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An (F,Fd)-partition of a graph is a vertex-partition into two sets
F and Fd such that the graph induced by F is a forest and the one
induced by Fd is a forestwithmaximumdegree atmost d.We prove
that every triangle-free planar graph admits an (F,F5)-partition.
Moreoverwe show that if for some integer d there exists a triangle-
free planar graph that does not admit an (F,Fd)-partition, then it is
an NP-complete problem to decide whether a triangle-free planar
graph admits such a partition.
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1. Introduction

We only consider finite simple graphs, with neither loops nor multiple edges. Planar graphs
we consider are supposed to be embedded in the plane. Consider i classes of graphs G1, . . . , Gi. A
(G1, . . . , Gi)-partition of a graph G is a vertex-partition into i sets V1, . . . , Vi such that, for all 1 ≤ j ≤ i,
the graph G[Vj] induced by Vj belongs to Gj. In the following we will consider the following classes of
graphs:

• F the class of forests,
• Fd the class of forests with maximum degree at most d,
• Dd the class of d-degenerate graphs (recall that a d-degenerate graph is a graph such that all

subgraphs have a vertex of degree at most d),
• ∆d the class of graphs with maximum degree at most d,
• I the class of empty graphs (i.e. graphs with no edges).
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Table 1
Known results.

Classes Vertex-partitions References

Planar graphs

(I,I,I,I) The Four Color Theorem [1,2]
(I,F,F) Borodin [3]
(F2,F2,F2) Poh [8]
(F,D2) Thomassen [10]
(I,D3) Thomassen [11]

Planar graphs with girth 4

(I,I,I) Grötzsch [6]
(F,F) Folklore
(F5,F) Present paper (Theorem 3)
(I,F) Open question (Question 1)

Planar graphs with girth 5 (I,F) Borodin and Glebov [4]

For example, an (I,F,D2)-partition of G is a vertex-partition into three sets V1, V2, V3 such that G[V1]

is an empty graph, G[V2] is a forest, and G[V3] is a 2-degenerate graph.
The Four Colour Theorem [1,2] states that every planar graph G admits a proper 4-colouring, that

is G can be partitioned into four empty graphs, i.e. G has an (I, I, I, I)-partition. Borodin [3] proved
that every planar graph admits an acyclic colouring with at most five colours (an acyclic colouring is
a proper colouring in which every two colour classes induce a forest). This implies that every planar
graph admits an (I,F,F)-partition. Poh [8] proved that every planar graph admits an (F2,F2,F2)-
partition. Thomassen proved that every planar graph admits an (F,D2)-partition [10], and an (I,D3)-
partition [11]. However, there are planar graphs that do not admit any (F,F)-partition [5]. Borodin
and Glebov [4] proved that every planar graph of girth at least 5 (that is every planar graph with no
triangles nor cycles of length 4) admits an (I,F)-partition.

We focus on triangle-free planar graphs. Raspaud and Wang [9] proved that every planar graph
with no triangles at distance atmost 2 (and thus in particular every triangle-free planar graph) admits
an (F,F)-partition. However, it is not known whether every triangle-free planar graph admits an
(I,F)-partition. We pose the following questions:

Question 1. Does every triangle-free planar graph admit an (I,F)-partition?

Question 2. More generally, what is the lowest d such that every triangle-free planar graph admits an
(F,Fd)-partition?

Note that proving d = 0 in Question 2 would prove Question 1. The main result of this paper is the
following:

Theorem 3. Every triangle-free planar graph admits an (F,F5)-partition.

This implies that d ≤ 5 in Question 2. Our proof uses the discharging method. It is constructive
and immediately yields an algorithm for finding an (F,F5)-partition of a triangle-free planar graph
in quadratic time.

Note that Montassier and Ochem [7] proved that not every triangle-free planar graph can be
partitioned into two graphs of bounded degree (which shows that our result is tight in some sense).

Finally, we show that if for some d, there exists a triangle-free planar graph that does not admit
an (F,Fd)-partition, then deciding whether a triangle-free planar graph admits such a partition is
NP-complete. That is, if the answer to Question 2 is some k > 0, then for all 0 ≤ d < k, deciding
whether a triangle-free planar graph admits an (F,Fd)-partition is NP-complete. We prove this by
reduction to Planar 3-Sat.

All presented results on vertex-partition of planar graphs are summarized in Table 1.
Theorem 3 will be proved in Section 2. Section 3 is devoted to complexity results.
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Notation.

Let G = (V , E) be a plane graph (i.e. planar graph together with its embedding).
For a set S ⊂ V , let G− S be the graph constructed from G by removing the vertices of S and all the

edges incident to some vertex of S. If x ∈ V , then we denote G − {x} by G − x. For a set S of vertices
such that S ∩ V = ∅, let G + S be the graph constructed from G by adding the vertices of S. If x ̸∈ V ,
then we denote G + {x} by G + x. For a set E ′ of pairs of vertices of G such that E ′

∩ E = ∅, let G + E ′

be the graph constructed from G by adding the edges of E ′. If e is a pair of vertices of G and e ̸∈ E, then
we denote G + {e} by G + e. For a setW ⊂ V , we denote by G[W ] the subgraph of G induced byW .

We call a vertex of degree k, at least k and at most k, a k-vertex, a k+-vertex and a k−-vertex
respectively, and by extension, for any fixed vertex v, we call a neighbour of v of degree k, at least
k and at most k, a k-neighbour, a k+-neighbour, and a k−-neighbour of v respectively. When there is
some ambiguity on the graph, we call a neighbour of v inG aG-neighbour of v. We call a cycle of length
ℓ, at least ℓ and at most ℓ a ℓ-cycle, a ℓ+-cycle, and a ℓ−-cycle respectively, and by extension a face of
length ℓ, at least ℓ and at most ℓ a ℓ-face, a ℓ+-face, and a ℓ−-face respectively. We say that a vertex
of G is big if it is a 8+-vertex, and small otherwise. By extension, a big neighbour of a vertex v is a
8+-neighbour of v, and a small neighbour of v is a 7−-neighbour of v.

Two neighbours u and w of a vertex v are consecutive if uvw forms a path on the boundary of a
face.

2. Proof of Theorem 3

We prove Theorem 3 by contradiction. Let G = (V , E) be a counter-example to Theorem 3 of
minimum order.

Graph G is connected, otherwise at least one of its connected components would be a counter-
example to Theorem 3, contradicting the minimality of G.

Let us consider any plane embedding of G. Let us prove a series of lemmas on the structure of G,
that correspond to forbidden configurations in G.

Lemma 4. There are no 2−-vertices in G.

Proof. Suppose there is a 2−-vertex v in G. By minimality of G, G − v admits an (F,F5)-partition
(F ,D). If v is a 1−-vertex, then G[F ∪ {v}] ∈ F . Suppose v is a 2-vertex. If both of its neighbours are in
F , then G[D∪ {v}] ∈ F5. Otherwise, G[F ∪ {v}] ∈ F . In all cases, one can obtain an (F,F5)-partition of
G, a contradiction. □

Lemma 5. Every 3-vertex in G has at least one big neighbour.

Proof. Suppose there is a 3-vertex v in G that has three small neighbours. By minimality of G, G − v

admits an (F,F5)-partition (F ,D). If at least two neighbours of v are in D, then G[F ∪ {v}] ∈ F . If no
neighbour of v is in D, then G[D ∪ {v}] ∈ F5. Suppose exactly one neighbour u of v is in D. If at most
one of the neighbours of u is in F , then G[F ∪ {u}] ∈ F , and G[D \ {u} ∪ {v}] ∈ F5. Otherwise, since u
is small, at most four of the neighbours of u are in D, thus G[D∪ {v}] ∈ F5. In all cases, one can obtain
an (F,F5)-partition of G, a contradiction. □

Lemma 6. Every 4-vertex or 5-vertex in G has at least one 4+-neighbour.

Proof. Suppose there is a 4-vertex or 5-vertex v in G that has no 4+-neighbour. Let the ui be the
neighbours of v, for i ∈ {0, . . . , 3} or i ∈ {0, . . . , 4}. Let G′

= G − v −
⋃

i{ui}. By minimality of G, G′

admits an (F,F5)-partition (F ,D). Add v to D, and for all ui, add ui to D if its two neighbours distinct
from v are in F , and add ui to F otherwise. Vertex v has at most five neighbours in D, and each of the
ui that is in D has one neighbour in D. Each of the ui that is in F has at most one neighbour in F . We
have an (F,F5)-partition of G, a contradiction. □



84 F. Dross et al. / European Journal of Combinatorics 66 (2017) 81–94

Fig. 1. The forbidden configuration of Lemma 8. The big vertices are represented with big circles, and the small vertices with
small circles. The filled circles represent vertices whose incident edges are all represented.

We will need the following observation in the next two lemmas.

Observation 7. Let v0v1v2v3 be a face of G, u0 a neighbour of v0 and u1 a neighbour of v1. Either u0 and
v2 are at distance at least 3, or u1 and v3 are at distance at least 3.

By contradiction, suppose that u0 and v2 are at distance at most two, and that u1 and v3 are at
distance at most two. Since G is triangle-free, a shortest path from u0 to v2 (resp. from u1 to v3) does
not contain any of the ui and vi except for its extremities. Then by planarity there exists a vertex w

adjacent to u0, v2, u1 and v3. In particular v2v3w is a triangle, a contradiction.

Lemma 8. The following configuration does not occur in G: two adjacent 3-vertices v0 and v1 such that
for i ∈ {0, 1}, vi has a big neighbour bi and a small neighbour si, and such that v0v1s1b0 bounds a
face of G.

Proof. Suppose such a configuration exists in G. See Fig. 1 for an illustration of this configuration.
Observe that all the vertices defined in the statement are distinct (since G is triangle-free). By
Observation 7, either b0 and b1 are at distance at least 3, or s0 and s1 are at distance at least 3. For
the remaining of the proof, we no longer need the fact that b0s1 ∈ E(G). We forget this assumption,
and only remember that either b0 and b1 are at distance at least 3, or s0 and s1 are at distance at least
3. This provides some symmetry in the graph.

Let G0 = G − {v0, v1} + b0b1 and G1 = G − {v0, v1} + s0s1. By what precedes, either G0 or G1 is
triangle-free, thus there exists a j such that Gj is a triangle-free planar graph. By minimality of G, Gj
admits an (F,F5)-partition (F ,D).

Let us first prove that if we do not have b0 and b1 in D, and s0 and s1 in F , then the conditions
G[F ] ∈ F and G[D] ∈ F5 lead to a contradiction. We will see that we can always extend the (F,F5)-
partition of Gj to G.

• If at least three of the bi and si are in D, then G[F ∪ {v0, v1}] ∈ F .
• If all of the bi and si are in F , then G[D ∪ {v0, v1}] ∈ F5.
• Suppose now that exactly three of the bi and si are in F . W.l.o.g., b0 ∈ D or s0 ∈ D. We have

G[F ∪ {v0}] ∈ F and G[D ∪ {v1}] ∈ F5.
• Suppose now that exactly two of the bi and si are in F . If b0 and s0 are in F (resp. b1 and s1 are in

F ), then G[D ∪ {v0}] ∈ F5 and G[F ∪ {v1}] ∈ F (resp. G[F ∪ {v0}] ∈ F and G[D ∪ {v1}] ∈ F5).
Now w.l.o.g. b0 ∈ F and s0 ∈ D. If s0 has at most one G-neighbour in F , then G[F ∪ {s0}] ∈ F , we
can replace F by F ∪ {s0} and D by D \ {s0}, and we fall into a previous case. We can thus assume
that s0 has at least two of its G-neighbours in F , and thus it has at most four of its G-neighbours
in D. Therefore G[D ∪ {v0}] ∈ F5, and G[F ∪ {v1}] ∈ F .

In all cases, G has an (F,F5)-partition, a contradiction.
Remains the case where b0 and b1 are in D, and s0 and s1 are in F . In the case where we added the

edge b0b1 (i.e. the case j = 0), we have G[D ∪ {v0, v1}] ∈ F5, since G[D ∪ {v0, v1}] is equal to G0[D]

where an edge is subdivided twice. Similarly, in the case where we added the edge s0s1 (i.e. the case
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Fig. 2. The forbidden configuration of Lemma 9.

j = 1), we have G[F ∪{v0, v1}] ∈ F , since G[F ∪{v0, v1}] is equal to G0[F ]where an edge is subdivided
twice. Again, G has an (F,F5)-partition, a contradiction. □

Lemma 9. The following configuration does not occur in G: a 3-vertex v0 adjacent to a 4-vertex v1 such
that v0 has a big neighbour b and a small neighbour s0, and v1 has three other small neighbours s1, w0,
and w1 such that v0v1s1b bounds a face of G and s1 has degree 3.

Proof. Suppose such a configuration exists in G. See Fig. 2 for an illustration of this configuration.
Observe that all the vertices defined in the statement are distinct (since G is triangle-free). By
Observation 7, either b and w0 are at distance at least 3, or s0 and s1 are at distance at least 3. Let
G0 = G − {v0, v1} + bw0 and G1 = G − {v0, v1} + s0s1. By what precedes, either G0 or G1 is triangle-
free, thus there exists a j such that Gj is a triangle-free planar graph. By minimality of G, Gj has an
(F,F5)-partition (F ,D).

Let us first prove that except in the case where {b, w0, w1} ⊂ D and {s0, s1} ⊂ F , the conditions
G[F ] ∈ F and G[D] ∈ F5 lead to a contradiction. We will see that we can always extend the (F,F5)-
partition of Gj to G.

If at least four among the wi, the si and b are in D, then G[F ∪ {v0, v1}] ∈ F .
Suppose now that at most three among the wi, the si and b are in D. Suppose x ∈ {b, s0, s1, w0, w1}

is inD. If x has atmost one G-neighbour in F , then G[F∪{x}] ∈ F , andwe could consider F∪{x} instead
of F and D \ {x} instead of D. Note that this cannot lead to the case we excluded ({b, w0, w1} ⊂ D and
{s0, s1} ⊂ F ) unless at least four among the wi, the si and b are in D. Thus we can assume that for
any x among the wi and si such that x ∈ D, x has at most four G-neighbours in D, and thus adding
one neighbour of x in D cannot cause x to have at least six neighbours in D. We consider two cases
according to b:

• Suppose b ∈ F . If at least three of the wi and si are in F , then G[D ∪ {v0, v1}] ∈ F5.
If at least two among the wi and s1 are in D, then G[F ∪ {v1}] ∈ F and G[D ∪ {v0}] ∈ F5. Else,
at least two among the wi and s1 are in F , and we may assume that s0 is in D (otherwise we fall
into a previous case), so G[D ∪ {v1}] ∈ F5 and G[F ∪ {v0}] ∈ F .

• Suppose now that b ∈ D. As s1 has degree 3, it has at most one G-neighbour in F , and thus as
previously we could consider F ∪ {s1} instead of F and D \ {s1} instead of D. Again, this cannot
lead to the case we excluded ({b, w0, w1} ⊂ D and {s0, s1} ⊂ F ) unless at least four among the
wi, the si and b are inD. Thereforewe can assume that s1 ∈ F . Thewi are not both inD (otherwise
we fall into the case we excluded). We have G[D ∪ {v1}] ∈ F5 and G[F ∪ {v0}] ∈ F .

In all cases, G has an (F,F5)-partition, a contradiction.
Remains the case {b, w0, w1} ⊂ D and {s0, s1} ⊂ F . In the case where we added the edge bw0

(i.e. the case j = 0), b has at most five G0-neighbours in D, and thus at most four G-neighbours in D, so
G[D ∪ {v0}] ∈ F5, and G[F ∪ {v1}] ∈ F . In the case where we added the edge s0s1 (i.e. the case j = 1),
we have G[F ∪{v0, v1}] ∈ F , since G[F ∪{v0, v1}] is equal to G0[F ] where an edge is subdivided twice.
Again, G has an (F,F5)-partition, a contradiction. □
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Fig. 3. Configuration 1.

Fig. 4. The forbidden configuration of Lemma 10.

We define a specific configuration:

Configuration 1. Two 4-faces b0v0v1w0 and v0v1v2v3, such that b0 is a big vertex, v0 and w0 are
3-vertices, v1 is a 4-vertex, v2 and v3 are small vertices, and the fourth neighbour of v1, say b1, is a big
vertex. See Fig. 3 for an illustration of this configuration.

Lemma 10. The following configuration is forbidden: Configuration 1with the added condition that there
is a 4-face b1v1v2w1 withw1 a 3-vertex, v2 a 4-vertex, and the fourth neighbour of v2, the third neighbour
of w1, and the third neighbour of w0 are small vertices.

Proof. Suppose such a configuration exists in G. See Fig. 4 for an illustration of this configuration.
Observe that all the vertices named in the statement are distinct since G is triangle-free and w1 is a
small vertex whereas b0 is a big one.

Let us prove that either b0 and b1 are at distance at least 3, or w0 and w1, and w0 and v3 are at
distance at least 3. By contradiction, suppose that b0 and b1 are at distance atmost two, and that either
w0 and w1 are at distance at most two, or w0 and v3 are at distance at most 2. Since G is triangle-free,
a shortest path from b0 to b1, from w0 to w1 or from w0 to v3 does not go through any of the vertices
defined in the statement. Then by planarity there exists a vertex w adjacent to b0, b1, w0 and either
w1 or v3. In particular b0w0w is a triangle, a contradiction.

Let G0 = G − {v0, v1} + b0b1 and G1 = G − {v0, v1} + w0w1 + w0v3. By what precedes, either G0

or G1 is triangle-free, thus there exists a j such that Gj is a triangle-free planar graph. By minimality of
G, Gj has an (F,F5)-partition (F ,D).

Let s0 be the third neighbour of w0, s1 be the third neighbour of w1 and s2 be the fourth neighbour
of v2. They are all small vertices, but there may be some that are equal between themselves, or equal
to some vertices we defined previously. However, if one of the si is in {v0, v1, v2, w0, w1}, then this si
is a 4−-vertex in G (and in particular it has at most 4 neighbours in D).
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Suppose first that b0 and b1 are both in D.

1. Suppose w0 is in D. Here we only consider (F ,D) as an (F,F5)-partition of G − {v0, v1}.
If v3 is also in D, then adding v0 and v1 to F leads to an (F,F5)-partition of G. Suppose v3 is in
F . We show now that we can assume that v2 is in D. By contradiction, suppose v2 is in F . We
remove v2 from F .
Observe thatwe can assume that v2 has noG-neighbour inDwith fiveG-neighbours inD. Indeed,
suppose v2 has a G-neighbour in Dwith five G-neighbours in D. This G-neighbour is a 5+-vertex,
so it is s2. Moreover, s2 is not equal to v3 (because v3 is in F ), and is not equal to any of the other
vertices named in the statement (because of the degree conditions). As s2 is a small D-vertex,
has at least five G-neighbours in D and is adjacent to v2 that is neither in F nor in D, s2 has at
most one neighbour in F . Therefore we can put s2 in F .
Observe that we can assume that v2 has at most one G-neighbour in D. Suppose v2 has two
G-neighbours in D. These G-neighbours are s2 and w1. Vertex w1 has at most one neighbour in
F , that is s1, so we can put w1 in F .
Now v2 has at most one G-neighbour in D, and no G-neighbour of v2 in D has five G-neighbours
in D, so we can put v2 in D. Therefore we can always assume that v2 is in D. Note that we do
not need to change where s2 is in the partition if it is equal to one of the vertices named in the
statement. Adding v0 and v1 to F leads to an (F,F5)-partition of G.

2. Suppose w0 is in F , v3 is in D and w1 is in D. If s2 is in D, then putting v0, v1 and v2 in F leads
to an (F,F5)-partition of G. Suppose s2 is in F . We put v0, v1 and w1 in F , and v2 in D. If this
increases the number of G-neighbours of v3 in D above five, then since v3 is small, v3 has at most
one neighbour in F , which is v0, and we put v3 in F . This leads to an (F,F5)-partition of G.

3. Suppose w0 is in F , v3 is in D and w1 is in F . Suppose s2 is in F . We put v0 and v1 in F , and v2 in D.
If this increases the number of G-neighbours of v3 in D above five, then since v3 is small, v3 has
at most one neighbour in F , which is v0, and we put v3 in F . This leads to an (F,F5)-partition of
G. Suppose s2 is in D. If v2 is not in F , we may put it in F , since it has only one Gj-neighbour in F ,
that is w1. Therefore we can assume that v2 is in F . If j = 0, then b1 has at most 4 G-neighbours
inD (since it has atmost 5 such G0-neighbours), so adding v0 to F and v1 toD leads to an (F,F5)-
partition of G. If j = 1, then adding v0 and v1 to F leads to an (F,F5)-partition of G.

4. Suppose w0 is in F and v3 is in F . Suppose j = 0. The vertex b0 has at most 4 G-neighbours in D
(since it has at most 5 such G0-neighbours), so we can add v0 to D. If v2 is in D, then adding v1 to
F leads to an (F,F5)-partition of G. If v2 is in F , then adding v1 to D makes G[D] equal to G0[D]

with an edge subdivided twice, and this leads to an (F,F5)-partition of G. Suppose j = 1. Here
we only consider (F ,D) as an (F,F5)-partition of G − {v0, v1} + w0v3. As in 1, we can suppose,
up to changing where s2 and w1 are in the partition, that v2 is in D. Note that if s2 is equal to one
of the vertices named in the statement, we do not need to move s2 in the partition. Adding v0
and v1 to F leads to an (F,F5)-partition of G.

Now we may assume that at least one of b0 and b1 is in F . From now on we only consider (F ,D) as
an (F,F5)-partition of G − {v0, v1}.

• Suppose b0 is in F and b1 is in D. In that case we put v0 and w0 in D, and v1 in F . Adding v0 in D
(resp. w0 in D) may violate the degree condition of G[D] ; however, if it happens, one can put v3
(resp. s0) in F . In any case, we obtain an (F,F5)-partition of G.

• Suppose b0 is in D and b1 is in F . If at least one of w0 and v2 is in F , then adding v0 in F and v1 in
D leads to an (F,F5)-partition of G. Assume w0 and v2 are both in D. If v3 is in D, then adding v0
and v1 in F leads to an (F,F5)-partition of G. Assume v3 is in F . We consider three cases:

– Suppose s2 and w1 are in F . Adding v0 in F and v1 in D leads to an (F,F5)-partition of G.
– Suppose s2 is in F and w1 is in D. If s1 is in D, then we can put w1 in F and we fall into the

previous case. If s1 is in F , then adding v0 in F and v1 in D leads to an (F,F5)-partition of G.
– Suppose s2 is in D. If s1 is in D and has five G-neighbours in D distinct from w1, then as s1

is small, it is distinct from all the vertices named in the statement, and we can put it in F .
Therefore we can put w1 in D and v2 in F . We fall into a previous case (at least one of w0
and v2 is in F ).
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• Suppose b0 and b1 are in F . If s0 is in D and has five G-neighbours in D distinct from w0, then as
s0 is small, it is distinct from all the vertices named in the statement aside from v3, and we can
put it in F . Therefore we can put w0 in D. We consider the following cases:

– If v2 and v3 are in F , then adding v0 and v1 to D leads to an (F,F5)-partition of G.
– If v2 is in F and v3 is in D, then adding v0 to F and v1 to D leads to an (F,F5)-partition of G.
– If v2 is in D and v3 is in F , then adding v0 to D and v1 to F leads to an (F,F5)-partition of G.
– If v2 and v3 are in D, then adding v0 to D and v1 to F leads to an (F,F5)-partition of G.

Adding v0 to D may violate the degree condition of G[D], but in that case we can put v3 in
F . □

We now apply a discharging procedure: first, for all j, every j-vertex v has a charge equal to
c0(v) = j − 4, and every j-face f has a charge equal to c0(f ) = j − 4. By Euler’s formula, the total
charge is negative (equal to −8). Observe that, since G is triangle-free, every face has a non-negative
initial charge, and by Lemma4, the vertices that have negative initial charges are exactly the 3-vertices
of G, and they have an initial charge of −1. Here is our discharging procedure:

Discharging procedure:

• Step 1: Every big vertex gives 1
2 to each of its small neighbours. Furthermore, for every 4-face

uvwxwhere u and v are big, and w and x are small, v gives 1
4 to x (and u gives 1

4 to w).
• Step 2: Consider a 4-vertex v that does not correspond to v1 in Configuration 1. Vertex v gives

1
4 to each of its small neighbours that are consecutive (as neighbours of v) to exactly one big
vertex, and 1

2 to each of its small neighbours that are consecutive (as neighbours of v) to two
big vertices.
Consider the case where v corresponds to v1 in Configuration 1. We use the notations of
Configuration 1. If w0 has two big neighbours, then v1 gives 1

4 to v0 and 1
4 to v2. Otherwise,

it gives 1
4 to w0 and 1

4 to v0.
Every small 5+-vertex that has a big neighbour gives 1

4 to each of its small neighbours, and an
additional 1

4 for each that is consecutive (as neighbours of v) to at least one big vertex. Every
small 5+-vertex that has no big neighbour gives 1

4 to each of its 3-neighbours.
• Step 3: For every 4-face uvwx, with u a big vertex, v a 3-vertex, w a 4-vertex, and x a small

vertex such that x gave charge to w in Step 2, w gives 1
4 to v.

• Step 4: Every 5+-face that has a big vertex in its boundary gives 1
4 to each of the small vertices in

its boundary. Every 5+-face that has no big vertex in its boundary gives 1
5 to each of the vertices

in its boundary.
• Step 5: For every 4-face uvwx, with u a big vertex, v a 3-vertex, w a 4-vertex and x a 3-vertex

such that the other face that has vw in its boundary is a 5+-face, w gives 1
5 to v.

For every vertex or face x of G, for every i ∈ {1, 2, 3, 4, 5}, let ci(x) be the charge of x at the end of
Step i. Observe that during the procedure, no charges are created and no charges disappear; hence the
total charge is kept fixed.

We now prove that every vertex and every face has a non-negative charge at the end of the
procedure. That leads to the following contradiction:

0 ≤

∑
x∈V (G)∪F (G)

c5(x) =

∑
x∈V (G)∪F (G)

c0(x) = −8.

Lemma 11. Every face has non-negative charge at the end of the procedure.

Proof. At the beginning of the procedure, for every j-face f we have c0(f ) = j − 4 ≥ 0 (as j ≥ 4).
The procedure does not involve 4-faces. Hence if j = 4, then c5(f ) = c0(f ) = 0. If j = 5, then f gives
at most four times 1

4 if it is incident to a big vertex and at most five times 1
5 otherwise in Step 4. It

follows that c5(f ) ≥ 0. If j ≥ 6, then f can give 1
3 to each of its incident vertices (and so 1

4 or 1
5 ) during

Step 4, and c5(f ) ≥ j − 4 −
j
3 ≥ 0. □
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Fig. 5. Some configurations that appear in Lemma 12.

Lemma 12. A 4+-vertex never has negative charge.

Proof. Consider a j-vertex z with j ≥ 4. At the beginning, c0(z) = j − 4 ≥ 0. We will show that
ci(z) ≥ 0 for i = 1, . . . , 5.

• Suppose z is a big vertex. Such a vertex only loses charge in Step 1. Since j ≥ 8,wehave c0(z) ≥
j
2 .

In Step 1, vertex z loses 1
2 for each of its small neighbours, and at most 1

2 for each of its big
neighbours. Therefore it has more charge than what it gives, and thus it keeps a non-negative
charge.

• Suppose z is a small 5+-vertex. It does not lose charge in Steps 1, 3, 4 and 5.
Suppose z has a big neighbour. It has at most j − 1 small neighbours, and it has charge at least
1
4 · (j− 1) at the beginning of the procedure, since j ≥ 5. Moreover, it receives 1

2 from each of its
big neighbours in Step 1. Therefore it does not give more charge that it has in Step 2.
Suppose now that z has no big neighbour. If z is a 5-vertex, then by Lemma 6, it has at most four
3-vertices, and c2(z) ≥ 1 − 4 ·

1
4 ≥ 0. If z is a 6+-vertex, then c2(z) ≥ j − 4 − j · 1

4 ≥ 0.
• Suppose z is a 4-vertex. It does not lose charge in Steps 1 and 4. Suppose z gives charge in Step

2. Consider first that z does not correspond to v1 in Configuration 1. If z is adjacent to a small
vertex that is consecutive (as a neighbour of z) to two big neighbours, then z gives at most twice
1
2 in Step 2 and received twice 1

2 in Step 1; hence c2(z) ≥ 0. Otherwise, z gives at most twice 1
4

in Step 2, and received at least once 1
2 in Step 1; hence c2(z) ≥ 0. Let us now consider the case

where z corresponds to v1 in Configuration 1. The vertex z has a big neighbour that gave 1
2 to z

in Step 1, and z gives 1
4 to two of its neighbours in Step 2. Therefore z received in Step 1 at least

as much as what it gives in Step 2.
Suppose z gives charge in Step 3. There is a 4-face uvzxwith u a big vertex, v a 3-vertex, and x a
small vertex such that x gave charge to z in Step 2. Suppose z is consecutive to exactly one big
vertex (as neighbours of x). The vertex x gave at least 1

4 to z in Step 2, and there is exactly one
such face with the same z and x (i.e. there is no pair (u′, v′) distinct from (u, v) that verifies the
properties we stated for (u, v))(see Fig. 5, left). Therefore z can give 1

4 to v in Step 3. Suppose z
is consecutive to exactly two big vertices (as neighbours of x). The vertex x gave 1

2 to z in Step 2,
and there are at most two such faces with the same z and x (i.e. there is at most one pair (u′, v′)
distinct from (u, v) that verifies the properties we stated for (u, v)) (see Fig. 5, right). Therefore
z can give 1

4 to each of the corresponding v’s in Step 3. Therefore z received in Step 2 at least as
much as what it gives in Step 3.
Suppose z gives charge in Step 5. There is a 4-face uvzx, with u a big vertex, v a 3-vertex, and x a
3-vertex such that the other face, say f , that has vz in its boundary is a 5+-face. Vertex z received
at least 1

5 from f in Step 4, and it gives 1
5 to v. There is a problem only if there is another 4-face

u′v′zx′, such that vzv′ is on the boundary of f , u′ is a big vertex, and x′ and v′ are 3-vertices. But
then z would have four 3-neighbours, contradicting Lemma 6. Therefore z received in Step 4 at
least as much as what it gives in Step 5.

In all cases, z never has negative charge. □

Lemma 13. At the end of the procedure, every 3-vertex has non-negative charge.
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Fig. 6. The face f0 and the vertex x1 .

Fig. 7. The case in Lemma 13 where y0 corresponds to v1 in Configuration 1.

Proof. Let z be a 3-vertex. It never loses charge in the procedure, so we only need to prove that it
received at least 1 over the whole procedure. Assume by contradiction that it received less than that.

By Lemma 5, vertex z has at least one big neighbour b. Let x0 and x1 be its two other neighbours.
Vertex b gives 1

2 to z in Step 1, so z only needs to receive 1
2 from x0, x1, and its surrounding faces. In

particular, if one of the xi is a big vertex, then it gives 1
2 to z in Step 1, and z receives all the charge it

needs, a contradiction. Therefore x0 and x1 are small vertices.
Let f be the face that contains x0zx1 in its boundary, f0 be the face that contains x0zb in its boundary

and f1 the face that contains x1zb in its boundary. Let y0 and y1 be such that bzx0y0 and bzx1y1 are
4-paths that are in the boundaries of f0 and f1 respectively. By symmetry, we may assume that the
sum of the charge that x0, y0, and f0 give to z and half the charge that f gives to z is less than 1/4.

Observe that f0 is a 4-face. If it is a 5+-face, then since it has the big vertex b in its boundary, it gives
1
4 to z in Step 4, a contradiction.

Observe that y0 is a small vertex. If y0 is a big vertex, then y0 gives 1
4 to z in Step 1, a contradiction.

See Fig. 6 for a representation of the vertices we know.
Observe that x0 has degree 4. Suppose x0 is a 5+-vertex. It gives at least 1

4 to z in Step 2, a
contradiction. Suppose x0 is a 3-vertex. Then x0 has a big neighbour by Lemma 5, and it cannot be
y0. This contradicts Lemma 8.

Let a and a′ be the neighbours of x0 distinct from z and y0, such that a is consecutive to z(as a
neighbour of x0). Suppose a is a big vertex. If x0 does not correspond to v1 in Configuration 1, then x0
gives 1

4 to z in Step 2. If x0 corresponds to v1 in Configuration 1, then z corresponds to w0 that is not
adjacent to two big vertices, so x0 also gives 1

4 to z in Step 2. Therefore a is a small vertex.
Observe that y0 is a 4+-vertex. Suppose y0 is a 3-vertex. By Lemma 9, there is at least one big vertex

in {a, a′
}, which has to be a′. If f is a 4-face, then x0 corresponds to v1 in Configuration 1, and it gives 1

4
to z in Step 2. Therefore f is a 5+-face, and it gives at least 1

5 to z in Step 4, and x0 gives 1
5 to z in Step

5. As 1
10 +

1
5 ≥

1
4 , this leads to a contradiction.

Suppose first that y0 corresponds to v1 in Configuration 1. See Fig. 7 for an illustration of the
vertices we know, and of the correspondence with vertices of Configuration 1. By Lemma 10, the third
neighbour of w0 is big. Therefore y0 gives 1

4 to x0 in Step 2. It follows that x0 gives 1
4 to z in Step 3, a

contradiction.
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Fig. 8. The gadget H in Case 1, and an (F,Fd)-partition. Dashed lines are anti-edges.

Now y0 does not correspond to v1 in Configuration 1. Vertex y0 gives 1
4 to x0 in Step 2, since x0 is a

neighbour of y0 consecutive (as a neighbour of y0) to a big neighbour. Therefore x0 gives 1
4 to z in Step

3, a contradiction. □

Lemmas 11–13 conclude the proof of Theorem 3.

3. Np-completeness

By Theorem 3, there exists the smallest integer d0 ≤ 5 such that every triangle-free planar graph
has an (F,Fd0 )-partition. For all d ≥ d0, every triangle-free planar graph has an (F,Fd)-partition. Let
us assume that d0 ≥ 1.

In this section, for a fixed d we consider the complexity of the following problem Pd: given a
triangle-free planar graph G, does G have an (F,Fd)-partition? This can be answered positively in
constant time for d ≥ d0. However, we prove the following:

Theorem 14. For d < d0, the problem Pd is NP-complete.

The problem is clearly in NP, since checking that a graph is acyclic and/or has degree at most d can
be done in polynomial time. Let us show that the problem is NP-hard.

Let G be a counter-example to the property that every triangle-free planar graph admits an (F,Fd)
partition. We consider such a G with minimum number of vertices, and with minimum number of
edges among the counter-examples with minimum number of vertices. Let e = uv be an edge of G,
and G′

= G − e. By minimality of G, G′ admits an (F,Fd)-partition. In such a partition (F ,D), u and v
are either both in F or both inD, and if they are in F , then there is a path from u to v in G′

[F ] (otherwise
it would be an (F,Fd)-partition of G). Observe that in G′, u and v are at distance at least 3, since G is
triangle-free. We call a copy of G′ an anti-edge uv.

We want to make a gadget H with a vertex x that admits an (F,Fd)-partition, and such that x is in
F for all (F,Fd)-partition (F ,D) of H .

We construct H as follows:

1. Suppose for all (F,Fd)-partition (F ,D) of G′, u and v are in D. See Fig. 8 for an illustration of the
construction ofH and an (F,Fd)-partition ofH in this case. Take d+1 copies of G′, called G′

0, . . . ,
G′

d, and add a new vertex x adjacent to each copy of u. Consider an (F,Fd)-partition (F ,D) of G′.
This leads to an (F,Fd)-partition (Fi,Di) of eachGi, and (

⋃
iFi∪{x},

⋃
iDi) is an (F,Fd)-partition

of H .
Let us now prove that for any (F,Fd)-partition (F ,D) of H , x belongs to F . For any (F,Fd)-
partition (F ,D) of H , if x ∈ D, then there exists a ui that is in F , so the corresponding G′

i admits
an (F,Fd)-partition with ui ∈ F , a contradiction.

2. Suppose there exists an (F,Fd)-partition (F ,D) of G′ such that u and v are in F . See Fig. 9 for
an illustration of the construction of H and an (F,Fd)-partition of H in this case. We construct
H as follows. Consider a vertex x. We add new vertices v0, . . . , vd and w0, . . . , wd to the graph,
adjacent to x. Then for 0 ≤ i ≤ d and 0 ≤ j ≤ 1, we add a new vertex uij, the anti-edge viuij,
and the edge uijwi.
Graph H admits an (F,Fd)-partition. Indeed, consider an (F,Fd)-partition of G′ with u and v
in F , and apply it to every anti-edge of H (as before, we take the union of the Fi and the union
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Fig. 9. The gadget H in Case 2, and an (F,Fd)-partition.

Fig. 10. The gadget H ′ with an (F,Fd)-partition.

of the Di). Then the vi and uij are all in F . Add all the wi to D. Add x to F . We then have an
(F,Fd)-partition of H .
Let us now prove that for any (F,Fd)-partition (F ,D) of H , x belongs to F . For any (F,Fd)-
partition (F ,D) of H , if x ∈ D, then there exists an i such that vi and wi are in F , thus ui0 and ui1
are in F , so there is a cycle in H[F ], a contradiction.

Observe that we can make a gadget H ′ with a vertex y that admits an (F,Fd)-partition, and such
that y is in D for all (F,Fd)-partition (F ,D) of H ′ (see Fig. 10): we take three copies of H , and make
a 4-cycle with the corresponding copies of x and a new vertex y. Taking an (F,Fd)-partition of H for
each copy ofH , and adding y toD leads to an (F,Fd)-partition ofH ′. Conversely, in an (F,Fd)-partition
(F ,D) of H ′, all the copies of x are in F , so y is in D.

We will first make a reduction from the problem Planar 3- sat to P0, and then from P0 to Pd with
d < d0.

First reduction: from planar 3- sat to P0

Here we will use the gadget H for d = 0.
Consider an instance I of Planar 3- sat. The instance I is a boolean formula in conjunctive normal

form, associated to a planar graph GI . For each clause C of I with variables x, y and z, we make a
4-cycleKC = xCyCzCaC . For each variable x that appears kx times in the formula,wemake the following
gadget Gx a path px,0...px,2kx−1, and for all i ∈ [0, 2kx − 2] we add two adjacent vertices, qx,i and rx,i+1,
adjacent to px,i and px,i+1 respectively (see Fig. 12). We then add a copy of H for each clause C such
that aC corresponds to the vertex x of H , and a copy of H for each qx,i and each rx,i such that qx,i and rx,i
respectively correspond to the vertex x of H . Then for every clause C and every variable x that appears
in C , we add an edge from xC to a px,i, with an even i if the literal associated to x in C is a positive literal
and an odd i otherwise, such that no two xC are adjacent to the same px,i (see Fig. 11). It is possible to
do so without breaking planarity, since the graph GI is planar. We call G′

I the graph we obtain.
Suppose I is satisfiable, and let us consider an assignation σ of the variables that satisfies I . Let

us make an (F,F0)-partition of G′

I . We first take an (F,F0)-partition for each copy of H . All the aC ,
qx,i and rx,i are in F . For each variable x, if σ (x) = 1, then we put all the px,2i in F and the px,2i+1 in
D, else we put all the px,2i in D and the px,2i+1 in F . Then for each clause C , we choose a variable x of
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Fig. 11. The cycle KC of a clause C with variables x, y and z, and an (F,Fd)-partition in the case where variable x satisfies the
clause.

Fig. 12. The gadget Gx for a variable x, with an (F,Fd)-partition that corresponds to the assignation of x to true. Here the literal
associated to x in C0 is positive, and that associated to x in C1 and C2 is negative.

C that satisfies the clause (i.e. x is true if the literal associated to x in C is a positive literal, and false
otherwise), we put xC in D and for the two other variables of C , we put the corresponding yC in F .

All the vertices are in F or inD. Let v be aG′

I-vertex inD. If v is in a copy ofH , then it has no neighbour
in D. If v is a xC , then the three other vertices of KC are in F . If v is a px,i, then px,i+1 and px,i−1 are in F if
they exist, and all the qj and rj are in F . Suppose there are two G′

I [F ]-neighbours in D. One is a xC and
the other is a px,i (with the same x). Then by construction the variable x satisfies clause C (i.e. x is true
if the literal associated to x in C is a positive literal, and false otherwise). If x is associated to a positive
literal in clause C , then σ (x) = 1 and i is even, thus px,i is in F , a contradiction. If x is associated to a
negative literal in clause C , then σ (x) = 0 and i is odd, thus px,i is in F , a contradiction. Graph G′

I [F ] has
no cycle: there is no cycle in the copies of H with every vertex in F ; for each clause C , KC has a vertex
in D, and for each i ∈ [0, 2kx − 2], px,2i or px,2i+1 is in D. Therefore (F ,D) is an (F,F0)-partition of G′

I .
Suppose now that there is an (F,F0)-partition (F ,D) of G′

I . All the aC , the qx,i and the rx,i are in F .
For all variable x and all i ∈ [0, 2kx − 2], either px,i ∈ F and px,i+1 ∈ D, or px,i ∈ D and px,i+1 ∈ F .
Therefore for all x, either all the px,i are in F for i even and in D for i odd, or all the px,i are in D for i
even and in F for i odd. Let σ be the assignation of the variables x such that σ (x) = 1 if px,0 is in F , and
σ (x) = 0 otherwise. Let C be a clause of I . At least one of the xC is in D (otherwise KC is a cycle with
every vertex in F ), and it is adjacent to a px,i with i even if x is positive and i odd if x is negative in C .
This px,i is in F , so if x is positive in C , then σ (x) = 1, else σ (x) = 0. Therefore σ satisfies clause C , and
this is true for all C , so σ satisfies I .
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It is easy to see that the reduction is polynomial, and that G′

I is a triangle-free planar graph. Thus
this is a polynomial reduction from Planar 3- sat to P0.

Second reduction: from P0 to Pd with d < d0

Consider an instance I of P0. For each vertex v in I , add d copies of H ′, such that the corresponding
copies of y are adjacent to v. We call Id the resulting graph.

Suppose I admits an (F,F0)-partition. Consider an (F,Fd)-partition of H ′. Apply it to every copy
of H ′ we made in Id. Complete it with an (F,F0)-partition of I . The obtained partition is an (F,Fd)-
partition of Id.

Suppose now that Id admits an (F,Fd)-partition (F ,D). In each copy of H ′, we have y ∈ D, so each
vertex in I has exactly d (Id − V (I))-neighbours in D and no (Id − V (I))-neighbours in F . Therefore
(F ∩ V (I),D ∩ V (I)) is an (F,F0)-partition of I .

It is easy to see that the reduction is polynomial, and that Id is a triangle-free planar graph. Thus
this is a polynomial reduction from P0 to Pd.
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