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Abstract

We prove that every triangle-free planar graph can have its set of vertices partitioned
into two sets, one inducing a forest and the other a forest with maximum degree at
most 5. We also show that if for some d, there is a triangle-free planar graph that
cannot be partitioned into two sets, one inducing a forest and the other a forest
with maximum degree at most d, then it is an NP -complete problem to decide if a
triangle-free planar graph admits such a partition.
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1 Introduction

We only consider finite simple graphs, without loops nor multi-edges. Our
planar graphs are supposed to be embedded in the plane. We say that a
graph G can be partitioned into k subgraphs H1, H2, ..., Hk if its set of
vertices can be partitioned into k subsets V1, ..., Vk such that Vi induces Hi

in G for all i. A j-degenerate graph is a graph G such that all subgraph H
of G has a vertex of degree at most j. A forest is an acyclic graph, that is a
1-degenerate graph. Empty graphs are exactly 0-degenerate graphs.

The Four Color Theorem [1,2] states that every planar graph admits a
proper 4-coloring, i.e. every planar graph can be partitioned into four empty
graphs. Borodin [3] proved that every planar graph admits an acyclic col-
oring with at most five colors. This implies that every planar graph can be
partitioned into an empty graph and two forests. Poh [7] proved that every
planar graph can be partitioned into three forests with maximum degree at
most 2. Thomassen proved that a planar graph can be partitioned into a for-
est and a 2-degenerate graph [9], and into an empty graph and a 3-degenerate
graph [10]. However, there are planar graphs that cannot be partitioned into
two forests [6]. Borodin and Glebov [4] proved that planar graphs of girth at
least 5 (that is planar graphs with no triangles nor cycles of length 4) can be
partitioned into an empty graph and a forest.

Let us consider the problem of partitioning a planar graph into two sets
such that each set avoids a given graph H as a subgraph. Broersma et al. [5]
proved that for any given graph H, the problem is NP-complete if H is a tree
with at least two edges, and polynomial time solvable otherwise.

We focus on triangle-free planar graphs. Raspaud and Wang [8] proved
that every planar graph with no triangles at distance at most 2 (and thus
in particular every triangle-free planar graph) can be partitioned into two
forests. However, it is not known whether every triangle-free planar graph can
be partitioned into an empty graph and a forest. We consider the following
questions:

Question 1.1 Can every triangle-free planar graph be partitioned into an
empty graph and a forest?

Question 1.2 What is the lowest d such that every triangle-free planar graph
can be partitioned into a forest and a forest with maximum degree at most d?

Proving d = 0 in Question 1.2 would prove Question 1.1. Let F be the set
of the forests, and Fd be the set of the forests with maximum degree at most
d. A (F ,Fd)-partition of G is a vertex-patition (F,D) such that G[F ] ∈ F
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and G[D] ∈ Fd.

Our main result is:

Theorem 1.3 For any triangle-free planar graph G, the vertex set of G can
be partitioned in two sets F and D such that F induces a forest and D induces
a forest with maximum degree at most 5.

In other words, every triangle-free planar graph admits a (F ,F5)-partition,
so d ≤ 5 in Question 1.2. Our proof uses the discharging method. It is con-
structive and immediately yields an algorithm for finding a (F ,F5)-partition
of a triangle-free planar graph in quadratic time. Since not every triangle-free
planar graph can be partitioned into two graphs of bounded degree, our result
is tight in some sense.

We also showed that if for some d, there exists a triangle-free planar graph
that does not admit a (F ,Fd)-partition, then deciding if a triangle-free planar
graph admits such a partition is NP-complete. That is, if the answer to
Question 1.2 is some k ≥ 0, then for all d < k, deciding if a triangle-free
planar graph admits a (F ,Fd)-partition is NP-complete. We proved this by
reduction to Planar 3-Sat.

2 Sketch of the proof

Let G be a planar graph.

We call a vertex of degree k, at least k, and at most k, a k-vertex, a k+-
vertex, and a k−-vertex respectively, and by extension, for any fixed vertex v,
we call a neighbor of v of degree k, at least k, and at most k, a k-neighbor, a
k+-neighbor, and a k−-neighbor of v respectively. We call a face of length �, at
least �, and at most � a �-face, a �+-face, and a �−-face respectively. We say
that a vertex of G is big if it is a 8+-vertex and small otherwise. By extension,
a big neighbor of a vertex v is a 8+-neighbor of v and a small neighbor of v
is a 7−-neighbor of v. Two neighbors u and w of a vertex v are consecutive if
uvw forms a path on the boundary of a face.

We prove Theorem 1.3 by contradiction. Let G = (V,E) be a counter-
example to Theorem 1.3 of minimum order.

Graph G is connected, otherwise at least one of its connected components
would be a counter-example to Theorem 1.3, contradicting the minimality of
G.

Let us state a series of lemmas on the structure of G, that correspond to
forbidden configurations in G.
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Fig. 1. The forbidden configurations of Lemma 2.4 and Lemma 2.5. The big vertices
are represented with big circles, and the small vertices with small circles. The filled
circles represent vertices whose incident edges are all represented.
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Fig. 2. Configuration 2.6 and the forbidden configuration of Lemma 2.7.

Lemma 2.1 There are no 2−-vertices in G.

Lemma 2.2 Every 3-vertex in G has at least one big neighbor.

Lemma 2.3 Every 4-vertex or 5-vertex in G has at least one 4+-neighbor.

Lemma 2.4 The following configuration does not occur in G: two adjacent
3-vertices v0 and v1 such that for i ∈ {0, 1}, vi has a big neighbor bi and a
small neighbor si, and such that v0v1s1b0 bounds a 4-face of G.(See Figure 1,
left.)

Lemma 2.5 The following configuration does not occur in G: a 3-vertex v0
adjacent to a 4-vertex v1 such that v0 has a big neighbor b and a small neighbor
s0, and v1 has three other small neighbors s1, w0, and w1 such that v0v1s1b
bounds a 4-face of G and s1 has degree 3. (See Figure 1, right.)

We define a specific configuration:
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Configuration 2.6 Two 4-faces b0v0v1w0 and v0v1v2v3, such that b0 is a big
vertex, v0 and w0 are 3-vertices, v1 is a 4-vertex, v2 and v3 are small vertices,
and the fourth neighbor of v1, say b1, is a big vertex. (See Figure 2, left.)

Lemma 2.7 The following configuration is forbidden: Configuration 2.6 with
the added condition that there is a 4-face b1v1v2w1 with w1 a 3-vertex, v2 a
4-vertex, and the fourth neighbor of v2, the third neighbor of w1, and the third
neighbor of w0 are small vertices. (See Figure 2, right.)

We now apply a discharging procedure: first, for all j ≥ 0, every j-vertex
v has a charge equal to c(v) = j − 4, and every j-face f has a charge equal
to c(f) = j − 4. Observe that, since G is triangle-free, every face has a non-
negative initial charge, and by Lemma 2.1, the vertices that have negative
initial charges are exactly the 3-vertices of G, and they have an initial charge
of −1. By Euler’s formula, we have

∑
x∈V (G)∪F (G) c(x) = −8. Here is our

discharging procedure:

Discharging procedure:

• Step 1 : Every big vertex gives 1
2
to each of its small neighbors. Furthermore,

for every 4-face uvwx where u and v are big, and w and x are small, v gives
1
4
to x.

• Step 2 : Every 4-vertex v gives 1
4
to each of its small neighbors that are

consecutive to a big vertex, and 1
2
to each of its small neighbors that are

consecutive to two big vertices, except when v corresponds to v1 in Config-
uration 2.6.
Consider the case where v corresponds to v1 in Configuration 2.6. We

use the notations of Configuration 2.6. If w0 has two big neighbors, then v1
gives 1

4
to v0 and v2. Otherwise, it gives 1

4
to w0 and v0.

Every small 5+-vertex that has a big neighbor gives 1
4
to each of its small

neighbors, and an additional 1
4
for each small vertex that is consecutive to

at least one big vertex. Every small 5+-vertex that has no big neighbors
gives 1

4
to each of its 3-neighbors.

• Step 3 : For every 4-face uvwx, with u a big vertex, v a 3-vertex, w a 4-
vertex and x a small vertex such that x gave charge to w in Step 2, w gives
1
4
to v.

• Step 4 : Every 5+-face that has a big vertex in its boundary gives 1
4
to each

of the small vertices in its boundary. Every 5+-face that has no big vertices
in its boundary gives 1

5
to each of the vertices in its boundary.

• Step 5 : For every 4-face uvwx, with u a big vertex, v a 3-vertex, w a 4-
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vertex and x a 3-vertex such that the other face that has vw in its boundary
is a 5+-face, w gives 1

5
to v.

Observe that during the procedure, no charges are created and no charges
disappear; hence the total charge is kept fixed. For every vertex or face x, let
c′(x) be the charge at the end of the discharging procedure.

The conclusion arises from the fact that every vertex and every face has a
non-negative charge at the end of the procedure. That leads to the following
contradiction with Euler’s formula:

0 ≤
∑

x∈V (G)∪F (G)

c′(x) =
∑

x∈V (G)∪F (G)

c(x) = −8
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