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Extended Abstract

Abstract

An (I,Fd)-partition of a graph is a partition of the vertices of the graph into two sets
I and F , such that I is an independent set and F induces a forest of maximum degree
at most d. We showed that, for all 2 ≤M < 3 and d ≥ 2

3−M
−2, a graph with maximum

average degree less than M admits an (I,Fd)-partition. Additionally, we proved that,
for all 8

3
≤ M < 3 and d ≥ 1

3−M
, a graph with maximum average degree less than M

admits an (I,Fd)-partition.

1 Introduction
In this abstract, all the considered graphs are simple graphs, without loops or multi-edges.
For i classes of graphs G1, . . . ,Gi, a (G1, . . . ,Gi)-partition of a graph G is a partition of the
vertices of G into i sets V1, . . . , Vi such that, for all 1 ≤ j ≤ i, the graph G[Vj ] induced by Vj
belongs to Gj . In the following we will consider the following classes of graphs:

• F the class of forests,

• Fd the class of forests with maximum degree at most d,

• ∆d the class of graphs with maximum degree at most d,

• I the class of empty graphs (i.e. graphs with no edges).

For example, an (I,F ,∆2)-partition of G is a vertex-partition into three sets V1, V2, V3 such
that G[V1] is an empty graph, G[V2] is a forest, and G[V3] is a graph with maximum degree
at most 2. Note that ∆0 = F0 = I and ∆1 = F1. The average degree of a graph G with
n vertices and m edges, denoted by ad(G), is equal to 2m

n . The maximum average degree of
a graph G, denoted by mad(G), is the maximum of ad(H) over all subgraphs H of G. The
girth of a graph G is the length of a smallest cycle in G, and infinity if G has no cycle. Many
results on partitions of sparse graphs appear in the literature, where a graph is said to be
sparse if it has a low maximum average degree, or if it is planar and has a large girth. The
study of partitions of sparse graphs started with the Four Colour Theorem [1, 2], which states
that every planar graph admits an (I, I, I, I)-partition. Borodin [3] proved that every planar
graph admits an (I,F ,F)-partition, and Borodin and Glebov [4] proved that every planar
graph with girth at least 5 admits an (I,F)-partition. Poh [9] proved that every planar graph
admits an (F2,F2,F2)-partition. More recently, Borodin and Kostochka [7] showed that for
all j ≥ 0 and k ≥ 2j+2, every graph G with mad(G) < 2

(
2− k+2

(j+2)(k+1)

)
admits a (∆j ,∆k)-

partition. In particular, every graph G with mad(G) < 8
3 admits an (I,∆2)-partition, and

every graph G with mad(G) < 14
5 admits an (I,∆4)-partition. With Euler’s formula, this

yields that planar graphs with girth at least 7 admit (I,∆4)-partitions, and that planar
graphs with girth at least 8 admit (I,∆2)-partitions. Borodin and Kostochka [6] proved that
every graph G with mad(G) < 12

5 admits an (I,∆1)-partition, which implies that that every
planar graph with girth at least 12 admits an (I,∆1)-partition. This last result was improved
by Kim, Kostochka and Zhu [8], who proved that every triangle-free graph with maximum



Classes Vertex-partitions References

Planar graphs
(I, I, I, I) The Four Color Theorem [1, 2]
(I,F ,F) Borodin [3]
(F2,F2,F2) Poh [9]

Planar graphs with girth 5 (I,F) Borodin and Glebov [4]
Planar graphs with girth 6 no (I,∆d) Borodin et al. [5]

Planar graphs with girth 7 (I,∆4) Borodin and Kostochka [7]
(I,F5) Present paper

Planar graphs with girth 8 (I,∆2) Borodin and Kostochka [7]
(I,F3) Present paper

Planar graphs with girth 10 (I,F2) Present paper
Planar graphs with girth 11 (I,∆1) Kim, Kostochka and Zhu [8]

Table 1: Known results on planar graphs.

average degree at most 11
9 admits an (I,∆1)-partition, and thus that every planar graph with

girth at least 11 admits an (I,∆1)-partition. In contrast with these results, Borodin, Ivanova,
Montassier, Ochem and Raspaud [5] proved that for every d, there exists a planar graph of
girth at least 6 that admits no (I,∆d)-partition.

In this paper, we focus on (I,Fd)-partitions of sparse graphs ; this is a follow-up of the
previous studies. Note that, if a graph admits an (I,Fd)-partition, then it admits an (I,∆d)-
partition, and that an (I,F1)-partition is the same as an (I,∆1)-partition. Therefore the
previous results imply the following for (I,Fd)-partitions:

• for every d, there exists a planar graph of girth at least 6 that admits no (I,Fd)-
partition;

• every planar graph with girth at least 11 admits an (I,F1)-partition.

Here are the main results of our paper:

Theorem 1 Let 2 ≤ M < 3 be a real number and d ≥ 2
3−M − 2 be an integer. Every graph

G with mad(G) < M admits an (I,Fd)-partition.

Theorem 2 Let 8
3 ≤ M < 3 be a real number and d ≥ 1

3−M be an integer. Every graph G
with mad(G) < M admits an (I,Fd)-partition.

By a direct application of Euler’s formula, every planar graph with girth at least g has
maximum average degree less than 2g

g−2 . That yields the following corollary:

Corollary 3 Let G be a planar graph with girth at least g.

1. If g ≥ 7, then G admits an (I,F5)-partition.

2. If g ≥ 8, then G admits an (I,F3)-partition.

3. If g ≥ 10, then G admits an (I,F2)-partition.

Corollaries 3.2 and 3.3 are obtained from Theorem 2, whereas Corollary 3.1 is obtained from
Theorem 1. See Table 1 for an overview of the results on vertex partitions of planar graphs
presented above.



2 Sketch of the proofs
The proofs of Theorems 1 and 2 work on the same model, though the proof of Theorem 2 has
some additional arguments. We will focus here on the proof of Theorem 1. The proof uses the
discharging method. Let G be a counter-example to Theorem 1 with the minimum number of
vertices. For all k, a vertex of degree k, at least k, or at most k in G is a k-vertex, a k+-vertex,
or a k−-vertex respectively. A (d + 1)−-vertex is a small vertex, and a (d + 2)+-vertex is a
big vertex. We prove some properties on the structure of G.

Lemma 4 There are no 1−-vertices in G.

Lemma 5 There are no 2-vertices adjacent to two small vertices in G.

Lemma 6 There are no sets B of small 3+-vertices in G inducing a tree such that every
vertex that is not in B and has a neighbour in B is of degree 2.

Note that Lemma 6 allows us to forbid configurations of unbounded size. Let us define
the notion of light forest in the graph G that is useful both in defining some forbidden
configurations and in the discharging procedure. Let B be a (maximal) set of small 3+-
vertices such that G[B] is a tree with only one edge that links a vertex of B to a 3+-vertex
u ∈ V (G) \ B, and u is a big vertex. Such a set B is called a bud with father u. A 2-vertex
adjacent to a small vertex is called a leaf. Let us build the light forest L, by the following
three steps:

1. While there are leaves that are not in L, do the following. Pick a leaf v, and let u be
the big vertex adjacent to v (that exists by Lemma 5). Add to L the vertex v, the edge
uv, and the vertex u (if it is not already in L). Also set that u is the father of v (and
v is a son of u). See Figure 1, left.

2. While there are buds that are not in L, do the following. Pick a bud B. Let u be the
father of B, and let v be the vertex of B adjacent to u. Add G[B] to L, as well as the
edge uv, and the vertex u (if it is not already in L). The vertex u is the father of v,
and the father/son relationship in B is that of the tree G[B] rooted at v. See Figure 1,
middle.

3. While, for some k, there exists a big k-vertex w ∈ L that has k− 1 sons in L and whose
last neighbour is a 2-vertex that is not in L, do the following. Let v be the 2-vertex
adjacent to w that is not in L, and let u be the neighbour of v distinct from w. Note
that v is a non-leaf 2-vertex (since it was not added to L in Step 1), therefore u is a
big vertex. Add to L the vertex v, the edges uv and vw, and the vertex u (if it is not
already in L). We set that v is the father of w, and that u is the father of v. See
Figure 1, right.

The following lemma uses the notion of light forest to define forbidden configurations of
unbounded size.

Lemma 7 For all k, the light forest L of G does not contain a big k-vertex with k sons.

Discharging procedure:
Let ε = 3 −M . Recall that d ≥ 2

3−M − 2 = 2
ε − 2, therefore ε ≥ 2

d+2 > 0. We start by
assigning to each k-vertex a charge equal to k −M = k − 3 + ε. Note that since M is bigger
than the average degree of G, the sum of the charges of the vertices is negative. The initial
charge of each 3+-vertex is at least ε, and thus is positive.

Every big vertex gives charge 1 − ε to each of its neighbours that are its sons in L, does
not give anything to its father in L (if it has one), and gives 1−ε

2 to its other neighbours with
degree 2.

One can prove that, at the end of the procedure, every vertex has a non-negative charge,
that is a contradiction.
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Figure 1: The construction of the light forest L. The big vertices are represented with big
circles, and the small vertices with small circles. The filled circles represent vertices whose
incident edges are all represented. The dashed lines are the continuation of the light forest.
The arrows point from son to father in L.
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