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A 2-edge-colored graph or a signed graph is a simple graph with two types of edges. A 
homomorphism from a 2-edge-colored graph G to a 2-edge-colored graph H is a mapping 
ϕ : V (G) → V (H) that maps every edge in G to an edge of the same type in H . Switching 
a vertex v of a 2-edge-colored or signed graph corresponds to changing the type of each 
edge incident to v . There is a homomorphism from the signed graph G to the signed 
graph H if after switching some subset of the vertices of G there is a 2-edge-colored 
homomorphism from G to H .
The chromatic number of a 2-edge-colored (resp. signed) graph G is the order of a smallest 
2-edge-colored (resp. signed) graph H such that there is a homomorphism from G to H . 
The chromatic number of a class of graphs is the maximum of the chromatic numbers of 
the graphs in the class.
We study the chromatic numbers of 2-edge-colored and signed graphs (connected and not 
necessarily connected) of a given bounded maximum degree. More precisely, we provide 
exact bounds for graphs with a maximum degree 2. We then propose specific lower and 
upper bounds for graphs with a maximum degree 3, 4, and 5. We finally propose general 
bounds for graphs of maximum degree k, for every k.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

This section is devoted to introduce the concepts of 2-edge-colored graphs, signed graphs, homomorphisms, and target 
graphs. The state of the art and new results are presented in Section 2.

1.1. Signed and 2-edge-colored graphs

A 2-edge-colored graph or a signed graph G = (V , E, s) is a simple graph (V , E) with two kinds of edges: positive and neg-
ative edges. We do not allow parallel edges nor loops. The signature s : E(G) → {−1, +1} assigns to each edge its sign. For 
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the concepts discussed in this paper, 2-edge-colored graphs and signed graphs only differ on the notion of homomorphism. 
Note that 2-edge-colored graphs are sometimes referred to as signified graphs by some authors.

A positive neighbor (resp. negative neighbor) of a vertex v is a vertex that is connected to v with a positive (resp. negative) 
edge. The set of positive (resp. negative) neighbors of a vertex v is the positive (resp. negative) neighborhood of v , denoted 
by N+(v) (resp. N−(v)). A 2-edge-colored or signed graph G = (V , E, s) such that s(e) = +1 (resp. s(e) = −1) for all e ∈ E
is called an all positive graph (resp. all negative graph).

Switching a vertex v of a 2-edge-colored or signed graph corresponds to reversing the signs of all the edges that are 
incident to v . Two 2-edge-colored or signed graphs G and G ′ are switching equivalent if it is possible to turn G into G ′ after 
any number of switches.

Given a 2-edge-colored or signed graph G = (V , E, s), the underlying graph of G is the simple graph (V , E).
A cycle of a 2-edge-colored or signed graph is said to be balanced (resp. unbalanced) if it has an even (resp. odd) number 

of negative edges. The notion of balanced cycles allows us to define switching equivalence as follows.

Theorem 1 (Zaslavsky [12]). Two 2-edge-colored or signed graphs are switching equivalent if and only if they have the same underlying 
graph and the same set of balanced cycles.

1.2. Homomorphisms

Given two 2-edge-colored graphs G and H , the mapping ϕ : V (G) → V (H) is a homomorphism if ϕ maps every edge of 
G to an edge of H with the same sign. This can be seen as coloring the vertices of G by using the vertices of H as colors. 
The target graph H gives us the rules that this coloring must follow. If vertices 1 and 2 of H are adjacent with a positive 
(resp. negative) edge, then every pair of adjacent vertices in G colored with 1 and 2 must be adjacent with a positive (resp. 
negative) edge.

If G admits a homomorphism to H , then we say that G is H-colorable or that H can color G . If G admits a homomor-
phism to a graph on n vertices, we say that G is n-colorable.

The chromatic number χ2(G) of a 2-edge-colored graph G is the order (the number of vertices) of a smallest 2-edge-
colored graph H such that G is H-colorable. The chromatic number χ2(C) of a class C of 2-edge-colored graphs is the 
maximum of the chromatic numbers of the graphs in the class.

A 2-edge-colored clique is a 2-edge-colored graph that has the same order and chromatic number.

Lemma 2 ([3]). A 2-edge-colored graph is a 2-edge-colored clique if and only if each pair of non-adjacent vertices is connected by a 
path of length 2 made of one positive and one negative edge.

Given two signed graphs G and H , the mapping ϕ : V (G) → V (H) is a homomorphism if there exist two 2-edge-colored 
graphs G ′ and H ′ respectively switching equivalent to G and H such that G ′ is H ′-colorable. However, switching in H is 
unnecessary (as explained in Section 3.3 of [8]).

The chromatic number χs(G) of a signed graph G is the order of a smallest signed graph H such that G admits a 
homomorphism to H . Note that χs(G) ≤ χ2(G) for any 2-edge-colored graph / signed graph G . The chromatic number 
χs(C) of a class C of signed graphs is the maximum of the chromatic numbers of the graphs in the class.

A signed clique is a signed graph that has the same order and chromatic number.

Lemma 3 ([8]). A signed graph is a signed clique if and only if every pair of non-adjacent vertices is part of an unbalanced cycle of 
length 4.

A class of graphs C is colorable if there exists a finite target graph that can color every graph in the class. Such a target 
graph is called universal target graph for C . A class of graphs is complete if, for every two graphs G1 and G2 in the class, 
there is a graph G∗ in the class such that G1 and G2 are subgraphs of G∗ .

A class C of 2-edge-colored (resp. signed) graphs is optimally colorable if there exists a universal target 2-edge-colored 
(resp. signed) graph T on χ2(C) (resp. χs(C)) vertices.

Lemma 4. Every class C of graphs which is colorable and complete is optimally colorable.

Proof. Following the proof in [10]: Suppose that C is colorable and complete but not optimally colorable. There exists a 
finite set S of graphs in C which cannot be colored with a single target graph on χ(C) vertices (such a set can be finite 
since there exists a finite number of target graphs having at most χ(C) vertices). Since C is complete, there exists a graph 
G in C that contains every graph in S as subgraphs. Graph G admits a homomorphism to a target graph T on χ(C) vertices. 
Therefore, every graph in S can be colored with T , a contradiction. �

The 2-edge-colored graphs are, in some sense, similar to oriented graphs since a pair of vertices can be adjacent in two 
different ways in both kinds of graphs: with a positive or a negative edge in the case of 2-edge-colored graphs, with a 
toward or a backward arc in the oriented case.
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Table 1
Properties Pn,k of the first S Pq graphs.

S P5 S P9 S P13 S P17 S P25 S P29 S P37 S P41 S P49 S P53 S P61

P1,2 P1,4 P1,6 P1,8 P1,12 P1,14 P1,18 P1,20 P1,24 P1,26 P1,30

P2,1 P2,2 P2,3 P2,5 P2,6 P2,8 P2,9 P2,11 P2,12 P2,14

P3,1 P3,1 P3,1 P3,4 P3,3 P3,3

S P73 S P81 S P89 S P97 S P101 S P109 S P113 S P121 S P125 S P137 S P149

P1,36 P1,40 P1,44 P1,48 P1,50 P1,54 P1,56 P1,60 P1,62 P1,68 P1,74

P2,17 P2,19 P2,21 P2,23 P2,24 P2,26 P2,27 P2,29 P2,30 P2,33 P2,36

P3,5 P3,6 P3,6 P3,6 P3,8 P3,8 P3,9 P3,12 P3,12 P3,12 P3,13

P4,1 P4,2 P4,1 P4,2 P4,2

S P157 S P169 S P173 S P181 S P193 S P197 S P229 S P233 S P241 . . . S P677

P1,78 P1,84 P1,86 P1,90 P1,96 P1,98 P1,114 P1,116 P1,120 . . . P1,338

P2,38 P2,41 P2,42 P2,44 P2,47 P2,48 P2,56 P2,57 P2,59 . . . P2,168

P3,14 P3,16 P3,17 P3,16 P3,18 P3,19 P3,22 P3,23 P3,23 . . . P3,76

P4,3 P4,4 P4,3 P4,1 P4,4 P4,4 P4,5 P4,5 P4,6 . . . P4,28

. . . P5,5

The notion of homomorphism of oriented graphs has been introduced by Courcelle [5] in 1994 and has been widely 
studied since then. Due to the similarity above-mentioned, we try to adapt techniques used to study the homomorphisms 
of oriented graphs of bounded degree to 2-edge-colored graphs of bounded degree.

1.3. Target graphs

A 2-edge-colored graph (V , E, s) is said to be antiautomorphic if it is isomorphic to (V , E, −s).
A 2-edge-colored graph G = (V , E, s) is said to be Kn-transitive if for every pair of complete subgraphs {u1, u2, . . . , un}

and {v1, v2, . . . , vn} in G such that s(uiu j) = s(vi v j) for all i �= j, there exists an automorphism that maps ui to vi for all i. 
For n = 1, 2, or 3, we say that the graph is vertex-transitive, edge-transitive, or triangle-transitive, respectively.

Given a 2-edge-colored graph G , let Sn(G) be the set of all complete subgraphs of size n of G . We say that G has 
Property Pn,k if Sn(G) is non-empty and, for every complete subgraph (v1, v2, . . . , vn) of Sn(G) and for every sign vector A =
(α1, α2, . . . , αn) ∈ {−1, +1}n there exist at least k A-successors of (v1, v2, . . . , vn), that is k distinct vertices {u1, u2, . . . , uk}
such that s(viu j) = αi for 1 ≤ i ≤ n and 1 ≤ j ≤ k. Note that if a graph G has Property Pn,k , then G has Property Pn′,k′ for 
any n′ ≤ n and k′ ≤ k.

Given two 2-edge-colored graphs G and H , Properties Pn,k are useful to extend a partial H-coloring of G . A classical case 
of application will be the following one: Suppose that H has Property Pn,k and G has a vertex v of degree n. If G − v is 
H-colorable (with some additional conditions), then there exist at least k distinct H-colorings of G with k distinct colors for 
v .

Let us now introduce another type of property. We say that a graph G has Property Cn,k if Sn(G) is non-empty and, for 
every complete subgraph (v1, v2, . . . , vn) of G , we have | ⋃1≤i≤n N+(vi)| ≥ k and | ⋃1≤i≤n N−(vi)| ≥ k. Note that given two 
integers n and k, a graph having Property Cn,k has Property Cn′,k′ for any n′ and k′ such that n′ ≥ n and k′ ≤ k.

A target graph having good Properties Pn,k and/or Cn,k will be a good candidate to color some graph families.
Let q be a prime power with q ≡ 1 mod 4. Let Fq be the finite field of order q.
The 2-edge-colored Paley graph S Pq has vertex set V (S Pq) = Fq . Two distinct vertices u and v of S Pq are connected 

with a positive edge if u − v is a square in Fq and with a negative edge otherwise. This definition is consistent since 
q ≡ 1 (mod 4) so −1 is always a square in Fq and, if u − v is a square, then v − u is also a square.

Properties Pn,k of the 2-edge-colored Paley graph S Pq can be easily computed for n = 1 and n = 2 based on its construc-
tion:

Lemma 5 ([9]). Graph S Pq is vertex-transitive, edge-transitive, antiautomorphic and has Properties P1,
q−1

2
and P2,

q−5
4

.

However, for n ≥ 3, it is no longer possible to determine the Properties Pn,k from the construction rules and we therefore 
use a brute force algorithm that computes them, and so does it for Properties Cn,k .

Table 1 gives the properties Pn,k of the first S Pq graphs.
Given a 2-edge-colored graph G with signature sG , we create the antitwinned graph of G denoted by ρ(G) as follows. Let 

G+1, G−1 be two copies of G . The vertex corresponding to v ∈ V (G) in Gi is denoted by vi . The vertex set, edge set, and 
signature of ρ(G) are defined as follows:

• V (ρ(G)) = V (G+1) ∪ V (G−1)

• E(ρ(G)) = {ui v j : uv ∈ E(G), i, j ∈ {−1, +1}}
• sρ(G)(ui v j) = i × j × sG(uv)
3
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Table 2
Properties Cn,k of the first ρ(S P+

q ) graphs.

ρ(S P+
5 ) ρ(S P+

9 ) ρ(S P+
13) ρ(S P+

17) ρ(S P+
25) ρ(S P+

29) ρ(S P+
37) ρ(S P+

41)

C1,5 C1,9 C1,13 C1,17 C1,25 C1,29 C1,37 C1,41

C2,7 C2,14 C2,20 C2,24 C2,38 C2,44 C2,56 C2,62

C3,9 C3,16 C3,23 C3,28 C3,44 C3,49 C3,64 C3,71

ρ(S P+
49) ρ(S P+

53) ρ(S P+
61) ρ(S P+

73) ρ(S P+
81) ρ(S P+

89) ρ(S P+
97) ρ(S P+

101)

C1,49 C1,53 C1,61 C1,73 C1,81 C1,89 C1,97 C1,101

C2,74 C2,78 C2,94 C2,110 C2,122 C2,134 C2,146 C2,152

C3,86 C3,91 C3,107 C3,126 C3,142 C3,154 C3,168 C3,175

ρ(S P+
109) ρ(S P+

113) ρ(S P+
121) ρ(S P+

125) ρ(S P+
137) ρ(S P+

149) ρ(S P+
157) ρ(S P+

169)

C1,109 C1,113 C1,121 C1,125 C1,137 C1,149 C1,157 C1,169

C2,166 C2,168 C2,182 C2,188 C2,204 C2,224 C2,236 C2,254

C3,191 C3,195 C3,212 C3,219 C3,237 C3,260 C3,274 C3,296

ρ(S P+
173) ρ(S P+

181) ρ(S P+
193) ρ(S P+

197) ρ(S P+
229) ρ(S P+

233) . . . ρ(S P+
677)

C1,173 C1,181 C1,193 C1,197 C1,229 C1,233 . . . C1,677

C2,258 C2,274 C2,290 C2,294 C2,346 C2,348 . . . C2,1014

C3,300 C3,316 C3,336 C3,342 C3,400 C3,405 . . . C3,1182

By construction, for every vertex v of G , v−1 and v+1 are antitwins, the positive neighbors of v−1 are the negative neigh-
bors of v+1 and vice versa. A 2-edge-colored graph is antitwinned if every vertex has a unique antitwin. In the remainder 
of the paper, v̄ will denote the antitwin of the vertex v and ¯̄v = v (the antitwin of the antitwin of v is v itself).

Lemma 6 ([4]). Let G and H be 2-edge-colored graphs. The two following propositions are equivalent:

• The graph G admits a homomorphism to ρ(H).
• The graph G, seen as a signed graph, admits a homomorphism to H.

In other words, if a 2-edge-colored graph admits a homomorphism to an antitwinned target graph on n vertices, then 
the same graph seen as a signed graph also admits a homomorphism to a target graph on n

2 vertices.
Let S P+

q be S Pq with an additional vertex that is connected to every other vertex with a positive edge. Note that ρ(S P+
q )

is known in the literature as Tromp-Paley graph; this construction has been introduced by Tromp [11]. Ochem, Pinlou, and 
Sen [9] proved that ρ(S P+

q ) is edge-transitive.
The families ρ(S Pq) and ρ(S P+

q ) are interesting target graphs (especially for bounding the chromatic number of signed 
graphs since they are antitwinned graphs) since they have good Pn,k properties.

First remark that, by construction, each vertex of ρ(S Pq) (resp. ρ(S P+
q )) has q − 1 (resp. q) positive neighbors and q − 1

(resp. q) negative neighbors. Thus ρ(S Pq) (resp. ρ(S P+
q )) has Property P1,q−1 (resp. P1,q). Moreover, for n ≥ 2, we can 

deduce Properties Pn,k of ρ(S Pq) and ρ(S P+
q ) from the properties of S Pq .

Lemma 7 ([9]). If S Pq has Property Pn,k, then ρ(S P+
q ) has Property Pn+1,k and, when k ≥ 2, ρ(S Pq) has Property Pn+1,k−1.

Properties Cn,k will also be useful in our proofs. We computed these properties for n = 1, 2, 3 for the first ρ(S P+
q ) using 

brute force algorithm (see Table 2).
To conclude this section, let us state a lemma which will be useful in our proofs of the next sections.

Lemma 8. Let H be a 2-edge-colored complete graph such that ρ(H) has Property Pn,k. Let ϕ be a ρ(H)-coloring of a 2-edge-
colored graph G. If u ∈ V (G) has degree at most n, then there exist at least k distinct colors for u that leave unchanged ϕ(v) for all 
v ∈ V (G) \ {u}. Moreover, the k colors form a complete subgraph in ρ(H).

Proof. First note that, since H is complete, ρ(H) is isomorphic to a complete graph minus the matching {w w̄ : w ∈
V (ρ(H))}.

Let ui denote the ith neighbor of u.
Let us first show that the proof can be reduced to the case where the colors of the ui ’s induce a complete subgraph in 

ρ(H) of order at most dG (u). If ϕ(ui) = ϕ(u j) for some i < j, then the signs of the edges uui and uu j must coincide since 
by hypothesis ϕ is a ρ(H)-coloring of G . Similarly, if ϕ(ui) = ϕ(u j) for some i < j, then the signs of the edges uui and 
uu j must differ (one is positive and the other is negative) since by hypothesis ϕ is a ρ(H)-coloring of G . In both cases, the 
coloring constraints are unchanged for u by removing the edge uu j since the positive (resp. negative) neighborhood of any 
vertex x of ρ(H) is the negative (resp. positive) neighborhood of x̄. We can therefore assume that each pair of vertices ui
4
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Fig. 1. A signed clique on 6 vertices and maximum degree 3.

and u j , for 1 ≤ i < j ≤ n, are neither colored with the same color nor with a color and its antitwin; hence the colors of the 
ui ’s induce a complete subgraph in ρ(H) of order at most dG (u).

By definition of Property Pn,k , given the n colors (or less) of the neighbors of u, there exist k distinct colors for u, namely 
c1, . . . , ck . Hence, there exist at least k distinct ρ(H)-colorings of G that coincide on each vertex v ∈ V (G) \ {u}. To show 
that the ci ’s form a complete subgraph of ρ(H), it remains to prove that ci �= c j for all 1 ≤ i < j ≤ k. By contradiction, 
assume w.l.o.g. that c2 = c1, that means u can be colored with c1 and its antitwin c1. It implies that, for any 1 ≤ i ≤ n, the 
edges ϕ(ui)c1 and ϕ(ui)c1 have the same sign in ρ(H). However, by definition of ρ(H), the positive neighbors of a given 
vertex are the negative neighbors of its antitwin. The two previous edges cannot have the same sign, contradicting the fact 
that c2 = c1. Thus, among the k colors, we do not have a color and its antitwin. As ρ(H) is isomorphic to a complete graph 
minus the matching {w w̄ : w ∈ V (ρ(H))}, it follows that the k colors induce a complete subgraph. �
2. Results

The chromatic number of 2-edge-colored graphs and signed graphs of maximum degree k has already been studied for 
some particular values of k, namely k = 3 and for k ≥ 5. The aim of this paper is to improve the known bounds and propose 
bounds for k = 1, 2, and 4. Moreover, we want to highlight differences that appear between connected and non-connected 
graph families.

In the following, Dk (resp. Dc
k) denotes the class of (resp. connected) 2-edge-colored or signed graphs with maximum 

degree k.
In the remainder of this section, we present the state of the art and preliminary results.

Maximum degree 1. Consider a 2-edge-colored graph having two vertices and one edge; it has chromatic number 2 and thus 
χ2(Dc

1) = 2. However, a 2-edge-colored graph with two non-incident edges, one positive and one negative, has chromatic 
number 3 (the target graph needs a positive and a negative edge, hence at least three vertices) and thus χ2(D1) = 3. We 
therefore have a difference between the chromatic numbers of connected and non-connected 2-edge-colored graphs with 
maximum degree 1. This difference does not exist for signed graphs since a negative edge can be changed into a positive 
one after a switch and we thus have χs(Dc

1) = χs(D1) = 2.

Maximum degree 2. For graphs of maximum degree 2, this difference (and lack thereof for signed graphs) also appears and 
we prove in this paper that χ2(Dc

2) = 5, χ2(D2) = 6, and χs(Dc
2) = χs(D2) = 4. The proofs are given in Section 4.

Maximum degree 3. Bensmail et al. [2] proved that every connected 2-edge-colored graph with maximum degree 3 has 
chromatic number at most 12, i.e. χ2(Dc

3) ≤ 12. Moreover, it follows by Lemma 6 that χs(Dc
3) ≤ 6.

The signed clique on 6 vertices and maximum degree 3 depicted in Fig. 1 gives χs(D3) ≥ χs(Dc
3) ≥ 6.

We improve the above-mentioned bound by showing χ2(Dc
3) ≤ 10 and, for non necessarily connected 2-edge-colored 

graphs, we prove that χ2(D3) ≤ 11 (see Section 5).

Maximum degree at least 4. The chromatic numbers of graphs with maximum degree k = 4 have not been yet considered. 
Das, Nandi, and Sen [6] considered coloring of connected (m, n)-mixed graphs of maximum degree k ≥ 5 (the case m = 0

and n = 2 corresponds to 2-edge-colored graphs). They proved that 2
k
2 ≤ χ2(Dc

k) ≤ (k − 1)2 · 2k + 2 for k ≥ 5.
We first fill the lack for k = 4 by proving that χ2(D4) ≤ 30 and χs(D4) ≤ 16. The proof technique also gives specific 

bounds for graphs with maximum degree 5, 6, and 7. For maximum degree 5 graphs, we get χ2(Dc
5) ≤ χ2(D5) ≤ 102

(which is better than the bound of 514 given by the above-mentioned general formula) and χs(Dc
5) ≤ χs(D5) ≤ 52. For 

maximum degree 6 graphs, we get χ2(Dc
6) ≤ χ2(D6) ≤ 342 (which is better than the bound of 1602 given by the general 

formula) and χs(Dc
6) ≤ χs(D6) ≤ 172. For maximum degree 7 graphs, we get χ2(Dc

7) ≤ χ2(D7) ≤ 1358 (which is better than 
the bound of 4610 given by the general formula) and χs(Dc

7) ≤ χs(D7) ≤ 680. Proofs are given in Section 6.
Then, for k ≥ 8, we adapt the proof of Das, Nandi, and Sen [6] to get an upper bound for non necessarily connected 

2-edge-colored graphs, that is χ2(Dk) ≤ k2 · 2k+1 (see Corollary 25) and to get a lower bound for signed graphs, that is 
χs(Dk) ≥ 2

k
2 −1 (see Theorem 26).

Maximum degree at least 29. For k ≥ 29, we can adapt a result of Bensmail et al. [1] on (pushable) oriented chromatic 
number to get better general upper bounds, namely χ2(Dc

k) ≤ (k − 3) · (k − 1) · 2k + 2, χs(Dc
k) ≤ (k − 3) · (k − 1) · 2k−1 + 2, 

and χs(Dk) ≤ χ2(Dk) ≤ (k − 2) · k · 2k (see Theorems 27 and 28 and Corollary 29).
5
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Table 3
Chromatic number of the classes of (connected) 2-edge-colored graphs of bounded degree.

χ2(Dk) χ2(Dc
k)

k = 1 χ2(D1) = 3 χ2(Dc
1) = 2

k = 2 χ2(D2) = 6 χ2(Dc
2) = 5

k = 3 8 ≤ χ2(D3) ≤ 11 8 ≤ χ2(Dc
3) ≤ 10

k = 4 12 ≤ χ2(Dc
4) ≤ χ2(D4) ≤ 30

k = 5 16 ≤ χ2(Dc
5) ≤ χ2(D5) ≤ 102

k = 6 20 ≤ χ2(Dc
6) ≤ χ2(D6) ≤ 342

k = 7 24 ≤ χ2(Dc
7) ≤ χ2(D7) ≤ 1358

8 ≤ k ≤ 10 4(k − 1) ≤ χ2(Dk) ≤ k2 · 2k+1 4(k − 1) ≤ χ2(Dc
k) ≤ (k − 1)2 · 2k + 2 [6]

11 ≤ k ≤ 28 2
k
2 ≤ χ2(Dk) ≤ k2 · 2k+1 2

k
2 ≤ χ2(Dc

k) ≤ (k − 1)2 · 2k + 2 [6]

29 ≤ k 2
k
2 ≤ χ2(Dk) ≤ (k − 2) · k · 2k 2

k
2 ≤ χ2(Dc

k) ≤ (k − 3) · (k − 1) · 2k + 2 [1]

Table 4
Chromatic number of the classes of (connected) signed graphs of bounded degree.

χs(Dk) χs(Dc
k)

k = 1 χs(D1) = χs(Dc
1) = 2

k = 2 χs(D2) = χs(Dc
2) = 4

k = 3 6 ≤ χs(D3) ≤ 7 [2] χs(Dc
3) = 6 [2]

k = 4 10 ≤ χs(Dc
4) ≤ χs(D4) ≤ 16

k = 5 12 ≤ χs(Dc
5) ≤ χs(D5) ≤ 52

k = 6 14 ≤ χs(Dc
6) ≤ χs(D6) ≤ 172

k = 7 16 ≤ χs(Dc
7) ≤ χs(D7) ≤ 680

8 ≤ k ≤ 11 2(k + 1) ≤ χs(Dk) ≤ k2 · 2k+1 2(k + 1) ≤ χs(Dc
k) ≤ (k − 1)2 · 2k + 2 [6]

12 ≤ k ≤ 28 2
k
2 −1 ≤ χs(Dk) ≤ k2 · 2k+1 2

k
2 −1 ≤ χs(Dc

k) ≤ (k − 1)2 · 2k + 2 [6]

29 ≤ k 2
k
2 −1 ≤ χs(Dk) ≤ (k − 2) · k · 2k 2

k
2 −1 ≤ χs(Dc

k) ≤ (k − 3) · (k − 1) · 2k−1 + 2 [1]

Lower bounds. We also constructed k-regular 2-edge-colored cliques for k ≥ 3 and k-regular signed cliques for k ≥ 4. It 
follows χ2(Dk) ≥ χ2(Dc

k) ≥ 4(k − 1) and χs(Dk) ≥ χs(Dc
k) ≥ 2(k + 1) (proofs are given in Section 3). These lower bounds 

are the best known up to our knowledge for k ≤ 11 (resp. k ≤ 12) for 2-edge-colored graphs (resp. signed graphs) with 
maximum degree k. For greater k, already mentioned lower bounds are better.

Tables 3 and 4 summarize the above-mentioned results. Grey cells contain our results presented in this paper, while 
white cells contain already known results.

3. Lower bounds

In this section, we construct 2-edge-colored cliques and signed cliques. This gives us lower bounds for the related 
chromatic numbers. Note that for k ≥ 11 (resp. k ≥ 12), better lower bounds exist and are given in Section 6.

Theorem 9. For every k ≥ 3, there is a k-regular 2-edge-colored clique on 4(k − 1) vertices.

Proof. Let G be the 2-edge-colored graph with vertex set V (G) = {0, 1, ..., 4(k − 1) − 1}. In this proof, every number is 
considered modulo 4(k − 1). For all u ∈ V (G):

• If u is even, then u is positively adjacent to u + 2(k − 1) and u + 2i + 1 for 0 ≤ i ≤ k − 3 and negatively adjacent to 
u − 1.

• If u is odd, then u is positively adjacent to u − 2i − 1 for 0 ≤ i ≤ k − 3 and negatively adjacent to u + 1 and u + 2(k − 1).

Graph G is k-regular. We now show that every pair of vertices is either adjacent or is connected by a path of length 2 
made of one positive and one negative edge in order to conclude with Lemma 2. It suffices to show that this is the case for 
each pair of vertices containing 0 or 1 (since adding 2 to every vertex yields an automorphism).

Vertex 0 is adjacent to 2(k − 1), 2i + 1 for 0 ≤ i ≤ k − 3, 4(k − 1) − 1. The following paths are made of one positive and 
one negative edge: (0, 2(k − 1), 2(k − 1) − 1), (0, 2i + 1, 2i + 2), (0, 2i + 1, 2(k − 1) + 2i + 1), (0, 4(k − 1) − 1, 4(k − 1) − 2 − 2i)
for 0 ≤ i ≤ k − 3. We have covered all pairs (0, v) with v ∈ {2i + 1, 2i + 2, 2(k − 1) − 1, 2(k − 1), 2(k − 1) + 2i + 1, 4(k − 1) −
2 − 2i, 4(k − 1) − 1} = V (G) \ {0}.

Vertex 1 is adjacent to 4(k − 1) − 2i for 0 ≤ i ≤ k − 3, 2 and 2(k − 1) + 1. The following paths are made of one positive 
and one negative edge: (1, 4(k − 1) − 2i, 4(k − 1) − 2i − 1), (1, 2, 2i + 3), (1, 2(k − 1) + 1, 2(k − 1) − 2i) and (1, 2(k − 1) +
1, 2(k − 1) + 2) for 0 ≤ i ≤ k − 3. We have covered all pairs (1, v) with v ∈ {2, 2i + 3, 2(k − 1) − 2i, 2(k − 1) + 1, 2(k − 1) +
2, 4(k − 1) − 2i − 1, 4(k − 1) − 2i} = V (G) \ {1}. �
Theorem 10. For every k ≥ 4, there is a k-regular signed clique on 2(k + 1) vertices.
6
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Fig. 2. Every connected 2-edge-colored graph with maximum degree 2 can be colored with at least one of these two graphs.

Proof. Let G be the signed graph with vertex set V (G) = {0, 1, ..., 2(k + 1) − 1}. In this proof, every number is considered 
modulo 2(k + 1). For all u ∈ V (G):

• If u is even, then u is positively adjacent to u + 1 and u + 4 + 2i for 0 ≤ i ≤ k − 3 and negatively adjacent to u − 1.
• If u is odd, then u is negatively adjacent to u + 1 and u + 4 + 2i for 0 ≤ i ≤ k − 3 and positively adjacent to u − 1.

Graph G is k-regular. We now show that every pair of vertices is part of an unbalanced cycle of length 4 in order to 
conclude with Lemma 3. It suffices to show that this is the case for each pair of vertices containing 0 (since adding 2 to 
every vertex yields an automorphism and adding 1 to every vertex yields an antiautomorphism).

Cycles (0, 1, 2, 2(k + 1) − 4), (0, 2(k + 1) − 1, 2(k + 1) − 2, 4), 0, 4, 3, 2(k + 1) − 1), (0, 4 + 2i, 5 + 2i, 1) and (0, 4 + 2i, 3 +
2i, 2(k + 1) − 1) for 0 ≤ i ≤ k − 3 are unbalanced. This covers all pairs (0, v) with v ∈ {1, 2, 3, 4, 3 + 2i, 4 + 2i, 5 + 2i, 2(k +
1) − 2, 2(k + 1) − 1} = V (G) \ {0}. �
4. Graphs with maximum degree 2

This section is devoted to 2-edge-colored and signed graphs with maximum degree 2. We prove that χ2(Dc
2) = 5, 

χ2(D2) = 6, and χs(D2) = χs(Dc
2) = 4.

4.1. Connected 2-edge-colored graphs with maximum degree 2

In this subsection, we consider the case of connected 2-edge-colored graphs with maximum degree 2 and we prove that 
their chromatic number is exactly 5. We obtain this result by showing that every graph G ∈ Dc

2 admits a homomophism to 
one of the two graphs of Fig. 2.

Theorem 11 (χ2(Dc
2) = 5). The class of connected 2-edge-colored graphs with maximum degree 2 has chromatic number 5 and is not 

optimally colorable.

Proof. The class of connected graphs with maximum degree 2 is the set of all paths and cycles. The cycle of length 6 from 
Fig. 4 has chromatic number 5. We start by showing that it is not possible to color it with four colors.

Vertices v1, v2, and v3 belong to a path of length 2 with one negative and one positive edge. We therefore need 3 
distinct colors for these vertices and without loss of generality we color v1, v2, and v3 with 1, 2, and 3 respectively. Using 
the same argument, v4 cannot receive colors 2 or 3.

Suppose that we color v4 in 1. Vertex v5 cannot be colored 1, 2, or 3 so we color it 4. We would need a new color to 
color v6.

Suppose that we color v4 in 4. Vertex v5 cannot be colored 3 or 4. If we color v5 with 1, then it will not be possible to 
color v6. If we color v5 with 2, then we would need a new color to color v6.

Therefore, it is not possible to color this graph with 4 colors. A 5-coloring exists (we color the vertices with 1, 2, 3, 4, 
5, and 3 in order) so the chromatic number of this 2-edge-colored graph is 5 and the class of connected 2-edge-colored 
graphs with maximum degree 2 has chromatic number at least 5.

We now show that any connected 2-edge-colored graph with maximum degree two admits a homomorphism to either 
S P5 (see Fig. 2a), the signed Paley graph on 5 vertices, or S B , the signed butterfly (see Fig. 2b).

Notice that any 2-edge-colored path can be colored with the graph from Fig. 3 because every vertex in this graph has 
at least one positive and at least one negative neighbor. This graph is a subgraph of S P5, thus every path maps to S P5. In 
the following we refer to vertices with even or odd labels as even or odd vertices. Note that in this subgraph, odd (resp. 
even) vertices are only connected to even (resp. odd) vertices. Also note that every odd (resp. even) vertex of this subgraph 
is linked with a positive (resp. negative) edge to 0 in S P5.
7
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Fig. 3. Target graph that can color any 2-edge-colored path.

Fig. 4. Connected 2-edge-colored graphs are not optimally colorable.

Let G = (V , E, s) be a 2-edge-colored cycle with V (G) = {v0, v1, ..., vn−1} and E(G) = {vi v j|i − j ≡ 1 mod n}. We now 
create a homomorphism ϕ from G to S P5 or S B .

Suppose that n is even.
Suppose there is a vertex which is incident to two positive edges. Without loss of generality, let v0 be this vertex. We 

create ϕ : G → S P5 as follows. Set ϕ(v0) = 0. We then color the path {v1, v2, ..., vn−1} with the subgraph from Fig. 3. Since 
s(v0 v1) = +1, ϕ(v1) has to be an odd color. Since every odd (resp. even) vertex of the subgraph is only adjacent to even 
(resp. odd) vertices, we alternate between odd and even colors along the path {v2, v3, ..., vn−1}. Hence vn−1 is colored with 
an odd color. That completes the homomorphism since s(vn−1 v0) = +1.

Similarly, if there is a vertex which is incident to two negative edges, then we can also create a homomorphism ϕ : G →
S P5.

We can now assume that the cycle alternates between positive and negative edges. Without loss of generality let 
s(v0 v1) = −1. We create ϕ : G → S P5 as follows:

ϕ(vi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if i = 0,

4 if i = 1,

2 if i ≡ 2 mod 4,

3 if i ≡ 3 mod 4,

4 if i ≡ 0 mod 4 and i �= 0,

1 if i ≡ 1 mod 4 and i �= 1.

The color of vn−1 will thus be an odd color. That completes the homomorphism since s(vn−1 v0) = +1.
Suppose that n is odd.
Suppose there is a vertex which is incident to one positive and one negative edge. Without loss of generality 

let s(vn−1 v0) = −1 and s(v0 v1) = +1. We create ϕ : G → S P5 as follows. Set ϕ(v0) = 0. We then color the path 
{v1, v2, ..., vn−1} with the subgraph from Fig. 3. Since s(v0 v1) = +1, ϕ(v1) has to be an odd color. Since every odd 
(resp. even) vertex of the subgraph is only adjacent to even (resp. odd) vertices, we alternate between odd and even 
colors along the path {v1, v3, ..., vn−1}. Hence vn−1 is colored with an even color. That completes the homomorphism since 
s(vn−1 v0) = −1.

Suppose now G is all positive or all negative. If G is an all positive (resp. negative) cycle of odd length, then we can 
color it with the all positive (resp. negative) triangle of S B .

It follows that the chromatic number of connected 2-edge-colored graphs with maximum degree 2 is at most 5.
We show that there is no unique graph on 5 vertices that can color the four graphs from Fig. 4 and therefore that 

connected 2-edge-colored graphs with maximum degree 2 are not optimally colorable.
The first three graphs of Fig. 4 are 2-edge-colored cliques so they need to be subgraphs of the target graph. There is only 

one way, up to isomorphisms, to have the two triangles as subgraphs of a 5 vertex graph with a minimal number of edges: 
the graph S B (Fig. 2b). There is only one way, up to isomorphisms, to add edges to S B so that it admits the alternating C4
as a subgraph (see Fig. 5).

However, the candidate target graph (Fig. 5) cannot color the alternating C6. Indeed, let v1, v2,..., v6 be the vertices of 
the alternating C6 (see Fig. 4). Suppose that color 2 is used in the coloring. Without loss of generality let v1 be colored 2. 
Since the only negative neighbor of 2 in the target graph is 3, v2 needs to be colored 3. Similarly, v3 needs to be colored 5, 
v4 in 4 and v5 in 2. Since v6 is both a positive and a negative neighbor of vertices colored 2, the graph cannot be colored 
8
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Fig. 5. Candidate target graph on 5 vertices for 2-edge-colored graphs with maximum degree 2.

Fig. 6. Target graph for 2-edge-colored graphs with maximum degree 2.

by using the color 2. However, recall that the alternating C6 has chromatic number 5, so it does not admit a homomorphism 
to the candidate target graph.

Thus, connected 2-edge-colored graphs are not optimally colorable. �
4.2. 2-edge-colored graphs with maximum degree 2

While 5 colors are enough in the case of connected 2-edge-colored graphs with maximum degree 2 (see Theorem 11), 6
colors are needed when the graphs are not necessarily connected and this bound is tight.

Theorem 12 (χ2(D2) = 6). The class of 2-edge-colored graphs with maximum degree 2 has chromatic number 6 and is optimally 
colorable by the target graph depicted in Fig. 6.

Proof. The class of graphs with maximum degree 2 is the set of disjoint unions of paths and cycles.
Notice that the graph depicted in Fig. 6 admits the two graphs from Fig. 2, S P5 and S B , as subgraphs. Therefore, this 

graph can color any connected 2-edge-colored graph with maximum degree 2 so it can color any 2-edge-colored graph with 
maximum degree 2.

Thus D2 has chromatic number at most 6, is colorable, and is complete: so it is optimally colorable by Lemma 4. By 
Theorem 11, the class of connected 2-edge-colored graphs with maximum degree 2 has chromatic number 5 and is not 
optimally colorable. Therefore, there is no single 2-edge-colored graph on 5 vertices that can color every 2-edge-colored 
paths and cycles. Thus, the class of graphs with maximum degree 2 has chromatic number 6. �
4.3. Signed graphs with maximum degree 2

Recall that χs(C) ≤ χ2(C) for any class of graphs C . Therefore, χs(Dc
2) ≤ 5 by Theorem 11 and χs(D2) ≤ 6 by Theorem 12. 

We prove that 4 colors are enough in both cases (connected or non-connected) and it is tight:

Theorem 13 (χs(D2) = 4). The class of signed graphs with maximum degree 2 has chromatic number 4 and is optimally colorable by 
the target graph depicted in Fig. 7.

Proof. An unbalanced C4 is a signed clique by Lemma 3 so the chromatic number of signed graphs with maximum degree 
2 is at least 4.

We consider the target graph T depicted in Fig. 7.
The class of graphs with maximum degree 2 is the set of disjoint unions of paths and cycles. Any signed path is switching 

equivalent to the all positive path of the same length by Theorem 1 and every positive path admits a homomorphism to a 
positive edge. Therefore, a signed path has chromatic number 2.

A cycle of length n is either balanced or unbalanced.
9
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Fig. 7. Target graph T for signed graphs with maximum degree 2.

If it is balanced, then it is switching equivalent to an all positive cycle by Theorem 1. An all positive cycle of even (resp. 
odd) length can be colored with a positive edge (resp. positive triangle).

If it is unbalanced, then it is switching equivalent to a cycle with exactly one negative edge by Theorem 1. Such a cycle 
of even (resp. odd) length can be colored with the cycle (1, 2, 3, 4) (resp. (1, 3, 4)) of T . �
5. Graphs with maximum degree 3

First note that the complete graph K4 on 4 vertices admits a homomorphism to itself and therefore χ2(K4) = χs(K4) = 4. 
Bensmail et al. [2] proved that every connected signed graph with maximum degree 3 except the all positive and the all 
negative K4 admits a homomorphism to S P+

5 . This implies that connected signed graphs with maximum degree 3 have 
chromatic number at most 6, i.e. χs(Dc

3) ≤ 6. Here, connected is mandatory since we do not have a universal target graph 
on 6 vertices but three distinct target graphs to color the connected signed graphs with maximum degree 3: the all positive 
K4 to color itself, the all negative K4 to color itself, and S P+

5 to color the remaining connected signed graphs with maximum 
degree 3. Note that, by Lemma 6, connected 2-edge-colored graphs with maximum degree 3 except the all positive K4 and 
the all negative K4 admit a homomorphism to ρ(S P+

5 ), and thus have chromatic number at most 12. Since all positive 
(resp. negative) K4 admits a homomorphism to itself, we have χ2(Dc

3) ≤ 12. Note that, in his Ph.D. thesis, Duffy [7] proved 
that 11 colors are sufficient, that is χ2(Dc

3) ≤ 11.
It is easy to add one universal vertex u to ρ(S P+

5 ) to construct the graph ρ(S P+
5 )

∗
having the all positive K4 and the 

all negative K4 as subgraphs. This graph is thus a universal target graph for class D3 and thus χ2(D3) ≤ 13. Now, one can 
add a new vertex ū to ρ(S P+

5 )
∗

to get the antitwinned ρ(S P+
5 )

∗∗
which has 14 vertices and is clearly universal of the class 

D3. We thus have χs(D3) ≤ 7 by Lemma 6.
We improve the above-mentioned upper bounds, that is χ2(Dc

3) ≤ 10 and χ2(D3) ≤ 11.
Note that, by Theorem 9, we have χ2(D3) ≥ χ2(Dc

3) ≥ 8. Also, the graph depicted in Fig. 1 is a signed clique that gives 
χs(D3) ≥ χs(Dc

3) ≥ 6.

5.1. 2-edge-colored graphs with maximum degree 3

In this section, we prove that χ2(D3) ≤ 11. Graph S P9 is depicted in Fig. 8 and has vertex set F9 = {0, 1, 2, x, x + 1, x +
2, 2x, 2x + 1, 2x + 2}. It has Properties P1,4 and P2,1 by Lemma 5. Despite of S P9 does not have Property P2,2, it has a 
property which we call P∗

2,2:

Lemma 14 (Property P∗
2,2 of S P9). Given two vertices u and v of S P9 and two signs (s1, s2) ∈ {−1, +1}2 such that |{s(uv), s1, s2}| >

1, there are two vertices w1 and w2 of S P9 such that s(uw1) = s(uw2) = s1 and s(v w1) = s(v w2) = s2 .

Proof. Since S P9 is edge-transitive and antiautomorphic by Lemma 5, it suffices to consider the case u = 0 and v = 1. Since 
01 is a positive edge, we have two cases to consider:

• Either s1 = s2 = −1 and we can have w1 = x + 2 and w2 = 2x + 2;
• Or s1 = +1, s2 = −1 and we can have w1 = x and w2 = 2x. �

Let K s+
4 (resp. K s−

4 ) be the all positive (resp. negative) complete graph on 4 vertices with one edge subdivided into a 
path of length 2 with one negative edge and one positive edge. We say that a 2-edge-colored graph is a K s

4 if it is either 
K s+

4 or K s−
4 . See Fig. 9.

A graph is said to be k-degenerate if each of its subgraphs contains at least one vertex of degree at most k.

Lemma 15 ([7]). Every 2-degenerate 2-edge-colored graph with maximum degree 3 that does not contain a K s
4 as a subgraph admits 

a homomorphism to S P9 .

Consider the graph S P∗
9 obtained from S P9 by adding two new vertices 0′ and 1′ as follows. Take the two vertices 0 and 

1 of S P9 (note that s(01) = +1), and link 0′ and 1′ to the vertices of S P9 in the same way as 0 and 1 are, respectively; add 
an edge 0′1′ with s(0′1′) = −1; finally we add edges 00′ and 11′ with s(00′) = −1 and s(11′) = +1.
10
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Fig. 8. The graph S P9. Drawn edges are positive and non-edges are negative.

Fig. 9. The two K s
4 graphs.

Lemma 16. Every 3-regular 2-edge-colored graph with no K s
4 as a subgraph admits a homomorphism to S P∗

9 .

Proof. Let G be a 3-regular 2-edge-colored graph with no K s
4 as a subgraph. The vertices 0, 1, 2, 1′ of S P∗

9 induce an all 
positive K4. Therefore, if G is an all positive 2-edge-colored graph, then it admits an homomorphism ϕ to S P∗

9 (∀v ∈
G, ϕ(v) ∈ {0, 1, 2, 1′}).

We can now assume that G contains at least one negative edge and let uv be this negative edge. The graph G − uv is 
2-degenerate 2-edge-colored graph with maximum degree 3 and no K s

4 as a subgraph. It thus admits a homomorphism ϕ
to S P9 by Lemma 15.

If ϕ(u)ϕ(v) is a negative edge in S P9, then ϕ is already a homomorphism from G to S P∗
9 .

If ϕ(u)ϕ(v) is a positive edge in S P9, then by the edge-transitivity of S P9 there exists a homomorphism ϕ′ from G to 
S P9 such that ϕ′(u) = 0 and ϕ′(v) = 1. The following application ϕ′′ is a homomorphism from G to S P∗

9 because 0′1′ is a 
negative edge and 0′ and 1′ have the same positive and negative neighbors in S P∗

9 as 0 and 1 in S P9.

ϕ′′(w) =
⎧⎨
⎩

0′ if w = u,

1′ if w = v,

ϕ′(w) otherwise.

If ϕ(u) = ϕ(v), then by the vertex-transitivity of S P9 there exists a homomorphism ϕ′ from G to S P9 such that ϕ′(u) =
ϕ′(v) = 0. The following application ϕ′′ is a homomorphism from G to S P∗

9 because 0′0 is a negative edge and 0′ has the 
same positive and negative neighbors in S P∗

9 as 0 in S P9.

ϕ′′(w) =
{

0′ if w = u,

ϕ′(w) otherwise.
�

Theorem 17 (χ2(D3) ≤ 11). The class of 2-edge-colored graphs with maximum degree 3 has chromatic number at most 11 and is 
optimally colorable by S P∗

9 .

Proof. Let G be a 2-edge-colored graph with maximum degree 3 and let C be a component of G . It suffices to prove that 
every component admits a homomorphism to S P∗

9 .
Suppose C is 2-degenerate or contains a K s

4 as a subgraph. Let C ′ be obtained from C after removing all its K s
4. The 

component C ′ is thus 2-degenerate with maximum degree 3 and does not contain a K s
4. By Lemma 15, C ′ admits a ho-

momorphism ϕ′ to S P9. We can extend ϕ′ to a S P∗
9-coloring ϕ of C as follows. We set ϕ(u) = ϕ′(u) for all u ∈ V (C ′). 

Then for every K s+
4 linked to the rest of the graph by a positive edge, Fig. 10 shows how to color it depending of the color 

of the pending vertex (denoted v in Fig. 10). Since 0′ (resp. 1′) has the same neighborhood as 0 (resp 1) in S P9, S P9 is 
antiautomorphic, and K s+

4 is antiisomorphic to K s−
4 (it is isomorphic to K s−

4 after replacing each positive edge by a negative 
one and vice versa), this can also be done for a K s−

4 or if the edge linking a K s
4 to the rest of the graph is negative.

If C is not 2-degenerate and does not contain K s as a subgraph, then we can conclude by using Lemma 16. �
4
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Fig. 10. How to color K s+
4 depending on the color of the pending vertex v .

Fig. 11. How to color a K s
4 with S P †

9 .

5.2. Connected 2-edge-colored graphs with maximum degree 3

In this subsection, we consider the connected 2-edge-colored graphs with maximum degree 3. In the previous subsection, 
we proved that 11 colors are enough (when the graphs are not necessarily connected) by proving the existence of a universal 
target graph on 11 vertices, that is S P∗

9 . In the connected case, we decrease the upper bound to 10 by using multiple target 
graphs on 10 vertices.

Recall that, by Theorem 9, the class of connected 2-edge-colored graphs with maximum degree 3 has chromatic number 
at least 8.

Theorem 18 (χ2(Dc
3) ≤ 10). The class of connected 2-edge-colored graphs with maximum degree 3 has chromatic number at most 

10.

Proof. By contradiction, let G be a connected 2-edge-colored graph with maximum degree 3 such that χ2(G) > 10.

Claim 1: G contains no copy of K s
4 .

Assume otherwise. Let S P †
9 be the 2-edge-colored graph formed from S P9 by adding a new vertex z so that there are a 

positive edge za for all a ∈ {0, 1, 2} and a negative edge zb for all b ∈ {2x,2x + 1,2x + 2}.
Let G ′ be the graph obtained from G after removing the five vertices of every K s

4. Graph G ′ is 2-degenerate and by 
Lemma 15, there exists a homomorphism ϕ′ : G ′ → S P9. We now extend ϕ′ into a homomorphism ϕ : G → S P †

9. We first 
set ϕ(u) = ϕ′(u) for all u ∈ V (G ′).

Note that every vertex of S P9 admits a positive (resp. negative) neighbor in {x, x + 1, x + 2, 2x, 2x + 1} and a positive 
(resp. negative) neighbor in {0, 1, x, x + 1, x + 2}.

We independently color each K s
4 as follows and let K be one of them. Let v be the vertex of G ′ connecting K (see 

Fig. 11, the dotted edge tv can be either a positive or negative edge). According to the signature of K , the color of v , and 
the sign of the edge tv , we extend the coloring using Fig. 11.

We obtain a 10-coloring of G , a contradiction. �
By Claim 1 and Lemma 15, G is 3-regular.

Claim 2: G contains no bridge.
By contradiction, let uv be a positive (resp. negative) bridge of G . By Claim 1, Lemma 15, and vertex transitivity of S P9, 

each component C1 and C2 of G − uv (u ∈ V (C1) and v ∈ V (C2)) admits a homomorphism ϕ1 and ϕ2 to S P9 such that 
ϕ1(u) = 0 and ϕ2(v) = 1 (resp. ϕ2(v) = x + 1). The union of the ϕi ’s is a S P9-coloring of G , a contradiction. �
12
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Claim 3: No vertex of G is incident to three positive or three negative edges.
By contradiction, let v be a vertex of G with neighbors u1, u2, u3 such that all of vu1, vu2, vu3 have the same sign. 

By Claim 1, G contains no K s
4. Therefore, by Lemma 15, there is a homomorphism ϕ : G − v → S P9. We extend ϕ to a 

10-coloring of G by coloring v with a 10th color. �
Claim 4: G contains no triangle.
By contradiction, let u, v, w ∈ V (G) induce a triangle in G . Let u′ (resp. v ′ , w ′) be the remaining neighbor of u (resp. v , 

w).
By Claim 1, G contains no K s

4. By Claim 3, we may assume that the edges uu′ and uv have opposite signs. By Lemma 15
there is a homomorphism ϕ : G − {u, v, w} → S P9. By Property P1,4, we can color v with a color compatible with v ′ and 
distinct from ϕ(u′) and ϕ(w ′). Since uu′ and uv have opposite signs, we can color u with a color compatible with v and 
u′ and distinct from ϕ(w ′) by Property P∗

2,2 of S P9 (Lemma 14). We can finally color w with a 10th color, a contradiction. �
By Claim 3, we partition the vertices of G into two sets P and N where vertices in P are incident with exactly two 

positive edges and vertices in N are incident with exactly two negative edges.

Claim 5: There is no edge between a vertex of P and a vertex of N.
By contradiction, consider two adjacent vertices u ∈ P and v ∈ N . Suppose first uv is a negative edge. Let u1 and u2

be the two other neighbors of u. Since u ∈ P , the edges uu1 and uu2 are both positive. By Claim 4, G does not contain a 
triangle, so u1 and u2 are not adjacent. Let w be the neighbor of v such that v w is positive. Let G ′ be the graph obtained 
from G by removing u and adding the negative edge u1u2.

Note that K s
4 contains three vertices incident with only positive or negative edges. By Claim 3, G does not contain such 

vertices. Adding the edge u1u2 may create at most two vertices in G ′ incident with 3 negative edges. Therefore, G ′ does not 
contain a K s

4. Moreover, since G does not contain a bridge by Claim 2, G ′ is 2-degenerate. Therefore, by Lemma 15, there 
is a homomorphism ϕ′ : G ′ → S P9. By Property P∗

2,2 of S P9 (Lemma 14), we can extend ϕ′ to u so that ϕ′(u) �= ϕ′(w). 
Coloring v with a 10th color yields a 10-coloring of G , a contradiction.

The case where uv is a positive edge is similar. �
By Claim 5, either P or N is empty since G is connected.

Claim 6: G does not exist.
Assume that N is empty, i.e. every vertex is incident to exactly two positive edges (the case where P is empty is similar). 

Let u and v be two vertices adjacent with a positive edge. Let G ′ be the graph obtained from G by removing uv . Graph 
G ′ is 2-degenerate and contains no K s

4 (since by Claim 4 G ′ contains no triangle). By Lemma 15, there is a homomorphism 
ϕ′ : G ′ → S P9. Let u′ be the negative neighbor of u. If ϕ′(u′) = ϕ′(v), then by Property P∗

2,2 of S P9 (Lemma 14) we recolor 
v so that ϕ′(u′) �= ϕ′(v) in G ′ . We extend ϕ′ to 10-coloring ϕ of G by recoloring u in a 10th color, a contradiction. � �
6. Graphs with maximum degree k ≥ 4

In this section, we present two general theorems that work for any maximum degree k ≥ 4. The first one requires us to 
first find for each k a target graph that has some special properties while the second one gives us directly an upper bound 
for every k (at the cost of giving a looser upper bound).

For the first results of this section, we will consider ρ(S P+
q ) as target graphs (recall that such the construction of such 

graphs has been defined in Section 1.3).

Lemma 19. Let H be a 2-edge-colored complete graph such that ρ(H) has Properties Pk−1,k−2 and Ck−2,n− n−1
k−1

, where n = |ρ(H)|. 
Every (k − 1)-degenerate 2-edge-colored graph with maximum degree k admits a homomorphism to ρ(H), for k ≥ 3.

Proof. Let G be a (k − 1)-degenerate 2-edge-colored graph with maximum degree k.
We proceed by induction on the number of edges of G . The lemma is clearly true when G has no edges (its vertices map 

to any vertex of ρ(H)). Assume that the lemma is true for any such graph with m edges and consider now G has m + 1
edges.

Let v ∈ V (G) be a vertex of degree k′ ≤ k − 1, and let v1, v2, . . . , vk′ be its neighbors.
Suppose first that the neighborhood of v contains an edge and, w.l.o.g., assume that this edge is v1 v2. Let G ′ be the 

graph obtained from G by removing the edge v v1. The graph G ′ has m edges and by the induction hypothesis it admits a 
homomorphism ϕ to ρ(H).

The degree of v1 is at most k − 1 in G ′ , so by Lemma 8 and Property Pk−1,k−2, v1 admits a set S of k − 2 available 
colors inducing a complete subgraph in ρ(H). The set S cannot thus contain a color c and its antitwin c̄. Thus we can 
assign to v1 a color of S that is distinct from ϕ(vi) and ϕ(vi) for 3 ≤ i ≤ k′ . Note that since v1 v2 is an edge of G ′ , we 
have {ϕ(v2), ϕ(v2)} ∩ S = ∅. If ϕ(ui) = ϕ(u j) for some i < j, then the signs of the edges v vi and v v j must differ (one is 
positive and the other is negative) since by hypothesis ϕ is a ρ(H)-coloring of G ′ . The coloring constraints are unchanged 
13
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for v by removing the edge v v j since the positive (resp. negative) neighborhood of any vertex x of ρ(H) is the negative 
(resp. positive) neighborhood of x̄. We can thus assume that the set {ϕ(v1), ϕ(v2), . . . , ϕ(vk′)} does not contain a color and 
its antitwin and so it induces a complete subgraph in ρ(H).

By Property Pk−1,k−2, one can color vertex v (k − 2 available colors), extending coloring ϕ to G .
Assume now there is no edges in the neighborhood of v . The graph G ′ = G \ v has m − k′ edges and by the induction 

hypothesis admits a homomorphism ϕ to ρ(H).
The degree of v1 in G ′ is at most k − 1. By Lemma 8 and Property Pk−1,k−2, we have k − 2 possible colors for v1 and 

these k − 2 colors induce a complete subgraph. By Property Ck−2,n− n−1
k−1

, given these k − 2 possible colors for v1, there are 

at least n − n−1
k−1 choices of colors for v . Thus v1 forbids at most n−1

k−1 colors for v . Since the neighborhood of v contains no 
edges, the previous arguments hold for each vi independently. That is, every vi forbids at most n−1

k−1 colors for v . Therefore, 
at most n−1

k−1 k′ ≤ n − 1 colors are forbidden. So there exists at least one available color for v and ϕ can be extended to a 
ρ(H)-coloring of G . �
Lemma 20. If all the (k − 1)-degenerate 2-edge-colored graphs with maximum degree k admit a homomorphism to a single edge-
transitive target graph on n vertices, then all the graphs in Dk admit a homomorphism to a single target graph on n + 2 vertices.

Proof. Let T be an edge-transitive target graph on n vertices that can color every (k − 1)-degenerate 2-edge-colored graph 
with maximum degree k and let s be the signature of T . Let xy be a positive edge of T . Consider the graph T ∗ obtained 
from T by adding two new vertices x′ and y′ as follows. For each edge xv (resp. yv), v �= y (resp. v �= x), add an edge x′v
(resp. y′v) such that s(x′v) = s(xv) (resp s(y′v) = s(yv)). Then add an edge x′ y′ with s(x′ y′) = −1; finally we add edges xx′
and yy′ with s(xx′) = −1 and s(yy′) = +1. To prove that every graph from Dk admits a homomorphism to T ∗ it suffices to 
show that every connected k-regular graph admits a homomorphism to T ∗ .

Let G be a k-regular 2-edge-colored graph. Since T can color every (k − 1)-degenerate graph with maximum degree k, T
contains an all positive Kk as a subgraph. Since T is edge-transitive, it is in particular vertex-transitive and there exists an 
all positive Kk , say {y, y1, y2, ..., yk−1} (that contains y). Since y and y′ have the same neighborhoods in T and they are 
adjacent with a positive edge, {y, y′, y1, y2, ..., yk−1} is an all positive Kk+1. If G is all positive, then it can be colored using 
this all positive Kk+1. We can now assume that G contains at least one negative edge.

Let uv be a negative edge. The graph G − uv is (k − 1)-degenerate graph and admits a homomorphism ϕ to T .
If ϕ(u)ϕ(v) is a negative edge in T , then ϕ is already a homomorphism from G to T ∗ .
If ϕ(u)ϕ(v) is a positive edge in T , then by the edge-transitivity of T there exists a homomorphism ϕ′ from G to T such 

that ϕ′(u) = x and ϕ′(v) = y. The following application ϕ′′ is a homomorphism from G to T ∗ because x′ y′ is a negative 
edge and x′ and y′ have the same positive and negative neighbors in T ∗ as x and y in T .

ϕ′′(w) =
⎧⎨
⎩

x′ if w = u,

y′ if w = v,

ϕ′(w) otherwise.

If ϕ(u) = ϕ(v), then by the vertex-transitivity of T there exists a homomorphism ϕ′ from G to T such that ϕ′(u) =
ϕ′(v) = x. The following application ϕ′′ is a homomorphism from G to T ∗ because x′x is a negative edge and x′ has the 
same positive and negative neighbors in T ∗ as x in T .

ϕ′′(w) =
{

x′ if w = u,

ϕ′(w) otherwise.
�

Theorem 21. If there exists a 2-edge-colored graph ρ(S P+
q ) with Properties Pk−1,k−2

and Ck−2,2q+2− 2q+1
k−1

, then the class of (connected) 2-edge-colored graphs with maximum degree k ≥ 3 has chromatic number at most 
2q + 4.

Proof. This follows from Lemmas 19 and 20. �
Corollary 22. If there exists a 2-edge-colored graph ρ(S P+

q ) with Property Pk−1,k−2
and Ck−2,2q+2− 2q+1

k−1
, then the class of (connected) signed graphs with maximum degree k has chromatic number at most q + 3.

Proof. By Lemma 19, ρ(S P+
q ) can color all (k − 1)-degenerate 2-edge-colored graphs with maximum degree k. We apply 

the construction described along the proof of Lemma 20 to get the target graph ρ(S P+
q )∗ that can color every graph in Dk . 

This graph is not antitwinned since two vertices x′ and y′ do not have antitwins. We add the missing antitwins in order 
to get an antitwinned signed target graph on 2q + 6 vertices. By Lemma 6 we get that every signed graph in Dk admits a 
homomorphism to a single target graph on q + 3 vertices. �
14
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We therefore need to get edge-transitive target graphs ρ(H) with Properties Pk−1,k−2
and Ck−2,|ρ(H)|− |ρ(H)|−1

k−1
to color graphs with maximum degree k.

Note that ρ(S P+
13) (resp. ρ(S P+

49), ρ(S P+
169), ρ(S P+

677)) is edge-transitive, has Property P3,2 (resp. P4,3, P5,4, P6,5) by 
Table 1 and Lemma 7, and has Property C2,19 (resp. C3,76, C4,273, C5,1131) by Table 2 and the fact that given two integers n
and k, Property Cn,k implies Property Cn′,k′ for any n′ and k′ such that n′ ≥ n and k′ ≤ k. We can thus deduce the following 
bounds using Theorem 21 and Corollary 22:

• 12 ≤ χ2(Dc
4) ≤ χ2(D4) ≤ 30 (by Theorems 9 and 21 using ρ(S P+

13));
• 10 ≤ χs(Dc

4) ≤ χs(D4) ≤ 16 (by Theorem 10 and by Corollary 22 using ρ(S P+
13));

• 16 ≤ χ2(Dc
5) ≤ χ2(D5) ≤ 102 (by Theorems 9 and 21 using ρ(S P+

49));
• 12 ≤ χs(Dc

5) ≤ χs(D5) ≤ 52 (by Theorem 10 and Corollary 22 using ρ(S P+
49));

• 20 ≤ χ2(Dc
6) ≤ χ2(D6) ≤ 342 (by Theorems 9 and 21 using ρ(S P+

169));
• 14 ≤ χs(Dc

6) ≤ χs(D6) ≤ 172 (by Theorem 10 and Corollary 22 using ρ(S P+
169));

• 24 ≤ χ2(Dc
7) ≤ χ2(D7) ≤ 1358 (by Theorems 9 and 21 using ρ(S P+

677));
• 16 ≤ χs(Dc

7) ≤ χs(D7) ≤ 680 (by Theorem 10 and Corollary 22 using ρ(S P+
677));

We voluntarily stop at maximum degree k = 7, but we could have continued by computing the properties of the bigger 
S Pq and ρ(S P+

q ) graphs to fill in Tables 1 and 2. However, even if these upper bounds are the best known, it seems that 
they are far from the optimal and it has not great interest to continue for greater values of k.

We now present a general upper bound for the chromatic number of 2-edge-colored and signed graphs with maximum 
degree k ≥ 5 that does not require computations of Properties Pn,k and Cn,k .

An (m, n)-colored-mixed graph is a graph in which each pair of vertices can either be connected by an edge, of which 
there are n types, or an arc, of which there are m types. Note that a 2-edge-colored graph is therefore a (0, 2)-colored-mixed 
graph and an oriented graph is a (1, 0)-colored-mixed graph.

Das, Nandi, and Sen [6] proved the following general theorem on (m, n)-colored-mixed graphs using probabilistic argu-
ments:

Theorem 23 ([6]). The chromatic number of a connected (m, n)-colored-mixed graph with maximum degree k ≥ 5 and 2m + n ≥ 2 is 
at most 2(k − 1)2m+n(2m + n)k−min(2m+n,3)+2 + 2 and at least (2m + n)

k
2 .

It follows for 2-edge-colored graphs (m = 0, n = 2) that:

Corollary 24 (2
k
2 ≤ χ2(Dc

k) ≤ 2k+1(k − 1)2 + 2). The chromatic number of connected 2-edge-colored graphs with maximum degree 
k ≥ 5 is at most 2k+1(k − 1)2 + 2 and at least 2

k
2 .

The upper bound also applies trivially to connected signed graphs. Note that the lower bound given by Theorem 9 is 
better than 2

k
2 for k ≤ 10.

Lemma 25 (2
k
2 ≤ χ2(Dk) ≤ k22k+2). The chromatic number of 2-edge-colored graphs with maximum degree k ≥ 5 is at most k22k+2

and at least 2
k
2 .

Proof. The lower bound from Corollary 24 also applies trivially to disconnected graphs.
To prove Theorem 23, Das, Nandi, and Sen proposed a construction allowing to obtain a complete (m, n)-mixed-colored 

graph with 2kp pk−min(p,3)+3 vertices where p = 2m + n ≥ 2, k ≥ 5, and having Property Pk,k . Thus, there exists a complete 
2-edge-colored graph H with k22k+2 vertices for k ≥ 5 and having Property Pk,k . We prove in the remainder that every 
2-edge-colored graph with maximum degree k admits a homomorphism to H , for k ≥ 1.

Let G be a 2-edge-colored graph with maximum degree k. Let s be the signature of G .
We proceed by induction on the number of edges of G . The lemma is clearly true when G has no edges (its vertices map 

to any vertex of H). Assume that the lemma is true for any graph with m edges and consider now G has m + 1 edges.
Let v ∈ V (G) be a vertex of degree k′ with 1 ≤ k′ ≤ k, and let v1, v2, . . . , vk′ be its neighbors. By the induction hypothesis, 

G ′ = G − v v1 has m edges and it thus admits a homomorphism ϕ′ to H . Observe that if ϕ′(vi) = ϕ′(v j), for 2 ≤ i < j ≤ k′ , 
then it means that s(v vi) = s(v v j) and thus the colors of vi and v j induce the same coloring constraints on v . Hence, one 
can forget one of them. The remaining significant colors on the vi ’s, that is the set {ϕ′(vi), 2 ≤ i ≤ k′}, form a complete 
subgraph in H .

The vertex v1 has degree k′′ ≤ k − 1 in G ′ .
Recall that if a graph T has Property Pa,b , then T has Property Pa′,b′ for any a′ ≤ a and b′ ≤ b. Thus H has Properties 

Pk′′,k′ and Pk′,1.
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By Lemma 8 and Property Pk′′,k′ , there exists k′ available colors for v1 in G ′ and we can recolor v1 with a color distinct 
from those of vi ’s, 2 ≤ i ≤ k′ . Now, the color of v1 and the significant colors on the vi ’s, 2 ≤ i ≤ k′ , form a complete subgraph 
in H . We can therefore apply Property Pk′,1 to recolor v and extend ϕ′ to an H-coloring of G . �

The upper bound given in Corollary 25 also applies trivially to signed graphs.
The following theorem gives a lower bound for the chromatic number of signed graphs with maximum degree k ≥ 5.

Theorem 26 (2
k
2 −1 ≤ χs(Dk)). The chromatic number of signed graphs with maximum degree k ≥ 5 is at least 2

k
2 −1 .

Proof. We adapt the proof of the lower bound of Theorem 23 for signed graphs.
Let G be a labeled connected simple graph and let χs(G) (resp. χ2(G)) denotes the maximum of the chromatic numbers 

of all the signed (resp. 2-edge-colored) graphs with underlying graph G .
The number of labeled signed graphs with underlying graph G is 2|E(G)| since each edge of G can either be positive or 

negative.
For each of these signed graphs, there are 2|V (G)|−1 ways to switch its vertices (note that switching a subset of vertices 

or its complement yields the same signed graph).
Each of these signed graphs has chromatic number at most χs(G) so it admits a homomorphism to at least one complete 

signed graph on χs(G) vertices. There are 2(χs(G)
2 ) complete labeled signed graphs on χs(G) vertices.

There are χs(G)|V (G)| applications from the vertex set of a graph on |V (G)| vertices to the vertex set of a graph on χs(G)

vertices.
For each of the labeled signed graphs with underlying graph G , for at least one of its switching equivalent graphs, at 

least one of the applications from the vertex set of this graph to the vertex set of at least one of the complete signed graphs 
on χs(G) vertices is a homomorphism. Therefore we have:

2|V (G)|−1 · χs(G)|V (G)| · 2(χs(G)
2 ) ≥ 2|E(G)|

Remark: Let G1, G2 (G1 �= G2) be two of the 2|E(G)| labeled signed graphs with underlying graph G . Graphs G1 and G2

have a signature that is different on a least one edge and therefore an application from the vertex set of G to a given 
complete signed graph on χs(G) after switching the same subset of vertices in G1 and G2 cannot be a homomorphism for 
both G1 and G2.

We raise each side to 1
|V (G)| :

2
|V (G)|−1
|V (G)| · χs(G)

|V (G)|
|V (G)| · 2

(χs(G)
2 )

|V (G)| ≥ 2
|E(G)|
|V (G)|

χs(G) ≥ 2
|E(G)|
|V (G)|

2
|V (G)|−1
|V (G)| · 2

(χs(G)
2 )

|V (G)|

We choose G k-regular:

χs(G) ≥ 2
k
2

2
|V (G)|−1
|V (G)| · 2

(χs(G)
2 )

|V (G)|

Since χs(G) is bounded (by Lemma 25 and the fact that χs(G) ≤ χ2(G) for any G), the right side approaches 2
k
2 −1 as 

|V (G)| goes to infinity. �
Finally, the following theorems improve the upper bound on the chromatic number for connected 2-edge-colored and 

signed graphs when the maximum degree is at least 29.

Theorem 27 (χ2(Dc
k) ≤ (k − 3)(k − 1)2k + 2). The chromatic number of connected 2-edge-colored graphs with maximum degree 

k ≥ 29 is at most (k − 3)(k − 1)2k + 2.

Theorem 28 (χs(Dc
k) ≤ (k − 3)(k − 1)2k−1 + 2). The chromatic number of connected signed graphs with maximum degree k ≥ 29 is 

at most (k − 3)(k − 1)2k−1 + 2.

These results can be established by following the exact same lines as the proof from [1] on homomorphisms of (pushable) 
oriented graphs. They rely on the existence of a 2-edge-colored graph with Property Pk−1,k−1 of order (k − 3)(k − 1)2k−1

for all k ≥ 29. Therefore, using the same arguments as in the proof of Lemma 25, one can deduce the following corollary 
which also applies trivially to signed graphs:
16
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Corollary 29 (χ2(Dk) ≤ k(k − 2)2k). The chromatic number of 2-edge-colored graphs with maximum degree k ≥ 29 is at most k(k −
2)2k.
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