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a b s t r a c t

For graphs of bounded maximum degree, we consider acyclic t-improper colourings, that
is, colourings in which each bipartite subgraph consisting of the edges between two colour
classes is acyclic, and each colour class induces a graph with maximum degree at most t .
We consider the supremum, over all graphs of maximum degree at most d, of the

acyclic t-improper chromatic number and provide t-improper analogues of results by
Alon, McDiarmid and Reed [N. Alon, C.J.H. McDiarmid, B. Reed, Acyclic coloring of graphs,
Random Structures Algorithms 2 (3) (1991) 277–288] and Fertin, Raspaud and Reed [G.
Fertin, A. Raspaud, B. Reed, Star coloring of graphs, J. Graph Theory 47 (3) (2004) 163–182].

© 2009 Published by Elsevier B.V.

1. Introduction

Given a graph G = (V , E), a proper colouring V = (V1, . . . , Vk) of V is acyclic if for all 1 ≤ i < j ≤ k, the subgraph of
G induced by Vi ∪ Vj, which we denote G[Vi ∪ Vj], contains no cycles (i.e., is a forest). The acyclic chromatic number χa(G)
is the smallest value k for which there exists a proper acyclic k-colouring of G. It is easily seen that χa(G) ≤ ∆(G)2 + 1, as
any proper colouring of the square G2 of G is de facto a proper acyclic colouring of G, and G2 has maximum degree at most
∆(G)2. (G2 is the graph with vertex set V and edges between all pairs of vertices at distance at most 2 in G.) In 1976, Erdős
(see (cf. [1])) conjectured that χa(G) = o(∆(G)2); this conjecture was proved by Alon et al. [2], who showed the existence of
a fixed constant c < 50 such that for all G, χa(G) ≤ c∆(G)4/3. Alon et al. also showed that their bound was close to optimal
by proving via probabilistic arguments that

max{χa(G) : ∆(G) ≤ ∆} = Ω
(

∆4/3

(log∆)1/3

)
.

When studying the asymptotics of χa(G) in terms of ∆(G), the restriction that the colouring be proper is not of great
importance. Indeed, suppose we define the laid-back acyclic chromatic number χ`(G) to be the smallest value k for which
there exists a colouring V = (V1, . . . , Vk) of G such that, for all 1 ≤ i < j ≤ k, G[Vi ∪ Vj] is a forest (placing no further
restriction on edges within a given block G[Vi]). Clearly, χ`(G) ≤ χa(G). On the other hand, given such a colouring, it follows
in particular that for all 1 ≤ i ≤ k, G[Vi] is a forest, so χ(G[Vi]) ≤ 2. By splitting Vi into stable sets V

(1)
i and V (2)i (for each

1 ≤ i ≤ k), we may then obtain an acyclic proper colouring of Gwith at most 2k colours. It follows that χa(G) and χ`(G) are
within a factor of two of each other.
In this paperwe investigate another relaxation of the acyclic chromatic number; in order to define it we first note that we

may reformulate the definition of χa(G), by observing that if Vi and Vj are distinct stable sets in G, then G[Vi ∪ Vj] is exactly
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the bipartite graph G[Vi, Vj] containing all edges with one endpoint in Vi and one endpoint in Vj. We may then equivalently
define χa(G) as the smallest value k for which there exists a proper colouring V = (V1, . . . , Vk) of V , such that for all
1 ≤ i < j ≤ k, G[Vi, Vj] is a forest (i.e. such that with this colouring, G contains no alternating cycle).
Starting from this definition,wemay now relax the requirement thatV be a proper colouring,while continuing to impose

that G contain no alternating cycle. To wit: given an integer t ≥ 0, we say that a colouring V = (V1, . . . , Vk) is t-improper
if for all 1 ≤ i ≤ k, G[Vi] has maximum degree at most t (in this case we say that Vi is t-dependent, for each 1 ≤ i ≤ t). The
t-improper acyclic chromatic number χ ta(G) is the smallest k for which there exists a t-improper colouringV = (V1, . . . , Vk)
such that with this colouring, G contains no alternating cycle.
For an integer d ≥ 0, we let

χ ta(d) = max{χ
t
a(G) : ∆(G) ≤ d}.

The object of this paper is to study how χ ta(d) varies as a function of t and of d. Clearly, for any d, χ
0
a (d) ≥ χ

1
a (d) ≥ · · · ≥

χda (d) = 1.
It is easily seen that χ ta(d) = Ω

(
(d/t)4/3/(ln d)1/3

)
; given an acyclic t-improper colouring, by applying the first of the

results from [2] mentioned above, we can acyclically colour each colour class with at most ct4/3 new colours (where c is
some fixed constant which is less than 50) to obtain an acyclic colouring of the entire graph. Our first result is to show that
this straightforward lower bound on χ ta(d) can be much improved upon asymptotically, as long as t ≤ d− 10

√
d ln d. More

fully,

Theorem 1. If t ≤ d− 10
√
d ln d, then χ ta(d) = Ω

(
(d− t)4/3/(ln d)1/3

)
.

In particular, if t = (1 − ε)d for any fixed constant ε, 0 < ε ≤ 1, then we obtain the same asymptotic lower bound
as Alon et al. Comparing this lower bound with the upper bound χ ta(d) = O(d

4/3), we see the surprising fact that even
allowing t = Ω(d) does not greatly reduce the number of colours needed for improper acyclic colourings of graphs with
large maximum degree.
At some point, χ ta(d)must drop significantly as t increases, because χ

d
a (d) = 1. Although we are unable to pin down the

behaviour of χ ta(d) viewed as a function of t , we can improve upon the upper bound of Alon et al. when t is very close to d
(more precisely, when d− t = o(d1/3)). We prove:

Theorem 2. χ ta(d) = O(d ln d+ (d− t)d).

As for lower bounds on χ ta(d) when d− t = o(d), we first note that [3] showed χ
d−2
a (d) ≥ 3; we can straightforwardly

generalise this result by showing that χ ta(d) ≥ d − t + 1. This is done as follows: if Kd+1 is the complete graph on d + 1
vertices, then χ ta(Kd+1) ≥ d − t + 1, since, in any acyclic t-improper colouring of Kd+1, at most one colour class has more
than one vertex and no colour class has more than t + 1 vertices. We can, however, improve upon this further and, in the
final section, we exhibit a set of examples showing the following lower bound.

Theorem 3. χd−1a (d) = Ω(d2/3).

Wewould like to reduce the gaps between the lower and upper bounds onχ ta(d). For t = d−1, the problem is particularly
tantalising, and, in this case, the lower bound of Theorem 3 and the upper bound of Theorem 2 differ by a factor of d1/3 ln d.
For this choice of t , the problem also includes the conjecture from [3] that every subcubic graph is acyclically 2-improperly
2-colourable.
In the rest of the paper, we use the following notation. The degree of a given vertex v is denoted by d(v). We denote by

N(v) the set of the neighbours of v. A k-cycle (resp. a ≥k-cycle) is a cycle containing k vertices (resp. at least k vertices). For
a graph G and a vertex v ∈ V (G), we denote by G \ {v} the graph obtained from G by removing v and its incident edges; for
an edge uv of E(G), G\ {uv} denotes the graph obtained from G by removing the edge uv. These notions are extended to sets
of vertices and edges in an obvious way. Let G be a graph and f be a colouring of G. For a given vertex v of G, we denote by
imf (v), or simply im(v)when the colouring is clear from the context, the number of neighbours of v having the same colour
as v and call this quantity the impropriety of the vertex v. For notation not defined here, we refer the reader to [9].

2. A probabilistic lower bound for χt
a(d)

In this section, we prove Proposition 6, a more explicit version of Theorem 1. Our argument mirrors that of Alon et al. but
uses upper bounds on the t-dependence number αt , the size of a largest t-dependent set, in the random graph Gn,p. For more
precise upper bounds on αt(Gn,p), consult [7].

Lemma 4. Fix an integer n ≥ 1 and p ∈ R with 4(ln n/n)1/4 ≤ p ≤ 1. Let m = bn− 128 ln n/p4c. Then asymptotically almost
surely and uniformly over p in the above range, any colouring of Gn,p with k ≤ (n−m)/4 colours and in which each colour class
contains at most m vertices contains an alternating 4-cycle.
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Proof. As there are at most kn ≤ nn possible k-colourings of Gn,p, to prove the lemma it suffices to show that for any fixed
k-colouring of the vertices of Gn,p (which we denote {v1, . . . , vn}) with colour classes C1, . . . , Ck in which |Ci| ≤ m for all
1 ≤ i ≤ k, the probability that Gn,p does not contain an alternating 4-cycle is o(n−n).
Fix a colouring as above, and let q be minimal such that |C1 ∪ · · · ∪ Cq| ≥ (n − m)/2. Let A = C1 ∪ . . . ∪ Cq and let

B = Cq+1 ∪ . . . ∪ Ck. As no colour class has size greater thanm, |A| ≤ (n+m)/2 and so |B| ≥ (n−m)/2. By symmetry, we
may also assume that |A| ≥ n/2.
Next, let P = {{x1, x′1}, . . . , {xr , x

′
r}} be a maximal collection of pairs of elements of A such that for 1 ≤ i ≤ r , xi and x

′

i
have the same colour, and for 1 ≤ i < j ≤ r , {xi, x′i} and {xj, x

′

j} are disjoint. As wemay place all but perhaps one vertex from
each colour class Ci in some such pair (with one vertex left over precisely if |Ci| is odd), it follows that

r ≥
1
2
(|A| − q) ≥

1
2

(n
2
− k

)
≥
n
8
.

Similarly, let Q = {{y1, y′1}, . . . , {ys, y
′
s}} be a maximal collection of pairs of elements of B satisfying identical conditions; by

an identical argument to that above, it follows that s ≥ (n−m)/8.
Let E be the event that for all 1 ≤ i ≤ r , 1 ≤ j ≤ s, {xi, yj, x′i, y

′

j} is not an alternating 4-cycle, and let E
′ be the event that

Gn,p contains no alternating 4-cycle; clearly E ′ ⊆ E. For fixed 1 ≤ i ≤ r and 1 ≤ j ≤ s, the probability that {xi, yj, x′i, y
′

j} is
not an alternating 4-cycle is (1− p4) and this event is independent from all other such events. As (n−m) ≥ 128 ln n/p4 it
follows that

Pr
(
E ′
)
≤ Pr(E) ≤ (1− p4)rs ≤ e−p

4rs

≤ exp
{
−
p4n(n−m)

64

}
≤ e−2n ln n = o(n−n),

as required. �

Using this lemma, we next bound the acyclic t-improper chromatic number of Gn,p for p in the range allowed in Lemma 4.

Lemma 5. Fix an integer n ≥ 1 and p ∈ R with 4(ln n/n)1/4 ≤ p ≤ 1. Let m = bn − 128 ln n/p4c and let t(n, p) =
p(m− 1)− 2

√
np. Then asymptotically almost surely, for all integers t ≤ t(n, p), χ ta(Gn,p) ≥ 32 ln n/p

4, uniformly over p and
t in the above ranges.

Proof. Fix n and p as above, and choose t ≤ t(n, p). We will show that asymptotically almost surely Gn,p contains no t-
dependent set of size greater than m, from which the claim follows immediately by applying Lemma 4 as (n − m)/4 ≥
32 ln n/p4. Let G[m] represent the subgraph of Gn,p induced by {v1, . . . , vm}. By a union bound and symmetry, we have

Pr
(
αt(Gn,p) ≥ m

)
≤

( n
m

)
Pr (∆(G[m]) ≤ t) ≤ 2nPr(∆(G[m]) ≤ t).

Since, if∆(G[m]) ≤ t then G[m] has at most tm/2 edges, it follows that

Pr
(
αt(Gn,p) ≥ m

)
≤ 2nPr

(
E(G[m]) ≤

tm
2

)
≤ 2nPr

(
E(G[m])− p

(m
2

)
≤
tm
2
− p

(m
2

))
.

Finally, by a Chernoff bound and by the definition of t(n, p), we conclude that

Pr
(
αt(Gn,p) ≥ m

)
≤ 2n exp

{
−

(
tm
2
− p

(m
2

))2
·

(
2p
(m
2

))−1}

≤ 2n exp
{
−
(t − p(m− 1))2

4p

}
≤ (2/e)n = o(1),

as claimed. �

Using Lemma 5, it is a straightforward calculation to bound χ ta(d) for d sufficiently large, and t sufficiently far from d.

Proposition 6. For all sufficiently large integers d, and all non-negative integers t ≤ d− 10
√
d ln d,

χ ta(d) ≥
(d− t)4/3

215(ln d)1/3
.

Proof. Choose n so that

213n3 ln n ≤ d3(d− t) ≤ 214n3 ln n; (1)
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such a choice of n clearly exists as long as d is large enough. Let p = (d − 4
√
d ln d)/n; we first check that p and t satisfy

the requirements of Lemma 5. Presuming d is large enough that np ≥ d/2, by the lower bound in (1) and the fact that
d(d− t) ≤ d2 we have

p ≥
d
2n
≥
(d3(d− t))1/4

2n
≥
8n3/4(ln n)1/4

2n
= 4

(
ln n
n

)1/4
. (2)

Furthermore, lettingm = bn− 128 ln n/p4c, we have

p(m− 1)− 2
√
np ≥ np−

128 ln n
p3

− 2
√
np− 2 = d− 4

√
d ln d− 2

√
np− 2−

128 ln n
p3

≥ d− 8
√
d ln d−

128 ln n
p3

. (3)

Since p ≥ d/2n and by the lower bound in (1),

128 ln n
p3

≤
210n3 ln n
d3

≤
d− t
8

,

which combined with (3) yields

p(m− 1)− 2
√
np > d− 8

√
d ln d−

(d− t)
8

= t +
7(d− t)
8

− 8
√
d ln d > t, (4)

the last inequality holding since t ≤ d− 10
√
d ln d. As (2) and (4) hold, we may apply Lemma 5 to bound χ ta(Gn,p)with this

choice of t and p; as n > d, it follows that as long as d is sufficiently large,

Pr
(
χ ta(Gn,p) ≥

32 ln n
p4

)
≥
3
4
, (5)

say. Furthermore, by a union bound and a Chernoff bound,

Pr
(
∆(Gn,p) > d

)
≤ nPr

(
BIN

(
n,
d− 4

√
d ln d
n

)
> d

)

≤ ne−16 ln d/3 ≤
1
n
, (6)

the last inequality holding as ln d ≥ ln n/2 (which is an easy consequence of (1)). Combining (5) and (6), we obtain that

Pr
(
χ ta(Gn,p) ≥

32 ln n
p4

,∆(Gn,p) ≤ d
)
≥
3
4
−
1
n
≥
1
2

as long as n ≥ 4, so there is some graph G with maximum degree at most d and with χ ta(G) ≥ 32 ln n/p
4. Since χ ta is

monotonically increasing in d, it follows that

χ ta(d) ≥
32 ln n
p4

>
32n4 ln n
d4

. (7)

An easy calculation using the upper bound in (1), and the fact that ln n < 2 ln d gives the bound

d4 <
220n4(ln d)4/3

(d− t)4/3
,

so 32n4 ln n/d4 > (d− t)4/3/215(ln d)1/3. By (7), it follows that

χ ta(d) ≥
(d− t)4/3

215(ln d)1/3
,

as claimed. �
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3. A probabilistic upper bound for χt
a(d)

In this section, we study the situation when d − t = o(d1/2). Theorem 2, which improves the upper bound of [2] when
d− t = o(d1/3), is a corollary of our main result here.
We analyse a different parameter from, but one that is closely related to, the acyclic t-improper chromatic number. A

star colouring of G is a colouring, such that no path of length three (i.e. with four vertices) is alternating; in other words,
each bipartite subgraph consisting of the edges between two colour classes is a disjoint union of stars. The star chromatic
number χs(G) is the least number of colours needed in a proper star colouring of G. We analogously define the parameters
χ ts (G) and χ

t
s (d) in the natural way. The star chromatic number was one of the main motivations for the original study of

acyclic colourings [6]. Clearly, any star colouring is acyclic; thus, χ ta(d) ≤ χ
t
s (d). Fertin, Raspaud and Reed [5] showed that

χs(d) = O(d
3/2) and that χs(d) = Ω

(
d3/2/(ln d)1/2

)
. We note that a natural adaptation to star colouring of the argument

given in the last section gives the following:

Theorem 7. There exists a fixed constant C > 0 such that, if t ≤ d− C
√
d ln d, then χ ts (d) = Ω

(
(d− t)3/2/(ln d)1/2

)
.

Given a graph G of maximum degree d, the idea behind our method for improved upper bounds is to find a dominating
set D and a function g = g(d) = o(d3/2), such that

∣∣(N(v) ∪ N2(v)) ∩D
∣∣ ≤ g for all v ∈ V (G). Given such a set D in G,

we assign colours to the vertices inD by greedily colouringD in the square of G (i.e. vertices inD at distance at most two
in G receive different colours) with at most g + 1 colours; then we give the vertices of G \ D the colour g + 2. It can be
verified that this colouring prevents any alternating paths of length three (and so prevents alternating cycles), and ensures
that every vertex has at least one neighbour of a different colour. Furthermore, we can generalise this idea by prescribing
that our setD is k-dominating – each vertex outside ofD has at least k neighbours inD – to give a bound on χd−ks (d).

Theorem 8. χ ts (d) = O(d ln d+ (d− t)d).

This result provides an asymptotically better upper bound than χ ts (d) = O(d
3/2) when d− t = o(d1/2). It also provides

a better bound than χ ta(d) = O(d
4/3)when d− t = o(d1/3). Theorem 8 is an easy consequence of the following lemma:

Lemma 9. Given a d-regular graph G and an integer k ≥ 1, let ψ(G, k) be the least integer k′ ≥ k, such that there exists a
k-dominating set D for which, for all v ∈ V (G), |N(v) ∩ D| ≤ k′. Let ψ(d, k) be the maximum over all d-regular graphs G of
ψ(G, k). Then, for all d sufficiently large, ψ(d, k) ≤ max{3k, 31 ln d}.

We postpone the proof of this lemma, first using it to prove Theorem 8:

Proof of Theorem 8. We first remark that the function χ ts is monotonic with respect to graph inclusion in the following
sense: ifG andG′ are graphswith V (G) ⊆ V (G′), and E(G) ⊂ E(G′), thenχ ts (G) ≤ χ

t
s (G
′). As any graphG ofmaximumdegree

d is a subgraph of a d-regular graph (possibly with a greater number of vertices), to prove that χ ts (d) = O(d ln d+ (d− t)d)
it therefore suffices to show that χ ts (G) = O(d ln d + (d − t)d) for d-regular graphs G. We hereafter assume G is d-regular
and d is large enough to apply Lemma 9. Let k = d− t . We will show that χ ts (G) ≤ dψ(d, k)+ 2, which proves the theorem.
By Lemma 9, there is a k-dominating setD such that |N(v) ∩D| ≤ ψ(d, k) for all v ∈ V (G). Fix such a dominating set

D and form the auxiliary graph H as follows: let H have vertex set D and let uv be an edge of H precisely if u and v have
graph distance at most two in G. As |N(v) ∩D| ≤ ψ(d, k) for all v ∈ V (G), H has maximum degree at most dψ(d, k).
To colour G, we first greedily colour H , using at most dψ(d, k) + 1 colours, and assign each vertex v of D the colour it

received in H . We next choose a new colour not used on the vertices ofD , and assign this colour to all vertices of V (G) \D .
We remind the reader that im(v) denotes the number of neighbours of v of the same colour as v. If v ∈ D then im(v) = 0,
and if v ∈ V \D then im(v) ≤ d− |N(v) ∩D| ≤ d− k = t , so the resulting colouring is t-improper.
Furthermore, given any path P = v1v2v3v4 of length three in G, either two consecutive vertices vi, vi+1 of P are not inD

(in which case c(vi) = c(vi+1), and P is not alternating), or two vertices vi, vi+2 are inD (in which case c(vi) 6= c(vi+2) and
P is not alternating). Thus, the above colouring is a star colouring G of impropriety at most t and using at most dψ(d, k)+ 2
colours; as Gwas an arbitrary d-regular graph, it follows that χ ts (d) ≤ dψ(d, k)+ 2, as claimed. �

We next prove Lemma 9 with the aid of the following symmetric version of the Lovász Local Lemma:

Lemma 10 ([4], cf. [8], Page 40). Let A be a set of bad events, such that for each A ∈ A

1. Pr (A) ≤ p < 1, and
2. A is mutually independent of a set of all but at most δ of the other events.

If 4pδ ≤ 1, then with positive probability, none of the events inA occurs.

Proof of Lemma 9. We may clearly assume that k is at least (31/3) ln d, since, if the claim of the lemma holds for such k,
then it also holds for smaller k. Let p = 2k/d and let D be a random set obtained by independently choosing each vertex
v with probability p. We claim that, with positive probability, D is a k-dominating set, such that |N(v) ∩ D| ≤ 3k for all
v ∈ V (G); we will prove our claim using the local lemma.
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For v ∈ V (G), let Av be the event that either |N(v)∩D| < k or |N(v)∩D| > 3k. By the mutual independence principle,
cf. [8], page 41, Av is mutually independent of all but at most d2 events Aw (withw 6= v). Furthermore, since |N(v)∩D| has
a binomial distribution with parameters d and p, we have by a Chernoff bound that

Pr (Av) = Pr (||N(v) ∩D| − E(|N(v) ∩D|)| > k) ≤ 2e−k/5 = o(d−2)

so 4Pr (Av) d2 < 1 for d large enough. By applying Lemma 10withA = {Av | v ∈ V }, it follows thatwith positive probability
none of the events Av occur, i.e.D has the desired properties. �

4. A deterministic lower bound for χd−1
a (d)

In this section, we concentrate on the case t = d−1 and exhibit an example Gn, which gives the asymptotic lower bound
of Theorem 3. Given a positive integer n, we construct the graph Gn as follows: Gn has vertex set {vij : i, j ∈ {1, . . . n}}∪{wij :
i, j ∈ {1, . . . , n}}. For i, j ∈ {1, . . . , n}we letVij = {vij, wij}.We can think of the set of vertices as an n-by-nmatrix, each entry
of which has been ‘‘doubled’’. Within each column Ci =

⋃n
j=1 Vij, and within each rowRj =

⋃n
i=1 Vij we add all possible

edges. The graph Gn has 2n2 vertices and is regular with degree d = 4n− 3. We will prove the following proposition, which
directly implies Theorem 3:

Proposition 11. χd−1a (Gn) ≥ n
n1/3+1

+ 1.

Proof. Let f : Gn → {1, . . . , k} be an acyclic (d − 1)-improper colouring of Gn; we will show that necessarily k ≥ n
n1/3+1

.
Since n ≥ 1, it follows that n/2 ≥ n

n1/3+1
and thus we may assume that k < n/2. Clearly, some colour – say a1 – appears on

two vertices x, x′ of C1. We call the colour a1 ‘‘black’’ and refer to vertices receiving colour a1 as black vertices. If y, y′ ∈ C1
both receive colour i 6= a1, then xyx′y′ forms an alternating cycle, so black is the only colour appearing twice inC1. It follows
that at most k− 1 vertices in C1 are not black.
Applying the same logic to any column Ci, we see that all but k − 1 vertices in Ci must receive the same colour, say ai.

Since k < n/2, it is easily seen, then, that there must be a rowRm, such that vm1 andwm1 are both black, and vmi andwmi are
both coloured black. This implies that ai is the colour black, since otherwise vm1vmiwm1wmj would be an alternating cycle. It
follows that in all columns, at most k− 1 vertices receive a colour other than black. Symmetrically, there is a colour b such
that in all rows, at most k− 1 vertices receive a colour other than b; clearly, it must the case that b is the colour black.
If there are i, j ∈ {1, . . . , n} such that both Ri and Cj are entirely coloured black, then all the neighbours of vij, wij are

coloured black and the colouring is not (d− 1)-improper; therefore, it must be the case that either all rows, or all columns,
contain a non-black vertex. Without loss of generality, we may assume that all rows contain a non-black vertex.
Let x1, . . . , xr be non-black vertices receiving the same colour, say red, and let xi ∈ V`i,mi , for 1 ≤ i ≤ r . As previously

noted, no two of x1, . . . , xr may lie in the same row or column; i.e., for i 6= j, `i 6= `j andmi 6= mj.

Claim 1. At least 3
( r
2

)
vertices of

⋃
1≤i6=j≤r V`i,mj receive a non-black colour other than red.

Proof. No vertices in
⋃
1≤i6=j≤r V`i,mj are coloured red as each such vertex is in the same row as one of x1, . . . , xr . On the

other hand, for each pair i, j with 1 ≤ i < j ≤ r , at least three of the vertices in V`i,mj ∪ V`j,mi must receive a colour other
than black. For if y, y′ ∈ V`i,mj ∪V`j,mi are both coloured black, then xiyxjy

′ forms an alternating cycle. The result follows, as
there are

( r
2

)
pairs i, jwith 1 ≤ i < j ≤ r . �

Claim 2. At least r distinct non-black colours appear on
⋃
1≤i<j≤r V`i,mj .

Proof. By an argument just as above, each of V`1,m2 , . . . ,V`1,mr must contain a vertex receiving a colour other than black
or red. These colours must all be distinct as V`1,m2 , . . . ,V`1,mr are all contained withinR`1 . �

Let {a2, a3, . . . , ak} be the set of non-black colours. Let x21, . . . , x
2
r2 be the vertices receiving colour a2, and for i = 3, . . . , k

let xi1, . . . , x
i
ri be the vertices receiving colour ai which are in a different row from all vertices in

⋃
j<i
⋃
s≤rj
xjs. As every row

contains a non-black vertex,
∑k
i=2 ri = n; it is possible that ri = 0 for certain i, if there is a vertex coloured with one of

a2, . . . , ai−1 in every row.
For i ∈ {2, . . . , k} and s ∈ {1, . . . , ri}, say vertex xis ∈ V`is,mis , and let

Ai =
⋃

1≤s<t≤ri

V`is,mit
∪ V`it ,m

i
s
.

By Claim 1, at least 3
( ri
2

)
vertices of Ai are non-black. Furthermore, if i 6= i′, then for any s ∈ {1, . . . , ri}, s′ ∈ {1, . . . , ri′}, xis

and xi
′

s′ are in different rows — so Ai and Ai′ are disjoint. It follows that in
⋃k
i=2 Ai ∪ {x

i
1, . . . , x

i
ri}, at least

k∑
i=2

(
3
( ri
2

)
+ ri

)
≥

k∑
i=2

r2i (8)
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Table 1
Asymptotic bounds for χ ta(d) and χ

t
s (d)

d− t χ ta(d) χ ts (d)
Lower Upper Lower Upper

Θ(d) Ω

(
d4/3

(ln d)1/3

)
O(d4/3)

Ω

(
d3/2

(ln d)1/2

)
O(d3/2)

ω(
√
d ln d) Ω

(
(d−t)4/3

(ln d)1/3

)
Ω

(
(d−t)3/2

(ln d)1/2

)
Ω
(
d2/3

)
Ω
(
d2/3

)O(d1/2) O((d− t)d)
O(d1/3) O((d− t)d)
O(ln d) O(d ln d) O(d ln d)
0 1 1 1 1

vertices are non-black. As
∑k
i=2 ri = n, it is easily seen that

k∑
i=2

r2i ≥ (k− 1)
(⌊

n
k− 1

⌋)2
.

As there are only k − 1 non-black colours, it follows that some non-black colour – say a2 – appears at least (bn/(k − 1)c)2
times. If (bn/(k− 1)c)2 ≥ n2/3, then by Claim 2, at least n2/3+ 1 > n

n1/3+1
+ 1 colours appear on Gn, so wemay assume that

n2/3 > (bn/(k− 1)c)2 ≥ (n/(k− 1)− 1)2. But then k > n
n1/3+1

+ 1, as claimed. �

It isworth noting that the correct asymptotic order ofχd−1a (Gn) is unknown; it is even conceivable thatχd−1a (Gn) = Θ(d).

5. Conclusion

In our view, the most surprising result of this paper is that the same asymptotic lower bound for ordinary acyclic
chromatic number by Alon et al. also holds for the acyclic t-improper chromatic number for any t = t(d), satisfying
d − t = Θ(d). As χa(G) ≥ χ ta(G) for any t ≥ 0, this means that, for d − t = Θ(d), Theorem 1 is asymptotically tight
up to a factor of (ln d)1/3.
In the case that t is very close to d, Theorem 8 improves upon upper bounds for χ ta(d) and χ

t
s (d) implied by the results

of Alon et al. and Fertin et al., respectively, giving for instance that χ ts (d) = O(d ln d) for d− t = O(ln d). On the other hand,
we showed that χd−1a (d) = Ω(d2/3) by a deterministic construction.
There is much remaining work in the case d− t = o(d). Table 1 is a rough summary of the current bounds on χ ta(d), and

χ ts (d)when d is large. A case of particular interest to the authors is when d− t = 1; in this case, it is unknown if χ
d−1
a (d) is

Θ(d2/3),Θ(d ln d) or lies somewhere strictly between these extremes.
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