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a b s t r a c t

For graphs of bounded maximum average degree, we consider the problem of 2-distance
coloring. This is the problem of coloring the vertices while ensuring that two vertices that
are adjacent or have a common neighbor receive different colors. It is already known that
planar graphs of girth at least 6 and of maximum degree ∆ are list 2-distance (∆ + 2)-
colorable when ∆ ≥ 24 (Borodin and Ivanova (2009)) and 2-distance (∆ + 2)-colorable
when ∆ ≥ 18 (Borodin and Ivanova (2009)). We prove here that ∆ ≥ 17 suffices in both
cases. More generally, we show that graphs with maximum average degree less than 3 and
∆ ≥ 17 are list 2-distance (∆ + 2)-colorable. The proof can be transposed to list injective
(∆ + 1)-coloring.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider only simple and finite graphs. A 2-distance k-coloring of a graph G is a coloring of the vertices of
Gwith k colors such that two vertices that are adjacent or have a common neighbor receive distinct colors. We define χ2(G)
as the smallest k such that G admits a 2-distance k-coloring. This is equivalent to a proper vertex-coloring of the square of
G, which is defined as a graph with the same set of vertices as G, where two vertices are adjacent if and only if they are
adjacent or have a common neighbor in G. For example, the cycle of length 5 cannot be 2-distance colored with less than
5 colors as any two vertices are either adjacent or have a common neighbor: indeed, its square is the clique of size 5. An
extension of the 2-distance k-coloring is the list 2-distance k-coloring, where instead of having the same set of k colors for
the whole graph, every vertex is assigned some set of k colors and has to be colored from it. We define χ2

ℓ (G) as the smallest
k such that G admits a list 2-distance k-coloring of G for any list assignment. Obviously, 2-distance coloring is a sub-case of
list 2-distance coloring (where the same color list is assigned to every vertex), so for any graph G, χ2

ℓ (G) ≥ χ2(G). Kostochka
and Woodall [21] even conjectured that it is actually an equality, though the conjecture was recently disproved [20].

The study of χ2(G) on planar graphs was initiated by Wegner in 1977 [23], and has been actively studied because of the
conjecture given below. Themaximum degree of a graph G is denoted ∆(G).

Conjecture 1 (Wegner [23]). If G is a planar graph, then:
• χ2(G) ≤ 7 if ∆(G) = 3
• χ2(G) ≤ ∆(G) + 5 if 4 ≤ ∆(G) ≤ 7
• χ2(G) ≤ ⌊

3∆(G)

2 ⌋ + 1 if ∆(G) ≥ 8.
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This conjecture remains open. However, Havet et al. [18] proved that it holds asymptotically even in the case of list
2-distance coloring, i.e. χ2

ℓ (G) ≤
3∆(G)

2 (1 + o(1)).
Note that any graph G satisfiesχ2(G) ≥ ∆(G)+1. It is therefore natural to askwhen this lower bound is reached. For that

purpose, we can study, as suggested byWang and Lih [22], what conditions on the sparseness of the graph can be sufficient
to ensure that the equality holds.

A first measure of the sparseness of a planar graph is its girth. The girth of a graph G, denoted g(G), is the length of a
shortest cycle. Wang and Lih [22] conjectured that for any integer k ≥ 5, there exists an integer D(k) such that for every
planar graphG verifying g(G) ≥ k and∆(G) ≥ D(k),χ2(G) = ∆(G)+1. Thiswas proved by Borodin, Ivanova andNeustroeva
[11,12] to be true for k ≥ 7, even in the case of list-coloring, and false for k ∈ {5, 6}. So far, in the case of list coloring, it
is known [3,19] that we can choose D(7) = 16, D(8) = 10, D(9) = 8, D(10) = 6, and D(12) = 5. Borodin, Ivanova and
Neustroeva [13] proved that the case k = 6 is true on a restricted class of graphs, i.e. for a planar graph Gwith girth 6 where
every edge is incident to a vertex of degree at most two and ∆(G) ≥ 179, we have χ2(G) ≤ ∆(G) + 1. Dvořák et al. [15]
proved that the case k = 6 is true by allowing onemore color, i.e. for a planar graphGwith girth 6 and∆(G) ≥ 8821,we have
χ2(G) ≤ ∆(G)+2. They also conjectured that the sameholds for a planar graphGwith girth 5 and sufficiently large∆(G), but
this remains open. Borodin and Ivanova improved [5] Dvořák et al.’s result and extended it to list-coloring [6,7] as follows.

Theorem 1 (Borodin and Ivanova [5]). Every planar graph G with ∆(G) ≥ 18 and g(G) ≥ 6 admits a 2-distance (∆(G) + 2)-
coloring.

Theorem 2 (Borodin and Ivanova [7]). Every planar graph Gwith∆(G) ≥ 24 and g(G) ≥ 6 admits a list 2-distance (∆(G)+2)-
coloring.

Theorems 1 and 2 are optimal with regard to the number of colors, as shown by the family of graphs presented by
Borodin et al. [4], which are of increasingmaximum degree, of girth 6 and are not 2-distance (∆+1)-colorable. We improve
Theorems 1 and 2 as follows.

Theorem 3. Every planar graph G with ∆(G) ≥ 17 and g(G) ≥ 6 admits a list 2-distance (∆(G) + 2)-coloring.

Another way tomeasure the sparseness of a graph is through its maximum average degree. The average degree of a graph
G, denoted ad(G), is


v∈V d(v)

|V |
=

2|E|

|V |
. The maximum average degree of a graph G, denoted mad(G), is the maximum of ad(H)

over all subgraphs H of G. Intuitively, this measures the sparseness of a graph because it states how great the concentration
of edges in a same area can be. For example, stating that mad(G) has to be smaller than 2 means that G is a forest. Using this
measure, we prove a more general theorem than Theorem 3.

Theorem 4. Every graph G with ∆(G) ≥ 17 and mad(G) < 3 admits a list 2-distance (∆(G) + 2)-coloring.

Euler’s formula links girth and maximum average degree in the case of planar graphs.

Lemma 1 (Folklore). For every planar graph G, (mad(G) − 2)(g(G) − 2) < 4.

By Lemma 1, Theorem 4 implies Theorem 3.
An injective k-coloring [17] of G is a (not necessarily proper) coloring of the vertices of G with k colors such that two

vertices that have a common neighbor receive distinct colors. We define χi(G) as the smallest k such that G admits an
injective k-coloring. A 2-distance k-coloring is an injective k-coloring, but the converse is not true. For example, the cycle of
length 5 can be injective colored with 3 colors. The list version of this coloring is a list injective k-coloring of G, and χi,ℓ(G) is
the smallest k such that G admits a list injective k-coloring.

Some results on 2-distance coloring have their counterpart on injective coloring with one less color. This is the case of
Theorems 1 and 2 [8,9]. The proof of Theorem 4 also works with close to no alteration for list injective coloring, thus yielding
a proof that every graph Gwith ∆(G) ≥ 17 and mad(G) < 3 admits a list injective (∆(G) + 1)-coloring.

In Sections 2 and 3, we introduce the method and terminology. In Sections 4 and 6, we prove Theorem 4 and its counter-
part on injective coloring by a discharging method.

2. Method

The discharging method was introduced in the beginning of the 20th century. It has been used to prove the celebrated
Four Color Theorem in [1,2]. A discharging method is said to be localwhen the weight cannot travel arbitrarily far. Borodin,
Ivanova and Kostochka introduced in [10] the notion of global discharging method, where the weight can travel arbitrarily
far along the graph.

We prove for induction purposes a slightly stronger version of Theorem 4 by relaxing the constraint on the maximum
degree. Namely, we relax it to ‘‘For any k ≥ 17, every graph G with ∆(G) ≤ k and mad(G) < 3 verifies χ2

ℓ (G) ≤ k + 2’’ so
that the property is closed under vertex- or edge-deletion. A graph is minimal for a property if it satisfies this property but
none of its subgraphs does.

The first step is to consider a minimal counter-example G, and prove that it cannot contain some configurations. To do
so, we assume by contradiction that G contains one of the configurations. We consider a particular subgraph H of G, and



M. Bonamy et al. / Discrete Mathematics 317 (2014) 19–32 21

Fig. 1. A weak vertex x.

Fig. 2. Support vertices x.

Fig. 3. A locked vertex u.

color it by minimality (the maximum average degree of any subgraph of G is bounded by the maximum average degree of
G). We show how to extend the coloring of H to G, a contradiction.

The second step is to prove that a graph that does not contain any of these configurations has amaximum average degree
of at least 3. To that purpose, we assign to each vertex its degree as a weight. We apply discharging rules to redistribute
weights along the graphwith conservation of the total weight. As some configurations are forbidden, we can then prove that
after application of the discharging rules, every vertex has a final weight of at least 3. This implies that the average degree
of the graph is at least 3, and hence the maximum average degree is at least 3. So a minimal counter-example cannot exist.

We finally explain how the same proof holds also for list injective (∆ + 1)-coloring.

3. Terminology

In the figures, we draw in black a vertex that has no other neighbor than the ones already represented, in white a vertex
that might have other neighbors than the ones represented. White vertices may coincide with other vertices of the figure.
When there is a label inside a white vertex, it is an indication on the number of neighbors it has. The label ‘i’ means ‘‘exactly
i neighbors’’, the label ‘i+’ (resp. ‘i−’) means that it has at least (resp. at most) i neighbors.

Let u be a vertex. The neighborhood N(u) of u is the set of vertices that are adjacent to u. Let d(u) = |N(u)| be the degree of
u. A p-link x− a1 − · · · − ap − y, p ≥ 0, between x and y is a path between x and y such that d(a1) = · · · = d(ap) = 2. When
a p-link exists between two vertices x and y, we say they are p-linked. If there is a p-link x− a1 − · · ·− ap − y between x and
y, we say x is p-linked through a1 to y. A partial 2-distance list coloring of G is a 2-distance list-coloring of a subgraph H of G.

A vertex x isweakwhen it is of degree 3 and is 1-linked to two vertices of degree at most 14, or twice 1-linked to a vertex
of degree at most 14 (see Fig. 1). A weak vertex is represented with a w label inside (w if it is not weak).

A vertex x is support when it is either (see Fig. 2):

Type (S1): a vertex of degree 2 adjacent to another vertex of degree 2;
Type (S2): a vertex of degree 2 that is adjacent to a vertex of degree 3 which is adjacent to another vertex of degree 2 and

to a vertex of degree at most 7;
Type (S3): a weak vertex 1-linked to another weak vertex.

A vertex is positive when it is of degree at least 4 and is adjacent to a support vertex. A vertex u is locked if it has two
neighbors v1 and v2, where v1 and v2 are both 1-linked to the same two vertices w1 and w2 that have a common neighbor,
and d(v1) = d(v2) = d(w1) = d(w2) = 3 (see Fig. 3). This configuration is called a lock.
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Fig. 4. Forbidden configurations (C1)–(C5).

4. Forbidden configurations

In all of the paper, k is a constant integer at least 17 and G is a minimal graph such that ∆(G) ≤ k and G admits no
2-distance (k + 2)-list-coloring.

We define configurations (C1)–(C11) (see Figs. 4–6). Note that configurations similar to Configurations (C1), (C2) and (C4)
already existed in the literature, for example in [15].

• (C1) is a vertex uwith d(u) ≤ 1.
• (C2) is a vertex u with d(u) = 2 that has two neighbors v, w and u is 1-linked through v to a vertex of degree at most

k − 1.
• (C3) is a vertex u with d(u) = 3 that has three neighbors v, w, x with d(w) + d(x) ≤ k − 1, and u is 1-linked through v

to a vertex of degree at most k − 1.
• (C4) is a vertex u with d(u) = 3 that has three neighbors v, w, x with d(w) + d(x) ≤ k − 1, and v has exactly three

neighbors u, y, z with d(z) ≤ 7 and d(y) = 2.
• (C5) is a vertex u with d(u) = 3 that has three neighbors v, w, x with d(x) ≤ k − 1 and u is 1-linked through v (resp.

through w) to a vertex of degree at most 14. (Note that u is a weak vertex.)
• (C6) is a vertex u with d(u) = 4 that has four neighbors v, w, x, y with d(w) ≤ 7, d(x) ≤ 3, d(y) ≤ 3, and u is 1-linked

through v to a vertex of degree at most 14.
• (C7) is a vertex u with d(u) = 4 that has four neighbors v, w, x, y with d(x) + d(y) ≤ k − 1 and u is 1-linked through v

(resp. through w) to a vertex of degree at most 14.
• (C8) is a vertex u with d(u) = 5 that has five neighbors v, w, x, y, z with d(w) ≤ 7, d(x) ≤ 3, d(y) ≤ 3, d(z) = 2, and u

is 1-linked through v to a vertex of degree at most 7.
• (C9) is a vertex u with d(u) = 6 that has six neighbors v, w, x, y, z, t with d(w) ≤ 7, d(x) ≤ 3, d(y) ≤ 3, d(z) = 2,

d(t) = 2, and u is 1-linked through v to a vertex of degree at most 7.
• (C10) is a vertex u with d(u) = 7 that has seven neighbors v, w1, . . . , w6 with d(v) ≤ 7 and u is 1-linked through wi,

1 ≤ i ≤ 6, to a vertex of degree at most 3.
• (C11) is a vertex u with d(u) = k that has three neighbors v, w, x with x is a support vertex, v, w are both 1-linked to a

same vertex y of degree 3, and v (resp. w) is 1-linked to a vertex of degree at most 14 distinct from y. (Note that v, w are
weak vertices.)

Lemma 2. G does not contain Configurations (C1)–(C11).

Proof. Given a partial 2-distance list-coloring of G, a constraint of a vertex u is any color appearing on a vertex at distance
at most 2 from u in G.

Notation refers to Figs. 4–6.

Claim 1. G does not contain (C1).

Proof. Suppose by contradiction that G contains (C1). Using the minimality of G, we color G \ {u}. Since ∆(G) ≤ k, and
d(u) ≤ 1, vertex u has at most k constraints (one for its neighbor and at most k − 1 for the vertices at distance 2 from u).
There are k + 2 colors available in the list of u, so the coloring of G \ {u} can be extended to G, a contradiction. �

Claim 2. G does not contain (C2).

Proof. Suppose by contradiction that G contains (C2). Using the minimality of G, we color G \ {u, v}. Vertex u has at most
k+ 1 constraints. Hence we can color u. Then v has at most k− 1+ 2 = k+ 1 constraints. Hence we can color v. So we can
extend the coloring to G, a contradiction. �

Claim 3. G does not contain (C3).
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Fig. 5. Forbidden configurations (C6)–(C9).

Fig. 6. Forbidden configurations (C10) and (C11).

Proof. Suppose by contradiction that G contains (C3). Using the minimality of G, we color G \ {v}. Because of u, vertices
w and x have different colors. We discolor u. Vertex v has at most k − 1 + 2 = k + 1 constraints. Hence we can color v.
Vertex u has at most d(w) + d(x) + 2 ≤ k + 1 constraints. Hence we can color u. So we can extend the coloring to G, a
contradiction. �

Claim 4. G does not contain (C4).

Proof. Suppose by contradiction that G contains (C4). Let e be the edge uv. Using the minimality of G, we color G \ {e}. We
discolor u and v. Vertex u has at most d(w) + d(x) + 2 ≤ k + 1 constraints. Hence we can color u. Vertex v has at most
7 + 3 + 2 ≤ k + 1 constraints. Hence we can color v. So we can extend the coloring to G, a contradiction. �

Claim 5. G does not contain (C5).

Proof. Suppose by contradiction that G contains (C5). Using the minimality of G, we color G \ {u, v, w}. Vertex u has at most
k − 1 + 2 = k + 1 constraints. Hence we can color u. Vertices v and w have at most 14 + 3 ≤ k + 1 constraints. Hence we
can color v and w. So we can extend the coloring to G, a contradiction. �

Claim 6. G does not contain (C6).

Proof. Suppose by contradiction that G contains (C6). Using the minimality of G, we color G \ {v}. We discolor u. Vertex v
has at most 14 + 3 ≤ k + 1 constraints. Hence we can color v. Vertex u has at most 2 + 3 + 3 + 7 ≤ k + 1 constraints.
Hence we can color u. So we can extend the coloring to G, a contradiction. �

Claim 7. G does not contain (C7).

Proof. Suppose by contradiction that G contains (C7). Using the minimality of G, we color G \ {v, w}. We discolor u. Vertex
u has at most d(x) + d(y) + 2 ≤ k + 1 constraints. Hence we can color u. Vertices v and w have at most 14 + 4 ≤ k + 1
constraints. Hence we can color v and w. So we can extend the coloring to G, a contradiction. �

Claim 8. G does not contain (C8).

Proof. Suppose by contradiction that G contains (C8). Using the minimality of G, we color G \ {v}. We discolor u. Vertex u
has at most 7 + 3 + 3 + 2 + 1 ≤ k + 1 constraints. Hence we can color u. Vertex v has at most 7 + 5 ≤ k + 1 constraints.
Hence we can color v. So we can extend the coloring to G, a contradiction. �

Claim 9. G does not contain (C9).

Proof. Suppose by contradiction that G contains (C9). Using the minimality of G, we color G \ {v}. We discolor u. Vertex u
has at most 7+3+3+2+2+1 ≤ k+1 constraints. Hence we can color u. Vertex v has at most 7+6 ≤ k+1 constraints.
Hence we can color v. So we can extend the coloring to G, a contradiction. �
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Claim 10. G does not contain (C10).

Proof. Suppose by contradiction that G contains (C10). Using the minimality of G, we color G \ {u, w1, . . . , w6}. Vertex u has
at most 7 + 6 ≤ k + 1 constraints. Hence we can color v. Each vertex wi has at most 3 + 7 ≤ k + 1 constraints. Hence we
can color w1, . . . , w6. So we can extend the coloring to G, a contradiction. �

Claim 11. G does not contain (C11).

Proof. Suppose by contradiction that G contains (C11). Since x is a support vertex, and u is of degree k, it is of Type (S1), (S2)
or (S3) of support vertices with the notation of Fig. 2. Note that some vertices may coincide between Figs. 2 and 6.

We define a set of vertices A as follows:

A =


{a} if x is of Type (S1)
{a, c} if x is of Type (S2)
{a, c} if x is of Type (S3).

Using the minimality of G, we color G \ ({v, w, x, y, z1, . . . , z4} ∪ A). If x is of Type (S1) (resp. (S2)), a (resp. c) has at most
k + 1 constraints. Hence we can color a (resp. c). For the three types (Si), x has at most k − 3 + 1 + 2 = k constraints, thus
it has at least 2 available colors. Vertex y has at most k constraints, thus it has at least 2 available colors. Both v and w have
at most k − 3 + 1 + 1 ≤ k − 1 constraints, so they have at least 3 available colors in their list.

We now explain how to color v, w, x, y (other uncolored vertices will be colored later). Suppose x and y can be assigned
the same color, then both v and w have at least 2 available colors and thus can be colored.

Suppose the lists of available colors of x and y are disjoint. We color v with a color not appearing in the list of x. Then we
color y that has k + 1 constraints. (Vertex x has still at least 2 available colors.) Then we color w that has k + 1 constraints
and finally x.

Now we assume that we cannot assign the same color to x and y and that their lists of available colors are not disjoint.
This means that x and y are either adjacent or have a common neighbor. So some vertices coincide between Figs. 2 and 6.
The different cases where x and y are either adjacent or have a common neighbor are the following:

(S1) – b = y.
(S2) – b = y

– a = y and w.l.o.g b = z2, c = z3 and d = w.
(S3) – b = y

– d = y, and w.l.o.g. f = z2, g = v and e = z3.

In all these cases, y has at most 1 constraint. So we can color x, v, w, y, in this order as they all have at most k + 1
constraints when they are colored.

If x is of Type (S2) (resp. (S3)), vertex a (resp. vertices a, c) has at most 11 constraints (resp. 17, 6), so we can color them.
The vertices zi have atmost 17 ≤ k+1, sowe can color them. Thus the coloring has been extended to G, a contradiction. �

�

5. Structure of support vertices

Let H(G) be the subgraph of G induced by the edges incident to at least a support vertex. We prove several properties of
support vertices and of the graph H(G).

Lemma 3. Each positive vertex is of degree k and each support vertex is adjacent to exactly one positive vertex.

Proof. By Lemma 2,G does not contain Configurations (C2), (C3) and (C5). So a support vertex is adjacent to a vertex of degree
k (Configurations (C2), (C3) and (C5) correspond respectively to support vertices of Types (S1), (S2) and (S3)). By definition, a
support vertex has at most one neighbor of degree at least 4, thus it is adjacent to exactly one vertex of degree at least 4 and
this vertex has in fact degree k. So all the positive vertices are of degree k and a support vertex is adjacent to exactly one
positive vertex. �

Lemma 4. Each cycle of H(G)with an odd number of support vertices contains a subpath s1v1s2v2s3 where s1, s2, s3 are support
vertices of type (S3) and v1, v2 are vertices of degree 2.

Proof. Let C be a cycle of H(G) with an odd number of support vertices. Cycle C does not contain just one support vertex, as
all its edges have to be adjacent to a support vertex (there is no loop or multiple edge in H(G)). So C contains at least three
support vertices.

Suppose that C contains no positive vertices. Then it contains no support vertices of type (S1) or (S2) as such vertices are
of degree 2, so all their neighbors would be on C , and they are adjacent to a positive vertex by Lemma 3. So C contains only
support vertices of type (S3). Let s1, s2, s3 be three support vertices of C appearing consecutively along C . A support vertex of
Type (S3) is of degree 3, adjacent to two vertices of degree 2 and to a positive vertex. So the neighbors of si on C are vertices of
degree 2 that are not support vertices. As H(G) contains only edges incident to support vertices, there exist v1, v2 of degree
2 such that s1v1s2v2s3 is a subpath of C .
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Suppose now that C contains some positive vertices. Let p1, . . . , pℓ be the set of positive vertices of C appearing in this
order along C while walking in a chosen direction (subscripts are understood modulo ℓ). Let Qi, 1 ≤ i ≤ ℓ, be the subpath
of C between pi and pi+1 (in the same chosen direction along C). (Note that if ℓ = 1, then Q1 = C is not really a subpath.)
As C contains an odd number of support vertices, there exists i such that Qi contains an odd number of support vertices. If
Qi contains just one support vertex v, then Qi has length 2, since H(G) contains only edges incident to support vertices. So v
is adjacent to two different positive vertices (or has a multiple edge if ℓ = 1), a contradiction to Lemma 3. So Qi contains at
least 3 support vertices. Let s1, s2, s3 be three support vertices of Qi appearing consecutively along Qi.

If one of the si is of Type (S1), let x be such a vertex. With the notation of Fig. 2, vertex x is of degree 2, so its two neighbors
u, a are on C , with u a positive vertex and a a support vertex of Type (S1). Then vertex a is of degree 2 so its neighbor b distinct
from x is also on C . Vertex b is positive so Qi is the path u, x, a, b and contains just two support vertices, a contradiction.

If one of the si is of Type (S2), let x be such a vertex. With the notation of Fig. 2, vertex x is of degree 2, so its two neighbors
u, a are on C , with u a positive vertex and a a vertex of degree 3. Vertex a is not adjacent to vertices of degree k so by Lemma3,
it is not a support vertex. Let c ′ be the neighbor of a on C that is distinct from x. As all the edges ofH(G) are incident to support
vertices, c ′ is a support vertex. Since c ′ is adjacent to a vertex of degree 3 it is a support vertex of Type (S2) and can play the
role of c of Fig. 2. Then c is of degree 2 and its neighbor on C distinct from a is a positive vertex d. So Qi is the path u, x, a, c, d
and contains just two support vertices, a contradiction.

So s1, s2, s3 are all of Type (S3). A support vertex of Type (S3) is of degree 3, adjacent to two vertices of degree 2 and to
a positive vertex. So the neighbors of s2 on C are vertices v1, v2 of degree 2 that are not support vertices. As H(G) contains
only edges incident to support vertices, we can assume w.l.o.g. that s1v1s2v2s3 is a subpath of C . �

Lemma 5. H(G) does not contain a 2-connected subgraph of size at least three with exactly two support vertices.

Proof. Suppose by contradiction that H(G) contains a 2-connected subgraph C of size ≥ 3 that has exactly two support
vertices S = {s1, s2}. We color by minimality G \ (S ∪ {v ∈ NG(S)|dG(v) ≤ 3}). (Note that by Lemma 3, the set {v ∈ NG(S)|
dG(v) ≤ 3} corresponds to vertex a of Fig. 2 if the support vertex is of Type (S1) or (S2) and to vertices a, c if the support
vertex is of Type (S3).)

We first show how to color S. For that purpose we consider three cases corresponding to the type of s1.
• s1 is of Type (S1). Then s1 is of degree 2, has a positive neighbor u and a support neighbor a of Type (S1). As s1 is of degree

2, both its neighbors are in C . So a is a support vertex of C , thus a = s2. Let v be the neighbor of s2 of degree k. Since C
contains no other support vertex and is 2-connected, we must have u = v. Then u has two neighbors s1, s2 that are not
colored, so s1 and s2 have at most k constraints, and we can color them.

• s1 is of Type (S2). Then s1 is of degree 2, has a positive neighbor u and another neighbor a of degree 3. Vertex a is not a
support vertex by Lemma 3 since it has no neighbor of degree k. As s1 is of degree 2, all its neighbors are in C . Vertices u
and a are in C that is 2-connected so they have at least two neighbors in C . Since they are not support vertices, all their
neighbors in C are support vertices. So both u and a are adjacent to s2. Vertex s2 is support, it is adjacent to a that is of
degree 3, so s2 is of Type (S2). Then u is of degree k, has two neighbors s1, s2 that are not colored, so s1 and s2 have at most
k constraints, and we can color them.

• s1 is of Type (S3). Then s1 is of degree 3, has a positive neighbor u and two other neighbors w, w′ of degree 2. Vertices
w, w′ are not support vertices by Lemma 3 since they have no neighbor of degree k. As s1 is of degree 3, two of u, w,w′

are in C . Let Y be the neighbors of s1 in C . We can assume by symmetry that either {v, w} ⊆ Y or {w, w′
} ⊆ Y . Vertices

of Y are in C that is 2-connected so they have at least two neighbors in C . Since they are not support vertices, all their
neighbors in C are support vertices. So all the vertices of Y are adjacent to s2. Vertex s2 is a support vertex, it is adjacent
to w that is non support and of degree 2, so s2 is of Type (S3). In both cases ({v, w} ⊆ Y or {w, w′

} ⊆ Y ), vertices s1 and
s2 have at most k constraints, and we can color them.
Every vertex of {v ∈ NG(S)|dG(v) ≤ 3} has at most 17 constraints, hence we can extend the coloring to the whole graph,

a contradiction. �

Lemma 6. Every 2-connected subgraph of H(G) that contains exactly three support vertices is a cycle.

Proof. Suppose by contradiction that H(G) contains a 2-connected subgraph C of size ≥ 3 that has exactly three support
vertices S = {s1, s2, s3} and that is not a cycle.

Suppose by contradiction that C contains no cycle C ′ with S ⊆ C ′
⊆ C . As C is 2-connected, by Menger’s Theorem there

exist two internally vertex-disjoint pathsQ ,Q ′ between s1, s2. Let C ′′ be the cycleQ ∪Q ′. By assumption C ′′ does not contain
s3. So it contains just two support vertices, a contradiction to Lemma 5. So C contains a cycle C ′ with S ⊆ C ′

⊆ C .
By Lemma 4, cycle C ′ contains a subpath x1v1x2v2x3 where x1, x2, x3 are support vertices of Type (S3) and v1, v2 are

vertices of degree 2. As C contains just three support vertices, we have S = {x1, x2, x3}. Vertices x1, x3 are support vertices
of Type (S3), they are of degree 3 and only adjacent to positive vertices and to vertices of degree 2 so they are not adjacent.
The graph H(G) contains only edges incident to support vertices, so there exists a vertex y of C ′ adjacent to x1, x3, and
x1v1x2v2x3y is the cycle C ′. If C ′ has some chords in H(G), then H(G) contains a cycle with two support vertices only, a
contradiction to Lemma 5. So C ′ is an induced cycle of H(G) and so C ′ has strictly less vertices than C . Let y′ be a vertex of C
distinct from x1, v1, x2, v2, x3, y. Vertex y′ is not a support vertex, C is 2-connected and H(G) contains only edges incident
to support vertices, so y′ is adjacent to at least two vertices in S. Then H(G) contains a cycle with two support vertices only,
a contradiction to Lemma 5. �
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We need the following lemma from Erdős et al. [16]:

Lemma 7 ([16]). If G is a 2-connected graph that is neither a clique nor an odd cycle, and L is a list assignment on the vertices of
G such that ∀u ∈ V (G), |L(u)| ≥ d(u), then G is L-colorable.

Lemma 8. Every 2-connected subgraph of H(G) of size at least three is either a cycle with an odd number of support vertices or
a subgraph of a lock of H(G).

Proof. Suppose by contradiction that H(G) contains a 2-connected subgraph C of size ≥ 3 that is not a cycle with an odd
number of support vertices nor a subgraph of a lock of H(G). Let S = {s1, . . . , sp} be the support vertices of C . By Lemma 5,
p ≥ 3. Let S be the graph with V (S) = S where there is an edge between si and sj if and only if they are adjacent or have a
common neighbor in G.

Claim 12. S is not a clique of size at least four.

Proof. Suppose, by contradiction that S is a clique with p ≥ 4.
Given a support vertex x, we say that a support vertex x′, distinct from x, satisfies the property Px if it is either adjacent

to x in G or has a non-positive common neighbor with x in G. At most two vertices can satisfy Px (vertex a of Fig. 2 if x is of
Type (S1), vertices b, c if x is of Type (S2), vertices b, d if x is of Type (S3)). Note that if x′ satisfies Px, then x satisfies Px′ .

We claim that there exist two support vertices in S that do not have a positive common neighbor in G. Suppose by
contradiction, that every pair of vertices of S has a positive common neighbor. By Lemma 3, every support vertex has at
most one positive neighbor, so all the vertices of S are adjacent to the same positive vertex v. As C is 2-connected, there is a
path Q in C \ {v} between s1, s2. Let si be the first support vertex, distinct from s1, appearing along Q while starting from s1
(maybe i = 2 if there is no support vertex in the interior of Q ). Let Q ′ be the subpath of Q between s1 and si (maybe Q = Q ′).
Then Q ′

∪ {v} forms a 2-connected subgraph of size ≥ 3 with exactly two support vertices, a contradiction to Lemma 5. So
there exist two support vertices x, x′ in S that do not have a positive common neighbor in G. Since S is a clique, vertices x, x′

are adjacent or have a common non-positive neighbor, so x satisfies Px′ (and x′ satisfies Px).
Suppose there exists a support vertex y ∈ S that does not satisfy Px or Px′ . Since S is a clique, vertex y has a common

positive neighbor z with x and z ′ with x′. Since x and x′ have no positive common neighbor, z and z ′ are distinct. Thus y has
two positive neighbors, a contradiction. So every vertex of S \ {x, x′

} satisfies either Px or Px′ . If two vertices y, y′ of S \ {x, x′
}

satisfy Px, then at least three vertices, x′, y, y′ verify Px, a contradiction. So there is at most one vertex of S \ {x, x′
} satisfying

Px and similarly at most one satisfying Px′ . So p ≤ 4 and we can assume, w.l.o.g., that S = {x, x′, y, y′
}, where vertex y

satisfies Px and not Px′ and vertex y′ satisfies Px′ and not Px. Thus x has a common positive neighbor z with y′ and x′ has a
common positive neighbor z ′ with y. Since x, x′ do not have a common positive neighbor, z and z ′ are distinct. Vertices y, y′

have at most one positive neighbor, thus, they do not have a common positive neighbor. Since S is a clique, y satisfies Py′ .
Let (y1, y2, y3, y4) = (x, x′, y′, y) (subscripts are understood modulo 4).

Suppose there exists i ∈ {1, 2, 3, 4} such that yi, yi+1 are adjacent in G. Two support vertices can be adjacent only if they
are of Type (S1). So yi, yi+1 are of Type (S1) and of degree two. Then yi is only adjacent to yi+1 and to a positive vertex in
{z, z ′

}. If yi is adjacent to yi−1, then yi−1 = yi+1, a contradiction. If yi is not adjacent to yi−1, then yi+1 is a common neighbor
of yi and yi−1. Since yi+1 is of degree two and has a positive neighbor, yi = yi−1, a contradiction. So yi, yi+1 are not adjacent
in G for any 1 ≤ i ≤ 4. Let wi be a non-positive common neighbor of yi, yi+1.

Suppose there exists i ∈ {1, 2, 3, 4} such that d(yi) = 2. Then wi = wi−1. So {yi−1, yi, yi+1} ⊆ N(wi), and wi is not
positive, so d(wi) = 3. Two support vertices can have a common neighbor of degree 3 only if they are both of degree two
(Type (S2)). So d(yi−1) = d(yi) = d(yi+1) = 2. Since yi+1 is of degree two and has a positive neighbor, wi = wi+1, so
yi+2 ∈ N(wi), a contradiction. So d(yi) ≥ 3 for any 1 ≤ i ≤ 4.

Then all the yi are of Type (S3), they are of degree three and their non-positive neighbors are of degree two. Thus d(wi) = 2
for any 1 ≤ i ≤ 4. So y1, . . . , y4, w1, . . . , w4, z, z ′ induce a lock. So all the edges incident to S = {y1, . . . , y4} = {s1, . . . , s4}
belong to a lock, contradicting the definition of C . �

By Lemma 5, the graph S is not an edge. If S is a triangle, then C contains exactly three support vertices and, by Lemma 6,
it is a cycle with an odd number of support vertices, a contradiction. So S is not a triangle. By Claim 12, S is not a clique of
size at least 4. So finally, S is not a clique.

Suppose, by contradiction, that S is an odd cycle with ≥ 5 vertices. Then C is a 2-connected graph that is not a cycle, so
it contains a vertex v with at least 3 neighbors in C . If v is not a support vertex, then it has at least 3 support neighbors in C
that form a triangle in S, a contradiction. So v is a support vertex. Then either v has three neighbors in S, a contradiction to
S being a cycle, or C contains a cycle with two support vertices, a contradiction to Lemma 5. So S is not an odd cycle.

Suppose, by contradiction, that S is not 2-connected. Then there exist three support vertices s, s′, s′′ of S such that s′, s′′
appear in two different connected components of S \ {s}. As C is 2-connected, there exists a path Q between s′, s′′ in C \ {s}.
This path Q is composed only of edges incident to support vertices so in S \ {s} it corresponds to a path between s′, s′′, a
contradiction. So S is 2-connected.

We now consider the graph G, we color by minimality G \ (S ∪ {v ∈ NG(S)|dG(v) ≤ 3}). We show how to color S. In
the three Types (Sj), the number of constraints on a support vertex si of Type (Sj) is at most k + 2 minus the number of its
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Fig. 7. Discharging rules R1.i , R2 , R3 , and R4 .

neighbors in S. So the number of available colors of a support vertex is at least its degree in S. Now Lemma 7 can be applied
to S, which is not a clique, not an odd cycle and 2-connected. So we can color S. Every vertex of {v ∈ NG(S)|dG(v) ≤ 3} has
at most 17 constraints, hence we can extend the coloring to the whole graph, a contradiction. �

A cactus is a connected graph in which any two cycles have at most one vertex in common.

Lemma 9. Every connected component of H(G) is either a cactus where each cycle has an odd number of support vertices or a
lock.

Proof. All the edges of a lock are incident to support vertices of type (S3) so all the edges of a lock of G appear in H(G). The
only vertices of a lock that can have neighbors outside a lock are locked vertices (vertices u and x in Fig. 3). By Lemma 2,
graph G does not contain Configuration (C11), so a locked vertex is incident to only two support vertices, the two support
vertices of a lock. A lock is a connected component of H(G).

Let C be a connected component of H(G) that is not a lock. By Lemma 8, each 2-connected subgraph of C is a cycle with
an odd number of support vertices. So C is a cactus where each cycle of C has an odd number of support vertices. �

6. Discharging rules

A negative vertex is a support vertex of type (S1) or (S2) or a vertex of degree 2 adjacent to two support vertices of type
(S3). In this case we say that the negative vertex is of type (N1), (N2) or (N3) respectively.

Each vertex has an initial weight (later defined). The discharging rules R1.1, R1.2, R1.3, R1.4, R1.5, R2, R3, R4 and Rg (see Fig. 7)
defined below explain how vertices will receive and/or give weight. We also use a so-called common pot which is empty at
the beginning, receives weight from some vertices and gives weight to some others. For any vertex x of degree at least 3,
• Rule R1 is when 3 ≤ d(x) ≤ 7, and x is 1-linked (with a path x − a − y) to a vertex y.

– Rule R1.1 is when x is weak with d(y) ≤ 7. Then x gives 2
5 to a.

– Rule R1.2 is when x is not weak and y is weak. Then x gives 3
5 to a.

– Rule R1.3 is when x and y are not weak, with d(y) ≤ 7. Then x gives 1
2 to a.

– Rule R1.4 is when 8 ≤ d(y) ≤ 14. Then x gives 3
8 to a.

– Rule R1.5 is when 15 ≤ d(y) and a is not negative. Then x gives 1
5 to a.

• Rule R2 is when 3 ≤ d(x) ≤ 7 and x is adjacent to a vertex u of degree 3 that is adjacent to a vertex of degree 2 and a
vertex of degree at most 7. Then x gives 1

10 to u.
• Rule R3 is when 8 ≤ d(x) ≤ 14. Then x gives 5

8 to each of its neighbors.
• Rule R4 is when 15 ≤ d(x). Then x gives 4

5 to each of its neighbors.
• Rule Rg states that each positive vertex gives 2

5 to a common pot, and that each negative vertex receives 1
5 from the

common pot.

Lemma 10. The common pot has a non-negative value after applying Rg .

Proof. Given a set of vertices X , let n(X) be its number of negative vertices and p(X) its number of positive vertices. To prove
that the common pot has a positive value after applying Rg , we show that each connected component C of H(G) satisfies

p(C) ≥


n(C)

2


.

Let C be a connected component ofH(G). By Lemma 9, C is either a cactuswhere each cycle has an odd number of support
vertices or a lock. If C is a lock, then n(C) = 4 and p(C) = 2, so we are done. So we can assume that C is a cactus where each
cycle has an odd number of support vertices.
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Claim 13. Every connected subgraph C ′ of C, whose pendant vertices are positive vertices, whose support vertices are adjacent
to their positive neighbor in C ′ and whose negative vertices of Type (N3) are adjacent to their two neighbors in C ′, satisfies
p(C ′) ≥


n(C ′)

2


.

Proof. Suppose by contradiction that this is false. Let C ′ be a connected subgraph of C of minimum number of vertices,
whose pendant vertices are positive vertices, whose support vertices are adjacent to their positive neighbor in C ′, and such
that p(C ′) <


n(C ′)

2


. The graph C ′ is a connected subgraph of a cactus so it is also a cactus.

Suppose first that C ′ contains a pendant vertex u. Let x be the neighbor of the positive vertex u in C ′. As H(G) contains
only edges incident to support vertices, x is a support vertex. So it is not positive and thus is not a pendant vertex of C ′. So x
has at least two neighbors in C ′. We consider different cases according to the Type of x and its number of neighbors in C ′.

• x is of Type (S1). Then let a be the neighbor of x distinct from u. We have a ∈ C ′ and a is a support vertex of Type (S1).
The positive neighbor b of a is in C ′ by assumption. Let C ′′ be the graph C ′

\ {u, x, a}. We have n(C ′′) = n(C ′) − 2 and
p(C ′′) = p(C ′) − 1. The graph C ′′ is a connected subgraph of C since u, x, a is a subpath of C ′ where u is pendant and
x, a are of degree 2. All the pendant vertices of C ′′ are positive since the only new possible pendant vertex is b. All the
support vertices of C ′′ are adjacent to their positive neighbor in C ′′ since the only positive vertex that has been removed
is u and its support neighbor x has also been removed. All the negative vertices of Type (N3) are adjacent to their two
neighbors in C ′ as no support vertex of Type (S3) has been removed. So by minimality, we have p(C ′′) ≥


n(C ′′)

2


, and so

p(C ′) = p(C ′′) + 1 ≥


n(C ′′)+2

2


=


n(C ′)

2


.

• x is of Type (S2). Then let a be the neighbor of x distinct from u. We have a ∈ C ′ and a is of degree 3. Let b, c be the
neighbors of a distinct from x. Since a is not positive, it is not a pendant vertex of C ′, so at least one of b, c is in C ′. We
assume w.l.o.g. that c is in C ′. As H(G) contains only edges incident to support vertices, vertex c is a support vertex of
Type (S2). We consider two cases depending on whether a has its three neighbors in C ′ or not.

If b ∈ C ′, then let C ′′ be the graph C ′
\ {u, x}. We have n(C ′′) = n(C ′) − 1 and p(C ′′) = p(C ′) − 1. The graph C ′′

is a connected subgraph of C , all its pendant vertices are positive, all its support vertices are adjacent to their positive
neighbor in C ′′ and all negative vertices of Type (N3) are adjacent to their two neighbors in C ′. So by minimality, we have
p(C ′′) ≥


n(C ′′)

2


, and so p(C ′) ≥


n(C ′)

2


.

If b ∉ C ′, then let C ′′ be the graph C ′
\ {u, x, a, c}. We have n(C ′′) = n(C ′) − 2 and p(C ′′) = p(C ′) − 1. The graph C ′′

is a connected subgraph of C , all its pendant vertices are positive, all its support vertices are adjacent to their positive
neighbor in C ′′ and all its negative vertices of Type (N3) are adjacent to their two neighbors in C ′. So by minimality, we
have p(C ′′) ≥


n(C ′′)

2


, and so p(C ′) ≥


n(C ′)

2


.

• x is of Type (S3) and has two neighbors in C ′. Then let c be the neighbor of x distinct from u that is in C ′. Vertex c is of degree
2, it is not positive, so its neighbor d, distinct from x, is in C ′. As H(G) contains only edges incident to support vertices
and c is not a support vertex, vertex d is a support vertex and so of Type (S3). Let e, f be the neighbors of d distinct from c
where e is a positive vertex and f is a vertex of degree 2. Vertex e is the positive neighbor of d so it is in C ′ by assumption.
We consider two cases corresponding to whether d has its three neighbors in C ′ or not. If f ∈ C ′, then let C ′′ be the
graph C ′

\ {u, x, c}. If f ∉ C ′, then let C ′′ be the graph C ′
\ {u, x, c, d}. In both cases, we have n(C ′′) = n(C ′) − 1 and

p(C ′′) = p(C ′)−1. The graph C ′′ is a connected subgraph of C , all its pendant vertices are positive, all its support vertices
are adjacent to their positive neighbor in C ′′ and all its negative vertices of Type (N3) are adjacent to their two neighbors
in C ′. So by minimality, we have p(C ′′) ≥


n(C ′′)

2


, and so p(C ′) ≥


n(C ′)

2


.

• x is of Type (S3) and has three neighbors in C ′. Then let a, c be the neighbors of x distinct from u. We have a, c in C ′. Vertex a
(resp. c) is of degree 2, it is not positive, so its neighbor b (resp. d) is in C ′. AsH(G) contains only edges incident to support
vertices and a and c are not support vertices, vertices b and d are support vertices and thus of Type (S3). The positive
neighbor h of b (resp. e of d) is in C ′, by assumption. We consider several cases corresponding to whether b and d have
their three neighbors in C ′ or not. If b and d both have their three neighbors in C ′, then let C ′′ be the graph C ′

\ {u, x, c, a}.
If b has its three neighbors in C ′ but not d, then let C ′′ be the graph C ′

\ {u, x, c, a, d}. If d has its three neighbors in C ′ but
not b, then let C ′′ be the graph C ′

\ {u, x, c, a, b}. If none of b and d has its three neighbors in C ′, then let C ′′ be the graph
C ′

\ {u, x, c, a, b, d}. In the four cases we have n(C ′′) = n(C ′) − 2 and p(C ′′) = p(C ′) − 1. The graph C ′′ is not necessarily
connected but it is composed of one or two connected subgraphs of C whose all pendant vertices are positive, all support
vertices are adjacent to their positive neighbor in C ′′ and all its negative vertices of Type (N3) are adjacent to their two
neighbors in C ′. So by minimality (on each component of C ′′), we have p(C ′′) ≥


n(C ′′)

2


, and so p(C ′) ≥


n(C ′)

2


.

Now we can assume that C ′ contains no pendant vertex. Suppose that C ′ is a single vertex v. Then v is not support as all
support vertices have their positive neighbor in C ′ and v is not negative of Type (N3) as negative vertices of Type (N3) have
their two neighbors in C ′. So v is not negative and p(C ′) ≥


n(C ′)

2


= 0. Now we can assume that C ′ is not a single vertex.

The graph C ′ is a cactus, not a single vertex, contains no pendant vertex, so it contains a cycle C ′′, of size ≥ 3, such that
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C ′′′
= C ′

\C ′′ is connected (note that wemay have C ′
= C ′′ and C ′′′ empty). Cycle C ′′ is a cycle of C so it has an odd number of

support vertices by Lemma 9. Let S be the set of support vertices of C ′′, with s = |S|. By Lemma 4, cycle C ′′ contains a subpath
s1v1s2v2s3 where s1, s2, s3 are support vertices of Type (S3) and v1, v2 are vertices of degree 2. By assumption, the positive
vertex z that is adjacent to s2 is in C ′. It is not in C ′′ as there is no chord in C ′′. So the only vertex of C ′′ that has some neighbors
in C ′

\ C ′′ is s2. So all the positive vertices that are adjacent to S \ {s2} are vertices of C ′ and thus of C ′′. A positive vertex of C ′′

has at most two support neighbors in C ′′ so p(C ′′) ≥
 s−1

2


. A support vertex of Type (S1) or (S2) is a negative vertex of Type

(N1) or (N2). A negative vertex of Type (N3) of C ′′ is of degree 2 and so has its two neighbors on C ′′ and these two neighbors
are support vertices of Type (S3). So the number of negative vertices of C ′′ is at most the number of support vertices of C ′′

and strictly less if C ′′ contains a vertex of Type (N3). Vertex v1 is of Type (N3), so s > n(C ′′) and so p(C ′′) ≥
 s−1

2


≥


n(C ′′)

2


.

The graph C ′′′ is a connected subgraph of C whose all pendant vertices are positive, all support vertices are adjacent to their
positive neighbor in C ′′′ and all its negative vertices of Type (N3) are adjacent to their two neighbors in C ′. So by minimality
we have p(C ′′′) ≥


n(C ′′′)

2


. So finally, p(C ′) = p(C ′′) + p(C ′′′) ≥


n(C ′′′)

2


+


n(C ′′)

2


≥


n(C ′′)+n(C ′′′)

2


=


n(C ′)

2


. �

Let C ′ be the graph obtained from C by removing all pendant vertices that are not positive vertices. We claim that C ′ is a
connected subgraph of C , whose pendant vertices are positive vertices, whose support vertices have their positive neighbor
in C ′, whose negative vertices of Type (N3) are adjacent to their two neighbors in C ′ and such that n(C ′) = n(C). As C is
connected and only pendant vertices have been removed from C , the graph C ′ is also connected. All support and negative
vertices are of degree 2 or 3 and have all their incident edges in H(G) and thus in C , so there is no pendant vertex of C that
is a support or a negative vertex. So no support or negative vertex has been removed from C and n(C ′) = n(C). A pendant
vertex of C that has been removed is not positive, not support, not negative but incident to a support, so it is necessarily
a degree 2 vertex a incident to a support vertex x of Type (S3) (with notations of Fig. 2). When a is removed from C , this
does not create any new pendant vertex as x has degree 2 after the removal. All pendant vertices that are not positive are
removed from C , no new pendant vertices are created, thus in C all pendant vertices are positive. No positive vertex has
been removed and each support vertex is adjacent to its positive neighbor in H(G), so support vertices of C ′ are adjacent to
their positive neighbor in C ′. No support vertex has been removed and each negative vertex of Type (N3) is adjacent to its
support neighbors of Type (S3) in H(G), so negative vertices of Type (N3) of C ′ are adjacent to their two neighbors in C ′. By
Claim 13 applied to C ′, we have p(C ′) ≥


n(C ′)

2


. So p(C) = p(C ′) ≥


n(C ′)

2


=


n(C)

2


and we are done. �

We now use the discharging rules to prove the following:

Lemma 11. mad(G) ≥ 3.

Proof. Weattribute to each vertex aweight equal to its degree, and apply discharging rules R1, R2, R3, R4 and Rg . The common
pot is empty at the beginning and, by Lemma 10, it has a non-negative value after applying Rg . We show that all the vertices
have a weight of at least 3 at the end.

Let u be a vertex of G. By Lemma 2, graph G does not contain Configurations (C1)–(C11). According to Configuration (C1),
we have d(u) ≥ 2. We now consider different cases corresponding to the value of d(u).

1. d(u) = 2.
So u has an initial weight of 2 and gives nothing. We show that it receives at least 1, so it has a final weight of at least 3.
(a) Assume u is adjacent to a vertex u2 of degree 2.

Then u is a negative vertex of Type (N1) and receives 1
5 from the common pot by Rg . According to Configuration (C2),

vertex u is adjacent to a vertex v with d(v) = k. Since k ≥ 17, according to R4, vertex v gives 4
5 to u.

(b) Assume both neighbors v1 and v2 of u are of degree at least 3.
Vertex u is not a negative vertex of Type (N1) since it has no neighbor of degree 2.
i. u has two weak neighbors.

Then u is a negative vertex of Type (N3). It receives 1
5 from the common pot by Rg and 2

5 from each of its two
neighbors by R1.1.

ii u has one weak neighbor w and one non-weak neighbor v.
A. 3 ≤ d(v) ≤ 7.

Vertex u receives 3
5 from v by R1.2 and 2

5 from w by R1.1.
B. 8 ≤ d(v) ≤ 14.

Vertex u receives 5
8 from v by R3 and 3

8 from w by R1.4.
C. 15 ≤ d(v).

Vertex w is weak and v has degree at least 15, so one can check that u is not negative of Type (N1) or (N3).
According to Configuration (C3), it is not negative of Type (N2). So u is not negative and it receives 1

5 from w by
R1.5 and 4

5 from v by R4.
iii. u has two non-weak neighbors v, v′.

A. 3 ≤ d(v) ≤ 7 and 3 ≤ d(v′) ≤ 7. Vertex u receives 1
2 from each neighbor by R1.3.

B. 3 ≤ d(v) ≤ 7 and 8 ≤ d(v′) ≤ 14.
Vertex u receives 5

8 from v′ by R3 and 3
8 from v by R1.4.
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C. 3 ≤ d(v) ≤ 7 and 15 ≤ d(v′).
If u is negative, it receives 1

5 from the common pot by Rg . If u is non-negative, it receives 1
5 from v by R1.5. In

both cases, it receives 4
5 from v′ by R4.

D. 8 ≤ d(v) and 8 ≤ d(v′).
Vertex u receives at least 5

8 from each neighbor by R3 or R4.
2. d(u) = 3.

So u has an initial weight of 3. We show that it has a final weight of at least 3.
(a) Assume u has three neighbors y1, y2 and y3 of degree 2.

Let zi, 1 ≤ i ≤ 3, be the neighbors of yi distinct from u. According to Configuration (C3), d(z1) = d(z2) = d(z3) = k.
So y1, y2 and y3 are negative vertices of Type (N2). So no rule applies to u.

(b) Assume u has exactly two neighbors y1 and y2 of degree 2.
Let zi, 1 ≤ i ≤ 2, be the neighbors of yi distinct from u. Let x be the third neighbor of u, d(x) ≥ 3. According to
Configuration (C3), we are in one of the two following cases:
i. d(x) ≥ k − 2.

Vertex x gives 4
5 to u by R4 and u gives nothing to x.

A. Assume vertex u is weak.
Since u is weak, d(yi) ≤ 14, so vertex u gives at most 2

5 to each of y1, y2 by R1.1 or R1.4.
B. Assume vertex u is not weak.

Then, w.l.o.g., d(z1) ≥ 15. So vertex u gives at most 1
5 to y1 by R1.5. Vertex u gives at most 3

5 to y2 by R1.2, R1.3,
R1.4 or R1.5.

ii. d(z1) = d(z2) = k.
A. d(x) ≤ 7.

According to Configuration (C4), vertex u gives nothing to x by R2. Vertices y1 and y2 are negative (of Type (N2))
and u gives nothing to y1, y2.

B. d(x) ≥ 8.
Vertex u gives 1

5 to y1 and y2 by R1.5. Vertex x gives at least 5
8 to u by R3 or R4.

(c) Assume u has exactly one neighbor y of degree 2.
Let z be the neighbor of y distinct from u. Let w and x be the other neighbors of u, where d(w) ≥ d(x) ≥ 3. We
consider three cases according to the value of d(w).
i. 15 ≤ d(w).

Then, vertex u gives at most 3
5 to y by R1.i, 1 ≤ i ≤ 5. Vertex u gives at most 1

10 to x by R2. Vertex w gives 4
5 to u

by R4.
ii. 8 ≤ d(w) ≤ 14.

According to Configuration (C4), vertex u gives nothing to x by R2. Vertex u gives at most 3
5 to y by R1.i, 1 ≤ i ≤ 5.

Vertex w gives 5
8 to u by R3.

iii. d(w) ≤ 7.
According to Configuration (C4), vertex u gives nothing to x andw by R2. According to Configuration (C3), we have
d(z) = k. Vertex u gives 1

5 to y by R1.5. Both w and x give 1
10 to u by R2.

(d) Assume all the neighbors of u have degree at least 3 and at most 7.
According to Configuration (C4), vertex u gives nothing to its neighbors by R2.

(e) Assume u has no neighbor of degree 2 and at least a neighbor v of degree at least 8.
Vertex v gives at least 5

8 to u by R3 or R4. Vertex u gives at most 1
10 to each of its other neighbors by R2.

3. d(u) = 4.
So u has an initial weight of 4. We show that it has a final weight of at least 3.
(a) Assume u has at least three neighbors y1, y2 and y3 of degree 2.

Let zi be the neighbors of yi distinct from u. We assume that d(z1) ≥ d(z2) ≥ d(z3). Let x be the neighbor of u distinct
from y1, y2 and y3. We consider three cases depending on d(z2) and d(z3).
i. d(z2) ≤ 14.

According to Configuration (C7), we have d(x) ≥ k − 2. Vertex u gives at most 3 ×
3
5 by R1.i, 1 ≤ i ≤ 5. Vertex x

gives 4
5 to u by R4.

ii. d(z2) ≥ 15 and d(z3) ≤ 14.
According to Configuration (C6), we have d(x) ≥ 8. Vertex u gives at most 1

5 to each of y1, y2 by R1.5. Vertex u
gives at most 3

5 to y3 by R1.i.
iii. d(z3) ≥ 15.

Vertex u gives at most 1
5 to each of its neighbors by R1.5.

(b) Assume u has exactly two neighbors y1 and y2 of degree 2.
Let zi be the neighbors of yi distinct from u. We assume that d(z1) ≥ d(z2). Let w and x be the neighbors of u distinct
from y1, y2. We assume that d(w) ≥ d(x) ≥ 3. We consider two cases depending on d(z1).



M. Bonamy et al. / Discrete Mathematics 317 (2014) 19–32 31

i. d(z1) ≤ 14.
According to Configuration (C7), we have d(w) ≥ 9. Vertex u gives at most 3

5 to each of y1, y2 by R1.i, and at most
1
10 to x by R2. Vertex x gives at least 5

8 to u by R3 or R4.
ii. d(z1) ≥ 15.

Vertex u gives at most 1
5 to y1 by R1.6, at most 3

5 to y2 by R1.i, and at most 1
10 to each of w, x by R2.

(c) Assume u has at most one neighbor of degree 2.
Vertex u gives at most 3 ×

1
10 by R2, and at most 3

5 by R1.i.
4. d(u) = 5.

So u has an initial weight of 5. We show that it has a final weight of at least 3.
(a) Assume u has at least four neighbors y1, y2, y3 and y4 of degree 2.

Let zi be the neighbors of yi distinct from u. We assume that d(z1) ≥ d(z2) ≥ d(z3) ≥ d(z4). Let x be the neighbor of
u distinct from the yi’s. We consider two cases depending on d(z4).
i. d(z4) ≤ 7.

According to Configuration (C8), we have d(x) ≥ 8. Vertex u gives at most 3
5 to each of yi by R1.i. Vertex x gives at

least 5
8 to u by R3 or R4.

ii. d(z4) ≥ 8.
Vertex u gives at most 5 ×

3
8 on total to its neighbors yi’s and x by R1.4 or R1.5.

(b) Assume u has at most three neighbors of degree 2.
Vertex u gives at most 3 ×

3
5 by R1.i, and at most 2 ×

1
10 by R2.

5. d(u) = 6.
So u has an initial weight of 6. We show that it has a final weight of at least 3.
(a) Assume u has at least five neighbors y1, . . . , y5, of degree 2.

Let zi be the neighbors of yi distinct from u. We assume that d(z1) ≥ · · · ≥ d(z5). Let x be the neighbors of u distinct
from yi’s. According to Configuration (C9), we are in one of the following two cases.
i. d(z5) ≥ 8.

Vertex u gives at most 6 ×
3
8 on total to its neighbors by R1.4 or R1.5.

ii. d(x) ≥ 8.
Vertex u gives at most 5 ×

3
5 on total to the yi’s.

(b) Assume u has at most four neighbors of degree 2.
Vertex u gives at most 4 ×

3
5 by R1.i, and at most 2 ×

1
10 by R2.

6. d(u) = 7.
So u has an initial weight of 7. We show that it has a final weight of at least 3.
(a) Assume u has at least six neighbors of degree 2 adjacent to vertices of degree at most 3.

According to Configuration (C10), vertex u has a neighbor v of degree at least 8. Vertex u gives at most 6 ×
3
5 by R1.i.

(b) Assume u has at most five neighbors of degree 2 adjacent to vertices of degree at most 3.
Vertex u gives at most 5 ×

3
5 by R1.i, and at most 2 ×

1
2 .

7. 8 ≤ d(u) ≤ 14.
Then Rule R3 applies to every neighbor of u, and d(u) − (d(u) ×

5
8 ) ≥ 3.

8. 15 ≤ d(u) < k.
Then Rule R4 applies to every neighbor of u, and d(u) − (d(u) ×

4
5 ) ≥ 3.

9. d(u) = k.
Then Rule R4 applies to every neighbor of u and Rg applies to u. We have k ≥ 17 so k − (k ×

4
5 +

2
5 ) ≥ 3.

Consequently, after application of the discharging rules, every vertex v of G has a weight of at least 3, meaning that
v∈G d(v) ≥


v∈G 3 = 3|V |. Therefore, mad(G) ≥ 3. �

Finally, k is a constant integer greater than 17 and G is a minimal graph such that ∆(G) ≤ k, and G admits no 2-distance
(k + 2)-list-coloring. By Lemma 11, we have mad(G) ≥ 3. So Theorem 4 is true.

7. Conclusion

We proved that graphs with ∆(G) ≥ 17 and maximum average degree less than 3 are list 2-distance (∆(G) + 2)-
colorable. The key idea in the proof is to use Brooks’ lemma (Lemma 7) instead of the usual special case of an even cycle
being 2-choosable. Thus we can prove stronger structural properties, which results in a global arborescent structure that is
a cactus. As far as we know, Brooks’ lemma has not been used in a global discharging proof before, and it might be useful for
other problems. One remaining question would be to determine the maximum ∆(G) of a graph G with mad(G) < 3 that is
not 2-distance (∆(G) + 2)-colorable. By Theorem 4, it cannot be more than 16.

Note that these proofs can be effortlessly transposed to list injective (∆(G) + 1)-coloring. Indeed, every vertex we color
has a neighbor that is already colored. This means that in the case of list injective coloring, every vertex we color has at least
one constraint less than in the case of list 2-distance coloring. Consequently, ∆(G) + 1 colors are enough in the case of list
injective coloring, as mentioned in the introduction.

In contrast to Theorem 4, other results have been obtained on the 2-distance coloring of planar graphs of girth at least
6 when more colors are allowed. For example, Bu and Zhu [14] proved that every planar graph G of girth at least 6 was
2-distance (∆(G) + 5)-colorable.
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