

, x
3

) with either p or pi and closing the respective QCN
under ù

G

-consistency, the base relation d is eliminated in C(x
1

, x
2

). After eliminating the
base relation d in C(x

1

, x
2

), the revised QCN N becomes ◆fi

G

-consistent.
Now we can formally define this consistency.

I Definition 8. Given a QCN N = (V, C) and a graph G = (V, E), N is said to be◆fi

G

-consistent i� N is ◆
G

-consistent and ’{v, vÕ} œ E, ’b œ C(v, vÕ), and ’{u, uÕ} œ E we have
that ÷bÕ œ C(u, uÕ) such that b œ C Õ(v, vÕ), where (V, C Õ) = ù

G

(N
[u,u

Õ
]/{b

Õ}).

We prove the following result to be used in the sequel, which suggets that ◆fi

G

-consistency
can only eliminate unfeasible base relations:

I Proposition 6. Let N = (V, C) be a QCN, G = (V, E) a graph, and b œ C(u, uÕ) with
u, uÕ œ V a base relation. Then, if ÷{v, vÕ} œ E such that b ”œ C Õ(u, uÕ), where (V, C Õ) =t

{ù
G

(N
[v,v

Õ
]/{b

Õ}) | bÕ œ C(v, vÕ)}, we have that b is an unfeasible base relation.

Proof. Let us assume that b is a feasible base relation. Then, by definition of feasible base
relations there exists a scenario S = (V, C Õ) of N such that C Õ(u, uÕ) = {b}. Further, by the
equivalence property of ù

G

-consistency it holds that ù
G

(S) = S (as S, being a scenario, is an
atomic and satisfiable QCN and, hence, none of its base relations can be removed by application
of ù

G

-consistency). Thus, it follows that ’{v, vÕ} œ E we have that b œ C ÕÕ(u, uÕ), where
(V, C ÕÕ) = ù

G

(N
[v,v

Õ
]/C

Õ
(v,v

Õ
)

), as S ™ N
[v,v

Õ
]/C

Õ
(v,v

Õ
)

and, hence, ù
G

(S) ™ ù
G

(N
[v,v

Õ
]/C

Õ
(v,v

Õ
)

)
by the monotonicity property of ù

G

-consistency. As S ™ N , it follows that ’{v, vÕ} œ E

we have that C Õ(v, vÕ) ™ C(v, vÕ) and, hence, that ÷bÕ œ C(v, vÕ) such that b œ C ÕÕÕ(u, uÕ),
where (V, C ÕÕÕ) = ù

G

(N
[v,v

Õ
]/{b

Õ}), by simply considering the base relation bÕ œ C(v, vÕ) to
be the one of the singleton relation C Õ(v, vÕ) of S. Therefore, by definition of operation fi
with respect to QCNs we can derive that ’{v, vÕ} œ E it holds that b œ Cú(u, uÕ), where
(V, Cú) =

t
{ù

G

(N
[v,v

Õ
]/{b

Õ}) | bÕ œ C(v, vÕ)}, which concludes our proof by contraposition. J

We recall the following result to be used in one of our proofs later on:

1The partitioning scheme can be combined with any local consistency or propagation technique. Here,
the definition is restricted to ù

G

-consistency as it is the most essential of local consistencies used for dealing
with QCNs.
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(a) A ◆
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-consistent QCN N
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(c) N2 = ù
G

(N[x1,x3]/{pi})
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(d) N1 fi N2

Figure 3 A ◆
G

-consistent QCN N of IA along with a demonstration of how enforcing ◆fi
G

-consistency
can further eliminate base relations; here G is the complete graph on the set of variables of N

I Proposition 7 ([2]). For any QCNs N
1

and N
2

on a set of variables V and any graph
G = (V, E), if N

1

and N
2

are ◆
G

-consistent, then (N
1

fi N
2

) is ◆
G

-consistent as well.

We note that the aforementioned result describes a su�cient property for proving domin-
ance for a new consistency, but that property might not be necessary in general and, hence,
does not solely follow from the well-behaveness of the consistency at hand. We prove the
same property for ◆fi

G

-consistency, to be used in what follows.

I Proposition 8. For any QCNs N
1

and N
2

on a set of variables V and any graph G = (V, E),
if N

1

and N
2

are ◆fi

G

-consistent, then (N
1

fi N
2

) is ◆fi

G

-consistent as well.

Proof. Let N
1

= (V, C
1

), N
2

= (V, C
2

), (N
1

fi N
2

) = (V, C), v, vÕ œ V be two variables,
and b œ C(v, vÕ) a base relation. We only need to consider the case where b œ C

1

(v, vÕ),
as the case where b œ C

2

(v, vÕ) is symmetric. Since N
1

is ◆fi

G

-consistent, we have that
N

1

is ◆
G

-consistent and ’{u, uÕ} œ E there exists bÕ œ C
1

(u, uÕ) such that b œ C Õ
1

(v, vÕ),
where (V, C Õ

1

) = ù
G

(N
1

[u,u

Õ
]/{b

Õ}), by definition of ◆fi

G

-consistency. In addition, we have that
(N

1

fi N
2

) is ◆
G

-consistent by Proposition 7. As N
1

™ (N
1

fi N
2

), we have that N
1

[u,u

Õ
]/{b

Õ}
™ (N

1

fi N
2

)
[u,u

Õ
]/{b

Õ} ’{u, uÕ} œ E and ’bÕ œ C
1

(u, uÕ). Thus, we have that ù
G

(N
1

[u,u

Õ
]/{b

Õ})
™ ù

G

((N
1

fi N
2

)
[u,u

Õ
]/{b

Õ}) ’{u, uÕ} œ E and ’bÕ œ C
1

(u, uÕ) by the monotonicity property of
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ù
G

-consistency. From that we can deduce that ’{u, uÕ} œ E there exists bÕ œ C(u, uÕ) such
that b œ C Õ(v, vÕ), where (V, C Õ) = ù

G

((N
1

fi N
2

)
[u,u

Õ
]/{b

Õ}). Hence, by the assumption that
N

1

and N
2

are ◆fi

G

-consistent, we have proved that (N
1

fi N
2

) is ◆fi

G

-consistent as well. J

Next, we arrive to one of our main results in this work.

I Theorem 2. We have that ◆fi

G

-consistency is well-behaved.

Proof. (Dominance) From Proposition 8 we can assert that, for any QCN N = (V, C) and
any graph G = (V, E), there exists a unique ◆fi

G

-consistent QCN t
{N Õ | N Õ ™ N and N Õ is◆fi

G

-consistent}, which by its definition is the largest (w.r.t. ™) ◆fi

G

-consistent sub-QCN of
N and, hence, the closure of N under ◆fi

G

-consistency. (Equivalence) Let N = (V, C) be
a QCN, G = (V, E) a graph, and N Õ = (V, C Õ) the QCN where ’v, vÕ œ V and ’b œ B
we have that b œ C Õ(v, vÕ) i� there exists a solution ‡ of N such that (‡(v), ‡(vÕ)) œ b.
Clearly, N Õ is a sub-QCN of N and it is necessarily ◆fi

KV
-consistent (where K

V

denotes the
complete graph on the set of variables V of N ), as by Proposition 6 we have that the
application of ◆fi

G

-consistency on any QCN (V, C) w.r.t. any graph G = (V, E) can only
remove unfeasible base relations, and not feasible ones. It follows that N Õ ™ ◆fi

G

(N ) ™ N
and, as such, ◆fi

G

(N ) and N share the same set of solutions. (Idempotence) Let N = (V, C)
be a QCN, and G = (V, E) a graph. Then, ◆fi

G

(N ) is ◆fi

G

-consistent. Now, by dominance of◆fi

G

-consistency the largest ◆fi

G

-consistent sub-QCN of ◆fi

G

(N ) is itself and, hence, ◆fi

G

(◆fi

G

(N ))
= ◆fi

G

(N ). (Monotonicity) Let N = (V, C) and N Õ = (V, C Õ) be two QCNs such that N Õ ™
N , and G = (V, E) a graph. As N Õ ™ N , we have that ◆fi

G

(N Õ) is a ◆fi

G

-consistent sub-QCN
of N . In addition, by dominance of ◆fi

G

-consistency we can assert that ◆fi

G

(N ) is the largest◆fi

G

-consistent sub-QCN of N . Therefore, we have that ◆fi

G

(N Õ) ™ ◆fi

G

(N ). J

We prove the following general result regarding the pruning capability of ◆
G

-consistency
in comparison with that of ◆fi

G

-consistency:

I Proposition 9. We have that ◆fi

G

-consistency Û ◆
G

-consistency.

Proof. By definition of ◆fi

G

-consistency, we have that ◆fi

G

-consistency D ◆
G

-consistency, since,
for any graph G = (V, E), any QCN (V, C) that is ◆fi

G

-consistent is already ◆
G

-consistent.
To prove strictness we use an example as follows. Consider the QCN N = (V, C) of
Figure 3. The reader can verify that N is ◆

G

-consistent, as we have that b is ◆
G

-consistent
for C(v, vÕ) ’{v, vÕ} œ E and ’b œ C(v, vÕ). However, we have that d ”œ C Õ(x

1

, x
2

), where
(V, C Õ) =

t
{ù

G

(N
[x1,x3]/{b

Õ}) | bÕ œ C(x
1

, x
3

)}, as demonstrated in the figure. In detail,
ù
G

(N
[x1,x3]/{p}) fi ù

G

(N
[x1,x3]/{pi}) is a QCN such that d is not among the base relations that

define the constraint on variables x
1

and x
2

. Thus, ◆fi

G

-consistency does not hold in N . J

The next result follows trivially:

I Proposition 10. We have that ◆fi

G

-consistency Û ù
G

-consistency.

Proof. A direct consequence of Propositions 2 and 9 and the transitivity of Û. J

Finally, we introduce the following result that identifies the case where ◆
G

-consistency and◆fi

G

-consistency are equivalent:

I Proposition 11. Let A be a subclass of relations of a relation algebra with the property
that for any QCN N = (V, C) over A there exists a graph G = (V, E) such that, if ù

G

(N ) is
not trivially inconsistent, then N is satisfiable. Then, for any such N and G, we have that◆
G

-consistency © ◆fi

G

-consistency.
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Algorithm 1: PSWCfi(N , G)
in : A QCN N = (V, C), and a graph G = (V, E).
out : A sub-QCN of N .

1 begin

2 N Ω PWC(N , G);
3 Q Ω E;
4 while Q ”= ÿ do

5 {v, v

Õ} Ω Q.pop();
6 (V, C

Õ) Ω ‹V ;
7 foreach b œ C(v, v

Õ) do

8 (V, C

Õ) Ω (V, C

Õ) fi PWC(N[v,v

Õ]/{b}, G, {{v, v

Õ}});
9 if (V, C

Õ) µ N then

10 foreach {u, u

Õ} œ E | C

Õ(u, u

Õ) µ C(u, u

Õ) do

11 C(u, u

Õ) Ω C

Õ(u, u

Õ);
12 C(uÕ

, u) Ω C

Õ(uÕ
, u);

13 Q Ω E;

14 return N ;

Proof. We first prove that, if N is ◆
G

-consistent, then N is also ◆fi

G

-consistent. By Proposi-
tion 5 we have that ’{u, v} œ E and ’b œ C(u, v) the base relation b is feasible. In addition,
by the equivalence property of ◆fi

G

-consistency we have that the application of ◆fi

G

-consistency
on N can only remove unfeasible base relations and, hence, that ◆fi

G

(N ) = N , as every base
relation b œ C(u, v) ’{u, v} œ E is feasible. The proof that, if N is ◆fi

G

-consistent, then N is
also ◆

G

-consistent, follows directly from the definition of ◆fi

G

-consistency. J

A hasty reading of Proposition 11 might give the impression that one should always opt
to apply ◆

G

-consistency for the cases where the considered QCN and the graph G satisfy the
prerequisites detailed in that proposition, as ◆

G

-consistency, being a weaker consistency than◆fi

G

-consistency in general, should be “easier” to apply. However, as we will demonstrate in
our experimental section, ◆fi

G

-consistency is faster to apply. To give an intuition, any well-
structured algorithm that will try to enforce ◆fi

G

-consistency in a given QCN for some graph
G, will inescapably make better use of the singleton checks than the respective algorithm
for enforcing ◆

G

-consistency. This is because the former algorithm will exploit the singleton
checks (by the very definition of ◆fi

G

-consistency) to proactively eliminate certain base relations
that are unfeasible and, hence, possibly not ◆

G

-consistent for the corresponding constraints.

5 An algorithm for achieving ◆fi
G -consistency

In this section, we propose an algorithm for e�ciently applying ◆fi

G

-consistency on a given
QCN N , called PSWCfi (fi-collective partial singleton closure under weak composition) and
presented in Algorithm 1. This algorithm builds on the algorithm for e�ciently achieving◆
G

-consistency, called PSWC (partial singleton closure under weak composition) and presented
in Algorithm 2, which in itself is an advancement of the respective algorithm for enforcing◆
G

-consistency that is presented in [2]; we explain as follows. We use a queue in both of our
algorithms that is initialized with all of the edges of a given graph G that correspond to
constraints of a given QCN N . In addition, this queue is filled with all of the aforementioned
edges whenever any of the constraints of N is revised, i.e., whenever a base relation is
removed. This operation is equivalent to introducing a break statement in the algorithm of [2]
whenever a singleton check fails and, hence, a constraint is revised, forcing the inner loop in
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Algorithm 2: PSWC(N , G)
in : A QCN N = (V, C), and a graph G = (V, E).
out : A sub-QCN of N .

1 begin

2 N Ω PWC(N , G);
3 Q Ω E;
4 while Q ”= ÿ do

5 {v, v

Õ} Ω Q.pop();
6 (V, C

Õ) Ω ‹V ;
7 foreach b œ C(v, v

Õ) do

8 (V, C

Õ) Ω (V, C

Õ) fi PWC(N[v,v

Õ]/{b}, G, {{v, v

Õ}});
9 if C

Õ(v, v

Õ) µ C(v, v

Õ) then

10 C(v, v

Õ) Ω C

Õ(v, v

Õ);
11 C(vÕ

, v) Ω C

Õ(vÕ
, v);

12 Q Ω E;

13 return N ;

Algorithm 3: PWC(N , G, e Ω ÿ)
in : A QCN N = (V, C), a graph G = (V, E), and optionally a set e such that e ™ E.
out : A sub-QCN of N .

1 begin

2 Q Ω (e if e ”= ÿ else E);
3 while Q ”= ÿ do

4 {v, v

Õ} Ω Q.pop();
5 foreach v

ÕÕ œ V | {v, v

ÕÕ}, {v

Õ
, v

ÕÕ} œ E do

6 r Ω C(v, v

ÕÕ) fl (C(v, v

Õ) ù C(vÕ
, v

ÕÕ));
7 if r µ C(v, v

ÕÕ) then

8 C(v, v

ÕÕ) Ω r;
9 C(vÕÕ

, v) Ω r

≠1;
10 Q Ω Q fi {{v, v

ÕÕ}};
11 r Ω C(vÕÕ

, v

Õ) fl (C(vÕÕ
, v) ù C(v, v

Õ));
12 if r µ C(vÕÕ

, v

Õ) then

13 C(vÕÕ
, v

Õ) Ω r;
14 C(vÕ

, v

ÕÕ) Ω r

≠1;
15 Q Ω Q fi {{v

ÕÕ
, v

Õ}};

16 return N ;

that algorithm to stop and using the outer loop to initiate singleton checks in a fresh QCN.
We have found this tactic to perform much better in practice, cutting down on the number of
constraint checks by around 20%. Further, the use of a queue allows for prioritizing certain
edges, a strategy which is in line with similar techniques used in the algorithm for enforcing
ù
G

-consistency [34, 27, 16], but this is something that we have not yet explored and retain for
future work. As we will also remind the reader in the experimental evaluation to follow, we
use a simple FIFO (first-in, first-out) queue for our algorithms. For the sake of completeness,
we also present the state-of-the-art algorithm for applying ù

G

-consistency on a given QCN,
called PWC (partial closure under weak composition), which is utilized as a subroutine by
both PSWCfi and PSWC (see Algorithm 3).

The di�erence between algorithms PSWCfi and PSWC lies solely in the way that they
exploit singleton checks. In particular, note the di�erence between the conditions in line 9 of



M. Sioutis, A. Paparrizou, and J.-F. Condotta 19:13

both algorithms; PSWCfi will bring up all edges in the queue for revising the entire QCN
even when the constraint at hand was not revised, but another constraint somewhere in the
QCN was, whereas PSWC will keep its focus solely on the constraint at hand. This is due to
the fact that algorithm PSWCfi will use a single singleton check to eliminate base relations
anywhere in the network, and not just in the constraint at hand as algorithm PSWC does.
Before proving the correctness of algorithm PSWCfi, we recall the following result regarding
the correctness of algorithm PSWC:

I Proposition 12 (cf. [2, 8]). Given a QCN N = (V, C) of a relation algebra and a graph
G = (V, E), we have that algorithm PSWC terminates and returns ◆

G

(N ).

Now, we prove that algorithm PSWCfi is complete for applying ◆fi

G

-consistency on a given
N = (V, C) for a given graph G = (V, E). Due to space limitations, an intuitive proof is
provided, which however manages to explain the overall functionallity of algorithm PSWCfi

in su�cient detail.

I Theorem 3. Given a QCN N = (V, C) of a relation algebra and a graph G = (V, E), we
have that algorithm PSWCfi terminates and returns ◆fi

G

(N ).

Proof. (Intuition) It is easy to see that lines 9–12 in Algorithm 1 perform a superset of
the operations performed in lines 9–11 in Algorithm 2. Thus, by Proposition 12 we know
that given a QCN N = (V, C) and a graph G = (V, E), algorithm PSWCfi applies the
set of operations required to make N ◆

G

-consistent. We need to show that the rest of the
operations maintain ◆

G

-consistency and further achieve ◆fi

G

-consistency. With respect to
that, it is again easy to see that algorithm PSWCfi enforces exactly the conditions specified
in Proposition 6 and, hence, removes the (unfeasible) base relations required to make N◆fi

G

-consistent. Further, since the algorithm will only terminate when b is guaranteed to
have become ◆

G

-consistent for C(u, v) ’{u, v} œ E and ’b œ C(u, v) and no constraint is
further revised to additionally achieve ◆fi

G

-consistency, we can conclude that algorithm PSWCfi

correctly applies ◆fi

G

-consistency on N . J

Time complexity analysis
Given a QCN N = (V, C) and a graph G = (V, E), we have that algorithm PSWCfi applies◆fi

G

-consistency on N in O(� · |E|3 · B3) time, where � is the maximum vertex degree of
graph G. In particular, algorithm PWC is executed O(|E| · |B|) times every time a constraint
is revised, and such a constraint revision can occur O(|E| · |B|) times. Further, we note that
the unification operations that take place in line 8 of the algorithm are handled in O(|E| · |B|)
time in total, as we keep track of the constraints that are revised by algorithm PWC and
we can have a total of O(|E| · |B|) constraint revisions. The same argument holds for the
operations that take place in lines 9–12 of the alorithm. (These details are not included in
the algorithm to allow for a more compact representation.) Now, by taking into account
the worst-case time complexity of algorithm PWC, which is O(� · |E| · B) [7], a worst-case
time complexity of O(� · |E|3 · B3) can be obtained for algorithm PSWCfi; this is also the
worst-case time complexity of algorithm PSWC [2]. It is important to note that we cannot
utilize the incremental functionality of algorithm PWC (see Theorem 1 in [12, Section 3] and
the surrounding text) to obtain a better bound for our algorithm, as the singleton checks are
perfomed independently2 of one another.

2To be more precise, the unification operations that take place in line 8 of the algorithm do not provide
the level of interdependency required to tap into the incrementality of PWC.
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Table 1 Evaluation with random IA networks of model S(n = 70, l = 6.5, d)

min µ max ‡

d PSWC PSWCfi PSWC PSWCfi PSWC PSWCfi PSWC PSWCfi

10 3.19s

9k

3.11s

9k

4.25s

14k

4.02s

13k

5.63s

22k

5.43s

21k

0.50s

2k

0.52s

2k

12 5.79s

9k

5.65s

9k

7.82s

14k

7.51s

14k

11.85s

22k

10.88s

22k

1.38s

2k

1.18s

2k

14 9.92s

12k

9.63s

12k

13.81s

19k

13.08s

18k

21.26s

38k

19.24s

28k

2.68s

5k

2.40s

4k

16 14.14s

18k

13.91s

18k

30.19s

31k

27.74s

29k

96.24s

61k

99.56s

62k

14.20s

8k

14.95s

8k

18 21.39s

26k

20.94s

26k

56.16s

45k

53.17s

44k

154.14s

88k

149.98s

88k

22.92s

13k

21.22s

12k

20 54.42s

39k

52.82s

36k

100.22s

58k

89.32s

55k

192.68s

108k

188.54s

100k

30.68s

14k

26.08s

12k

22 19.66s

48k

17.09s

46k

42.51s

67k

39.83s

63k

86.09s

108k

75.55s

108k

16.67s

14k

15.19s

14k

6 Experimental evaluation

We evaluated the performance of an implementation of algorithm PSWCfi, against an
implementation of the algorithm for enforcing partial ◆

G

-consistency that was presented here,
namely, PSWC, with a varied dataset of arbitrary QCNs of IA.

Technical specifications. The evaluation was carried out on a computer with an Intel
Core i5-6200U processor (which has a max frequency of 2.7 GHz per CPU core under turbo
mode3), 8 GB of RAM, and the Xenial Xerus x86_64 OS (Ubuntu Linux). All algorithms were
coded in Python and run using the PyPy intepreter under version 5.1.2, which implements
Python 2.7.10; the code is available upon request. Only one CPU core was used.

Datasets and measures. We considered random IA networks generated by the S(n, l, d)
model [34]. This model can randomly generate satisfiable QCNs of n variables with an
average number l of base relations per non-universal constraint and an average degree
d for the corresponding constraint graphs. Further, this model is typically used in the
evaluation of algorithms dealing with problems associated with QCNs, with an emphasis on
the minimal labelling problem [34, 2, 23]. We generated 30 QCNs of IA of n = 70 variables
with l = |B|/2 = 6.5 base relations per non-universal constraint on average for all values of d
ranging from 10 to 22 with a step of 2 (a typical range for evaluating related algorithms [2]);
hence, we considered a total of 210 QCNs of IA. Finally, the maximum cardinality search
algorithm [32] was used to obtain a triangulation of the constraint graph of a given QCN.
Notice that, with respect to our evaluation, any kind of graphs would have been adequate
(even complete ones), as they would have a�ected all involved algorithms proportionally and
would not have qualitatively distorted the obtained results; however, the choice of chordal
graphs was more reasonable given their extensive use in the recent literature [31].

Our evaluation involved two measures, which we describe as follows. The first measure
considers the number of constraint checks per base relation removals performed by an
algorithm for enforcing the respective local consistency. Given a QCN N = (V, C) and

3Turbo mode was maintained throughout the experimental evaluation by staying well within thermal
design power (TDP) limit.
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three variables v
i

, v
k

, v
j

œ V , a constraint check occurs when we compute the relation r =
C(v

i

, v
j

) fl (C(v
i

, v
k

) ù C(v
k

, v
j

)) and check if r µ C(v
i

, v
j

), so that we can propagate its
constrainedness if that condition is satisfied. Weak compositions that yield relation B are
disregarded. The second measure concerns the CPU time and is strongly correlated with the
first one, as the run-time of any proper implementation of an algorithm for enforcing a local
consistency should, in principle, rely mainly on the number of constraint checks performed.

Results. The results of our experimental evalualation are detailed in Table 1, where
a fraction x

y

denotes that an approach required x seconds of CPU time and performed y

constraint checks per base relation removals on average per dataset of networks during its
operation. In short, the advantage of PSWCfi over PSWC is clear across all parameters
and for all settings and corresponds to around 10%. This is a promising result in terms
of achieving a new stronger local consistency faster than what was possible to date even
when considering a weaker local consistency. Further, we recall to the reader that we used a
simple FIFO queue for our implementation; it would be interesting to explore prioritizing
edges corresponding to constraints that are revised at any given step of the execution. We
retain a more thorough experimental evaluation, which will also include the e�ect of our
new stronger local consistency on backtracking-based algorithms, for future work. Here, we
opted to maintain a simple configuration for our algorithms in order to obtain a first pure
comparison that will serve as a basis for further evaluation.

7 Conclusion and future work

Partial singleton closure under weak composition, or partial ◆-consistency for short, is a local
consistency that ensures that each base relation of each of the constraints of a qualitative
constraint network can define a singleton relation in the corresponding partial closure of that
network under weak composition, or in its corresponding partial ù-consistent subnetwork
for short. This local consistency is essential for approximating satisfiability of qualitative
constraints networks, and has been shown to play a crucial role in tackling the minimal
labeling problem of a qualitative constraint network in particular, which is the problem
of finding the strongest implied constraints of that network. In this paper, we proposed a
stronger local consistency that couples ◆-consistency with the idea of collectively deleting
certain unfeasible base relations by exploiting singleton checks. Further, we proposed an
e�cient algorithm for enforcing this new consistency that, given a qualitative constraint
network, performs fewer constraint checks than the respective algorithm for enforcing partial◆-consistency in that network. We formally proved certain properties of our new local
consistency, and motivated its usefulness through demonstrative examples and a preliminary
experimental evaluation with qualitative constraint networks of Interval Algebra.

There are several directions for future work. Regarding the algorithm that enforces our
new consistency, we would like to explore queuing strategies such that the singleton checks
are applied in a more fruitful manner. In particular, it would make sense to prioritize certain
singleton checks that are more likely to eliminate base relations anywhere in the network at
hand, because this could unveil certain inconsistencies faster, but also lead to fewer constraint
checks overall. Such strategies have been used in the case of partial ù-consistency [34, 27, 16].
Further, regarding the new local consistency itself, we would like to define a weaker variant of
it that considers singleton checks in the neighborhood of the constraint in question, instead
of the entire network. Early experiments in this direction have shown really promising results
with respect to constraint satisfaction problems, which is due to the fact that constraint
revisions tend to propagate themselves to just neighboring constraints [36].

TIME 2017

Anastasia
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