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a b s t r a c t

We give a new lower bound on the order of a largest induced forest in planar graphs with
girth 4. We prove that a triangle-free planar graph of order n admits an induced forest of
order at least 6n+7

11 , improving the lower bound of Salavatipour (2006).
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph. A decycling set or feedback vertex set S of G is a subset of the vertices of G such that removing the vertices
of S from G yields an acyclic graph. Thus S is a decycling set of G if and only if the graph induced by V (G)\S in G is an induced
forest ofG. The feedback vertex set decision problem (which consists of, given a graph G and an integer k, decidingwhether
there is a decycling set ofG of size k) is known to beNP-complete, even restricted to the case of planar graphs, bipartite graphs
or perfect graphs [10]. It is thus legitimate to seek bounds for the size of a decycling set or for the order of an induced forest.
The smallest size of a decycling set of G is called the decycling number of G, and the highest order of an induced forest of G
is called the forest number of G, denoted, respectively, by φ(G) and a(G). Note that the sum of the decycling number and the
forest number of G is equal to the order of G (i.e. |V (G)| = a(G) + φ(G)).

Mainly, the community focuses on the following challenging conjecture due to Albertson and Berman [2]:

Conjecture 1 (Albertson and Berman [2]). Every planar graph of order n admits an induced forest of order at least n
2 .

Conjecture 1, if true, would be tight (for n ≥ 3 multiple of 4) because of the disjoint union of complete graphs on four
vertices (Akiyama and Watanabe [1] gave examples where the conjecture differs from the optimal by at most one half for
all n), and would imply that every planar graph has an independent set on at least a quarter of its vertices, the only known
proof of which relies on the Four-Color Theorem.

The best known lower bound to date for the forest number of a planar graph is due to Borodin and is a consequence of the
acyclic 5-colorability of planar graphs [6]. We recall that an acyclic coloring is a proper vertex coloring such that the graph
induced by the vertices of any two color classes is a forest. From this result we obtain the following theorem:

Theorem 2 (Borodin [6]). Every planar graph of order n admits an induced forest of order at least 2n
5 .
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Fig. 1. Example that proves the tightness of Theorem 3.

Fig. 2. Examples of Theorem 4.

As a consequence of the acyclic 3-colorability of outerplanar graphs, Hosono [9] showed the following theorem which is
best possible.

Theorem 3 (Hosono [9]). Every outerplanar graph of order n admits an induced forest of order at least 2n
3 .

The tightness of Theorem 3 is shown by the example in Fig. 1.
Lower and upper bounds on forest number of planar graphs with girth 5 and 7 has also been deduced from results on

acyclic coloring by Fertin et al. [8].

Theorem 4 (Fertin et al. [8]).

(1) Every planar graph of order n and girth at least 5 admits an induced forest of order at least n
2 . Moreover, for n ≡ 0( mod 20),

there exist planar graphs of order n and girth 5 having forest number 7n
10 (disjoint copies of the dodecahedron, see Fig. 2(a)).

(2) Every planar graph of order n and girth at least 7 admits an induced forest of order at least 2n
3 . Moreover, for n ≡ 0( mod 12),

there exist planar graphs of order n and girth 7 having forest number 5n
6 (disjoint copies of the graph depicted in Fig. 2(b)).

Kowalik et al. [12] made the following conjecture on planar graph of girth at least 5:

Conjecture 5 (Kowalik et al. [12]). Every planar graph with girth at least 5 and order n admits an induced forest of order at least
7n
10 .

This conjecture, if true, would be tight due to Theorem 4. Very recently, Kelly and Liu [11], and Shi and Xu [14],
independently improved Theorem 4(1). We note that Shi and Xu additionally characterize equality.

Theorem 6 (Kelly and Liu [11], Shi and Xu [14]). Every connected planar graph of girth at least 5, order n, and size m has an
induced forest of order at least 8n−2m−2

7 .

Using Euler’s formula, that implies that every connected planar graph with girth at least 5 and order n has an induced
forest of order at least (2n+2)

3 ≈
7n
10.5 (recall that 7n

10 is conjectured).
Akiyama and Watanabe [1], and Albertson and Haas [3] independently raised the following conjecture:

Conjecture 7 (Akiyama andWatanabe [1], and Albertson andHaas [3]). Every bipartite planar graph of order n admits an induced
forest of order at least 5n

8 .

This conjecture, if true, would be tight for n multiple of 8: for example if G is the disjoint union of k cubes, then we
have a(G) = 5k and G has order 8k (see Fig. 3). Motivated by Conjecture 7, Alon [4] proved the following theorem using
probabilistic methods:
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Fig. 3. The cube has forest number 5.

Theorem 8 (Alon [4]). There exist some b > 0 and b′ > 0 such that:

• For every bipartite graph G with n vertices and average degree at most d (≥ 1), a(G) ≥ ( 12 + e−bd2 )n.
• For every d ≥ 1 and all sufficiently large n there exists a bipartite graph with n vertices and average degree at most d such

that a(G) ≤ ( 12 + e−b′
√
d)n.

The lower bound was later improved by Colon et al. [7] to a(G) ≥ (1/2 + e−b′′d)n for some constant b′′.
Conjecture 7 also led to some research for lower bounds of the forest number of triangle-free planar graphs (as a superclass

of bipartite planar graphs). Alon et al. [5] proved the following theorem and corollary:

Theorem 9 (Alon et al. [5]). Every triangle-free graph of order n and size m admits an induced forest of order at least n −
m
4 .

Corollary 10 (Alon et al. [5]). Every triangle-free cubic graph of order n admits an induced forest of order at least 5n
8 .

Theorem 9 is tight because of the union of cycles of length 4. In a planar graph with girth at least g , order n, and size m
with at least a cycle, the number of faces is at most 2m

g (since all the faces’ boundaries have length at least g). Then, by Euler’s
formula, 2m

g ≥ m − n + 2, and thus m ≤
g

g−2 (n − 2). In particular, triangle-free planar graphs of order n ≥ 3 have size at
most 2n − 4.

As a consequence of Theorem 9, for every triangle-free planar graph G of order n, we have a(G) ≥ n/2. That lower bound
was improved for n ≥ 1 by Salavatipour [13].

Theorem 11 (Salavatipour [13]). Every triangle-free planar graph of order n and size m admits an induced forest of order at least
29n−6m

32 and thus at least 17n+24
32 ≈

5n
9.41 .

In 2010, Kowalik et al. [12] proposed that for every triangle-free planar graph G of order n and size m, a(G) ≥
119n−24m−24

128 ≥
71n+72

128 . However, the proof contains a flaw (contrarily to what the authors claim, the minimum counter-
example is not necessarily connected). In Section 2, we give an infinite family of counter-examples for a(G) ≥

119n−24m−24
128

and we propose an improvement of Theorem 11, which thus leads to the best known lower bound to our knowledge:

Theorem12. Every triangle-free planar graph of order n and sizem admits an induced forest of order at least max{ 38n−7m
44 , n−

m
4 }.

We note that Theorem 12 improves Theorem 9 whenm > 3n
2 . Hence by Euler’s formula the following corollary holds:

Corollary 13. Every triangle-free planar graph of order n ≥ 1 admits an induced forest of order at least 6n+7
11 ≈

5n
9.17 .

2. Proof of Theorem 12

We first give a counter-example to the bound of Kowalik et al. [12]: we consider the disjoint union of k cubes. There
are 8k vertices and 12k edges, hence Kowalik et al.’s lower bound tells us that there is an induced forest of size at least
119(8k)−24(12k)−24

128 = 5k + (k − 1) 3
16 . However there cannot be an induced forest of more than 5 vertices in a cube (see Fig. 3),

and thus the biggest induced forest in our graph contains 5k vertices, which contradicts the lower bound. Furthermore, by
increasing k, one can see that the biggest induced forest can be arbitrarily smaller than the supposed lower bound.

The proof of Theorem 12 consists in looking for a minimal counter-example G, proving some structural properties on G,
and concluding that it cannot verify Euler’s formula, which is contradictory.

Consider G = (V , E). For a set S ⊂ V , let G − S be the graph constructed from G by removing the vertices of S and all the
edges incident to some vertex of S. If x ∈ V , then we denote G − {x} by G − x. For a set S of vertices such that S ∩ V = ∅, let
G + S be the graph constructed from G by adding the vertices of S. If x ̸∈ V , then we denote G + {x} by G + x. For a set F of
pairs of vertices of G such that F ∩ E = ∅, let G + F be the graph constructed from G by adding the edges of F . If e is a pair of
vertices of G and e ̸∈ E, we denote G + {e} by G + e. For a setW ⊂ V , we denote by G[W ] the subgraph of G induced byW .
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Fig. 4. The top-left part of the polygon of the constraints on a and b.

We call a vertex of degree d, at least d, and at most d, a d-vertex, a d+-vertex, and a d−-vertex, respectively. Similarly, we
call a cycle of length l, at least l, and at most l an l-cycle, an l+-cycle, and an l−-cycle, respectively, and by extension a face of
length l, at least l, and at most l an l-face, an l+-face, and an l−-face, respectively.

Let P4 be the class of triangle-free planar graphs. We will prove the following more general statement than Theorem 12:

0 ≤ a ≤ 1 (1)

0 ≤ b (2)

a − 6b ≤ 0 (3)

3a − 10b ≤ 1 (4)

8a − 12b ≤ 5 (5)

Theorem 14. If a and b are positive constants such that Eqs. (1)–(5) are verified, then a(G) ≥ an − bm for all G ∈ P4.

That series of inequalities defines a polygon represented in Fig. 4, and for a triangle-free planar graph of given order n
and size m, the highest lower bound will be given by maximizing an − bm for a and b in this polygon. This maximum will
be achieved at a vertex of the polygon. Moreover, by Euler’s formula, every triangle-free planar graph of order n ≥ 3 and
size m satisfies 0 ≤ m ≤ 2n − 4. Therefore for n ≥ 3 the maximum will always be achieved at the intersection of either
3a − 10b = 1 and 8a − 12b = 5, or 8a − 12b = 5 and a = 1. The corresponding intersections are (b, a) = ( 7

44 ,
38
44 ) and

(b, a) = ( 14 , 1), represented in Fig. 4.
Let us show that any of the two lower bounds can be higher than the other, for graphs of arbitrarily high order.
For the disjoint union of k cubes (which is a graph of order 8k and size 12k), the two lower bounds are equal to 5k.
We consider now a graph composed of k disjoint cubes, where we remove an edge from each cube. This graph has

8k vertices and 11k edges. In this case we have n −
m
4 =

21
4 k > 38n−7m

44 =
227
44 k. More simply, for an independent set,

n −
m
4 = n > 38n−7m

44 =
38n
44 .

We now consider a graph composed of k disjoint cubes, wherewe add an edge from each cube to the next one and an edge
from the last one to the first one. This graphhas 8k vertices and 13k edges. In this case,wehaven−m

4 =
19
4 k < 38n−7m

44 =
213
44 k.

Also observe that for a quadrangulation on n vertices and 2n−4 edges (i.e. a planar graph on n vertices that has only 4-faces),
n −

m
4 =

n
2 + 1 < 38n−7m

44 =
6n+7
11 .

Let us now proceed to the proof of Theorem 14. For this proof we mainly adapt the methods of Kowalik et al. [12]. Let
G = (V , E) be a plane embedding of a counter-example to Theorem 14 with the minimum order. Let n = |V | and m = |E|.
We will use the scheme presented in Observation 15 for most of our lemmas.

Observation 15. Let α, β , γ be integers satisfying α ≥ 1, β ≥ 0, γ ≥ 0 and aα − bβ ≤ γ . Let H∗
∈ P4 be a graph with

|V (H∗)| = n − α and |E(H∗)| ≤ m − β .
By minimality of G, H∗ admits an induced forest F∗ of order at least a(n − α) − b(m − β). If there is an induced forest F of G

of order at least |V (F∗)| + γ , then we get a contradiction: as aα − bβ ≤ γ , we have |V (F )| ≥ an − bm.

Table 1 contains the values of (α, β, γ ) that will be used throughout this section. For each one, the inequality aα−bβ ≤ γ
is a consequence of the constraints (1)–(5). For instance, by adding (1) and (4), we get a+(3a−10b) ≤ 1+1, i.e. 4a−10b ≤ 2.
Simplifying by two yields the inequality 2a − 5b ≤ 1, which is the second line of Table 1.



100 F. Dross, M. Montassier and A. Pinlou / Discrete Applied Mathematics 254 (2019) 96–106

Table 1
The various triples (α, β, γ ) and the combinations of inequalities which im-
ply aα − bβ ≤ γ .

α β γ Proof

1 6 0 (3)
2 5 1 ((1) + (4))/2
3 5 2 (3(1) + (4))/2
1 1 1 (1) + (2)
5 9 3 ((1) + (3) + (5))/2
6 8 4 ((1) + (5))∗2/3
4 10 2 (1) + (4)
7 13 4 ((1) + 3(4) + 4(5))/6
3 10 1 (4)
8 12 5 (5)
6 14 3 ((3) + (4) + (5))/2
8 19 4 ((1) + (3) + 2(4) + (5))/2
9 24 4 ((3) + 3(4) + (5))/2

10 23 5 ((1) + 9(4) + 4(5))/6
9 19 5 (3(1) + (3) + 2(4) + (5))/2

We will now prove a series of lemmas on the structure of G.

Lemma 16. Graph G is 2-edge-connected.

Proof. By contradiction, suppose V (G) is partitioned into two partite sets V1 and V2 such that there is at most one edge
between vertices of V1 and V2. Consider graph G[Vi] induced by the vertices of Vi (for i = 1, 2) with ni = |Vi| vertices and
mi = |E(G[Vi])| edges. By minimality of G, G[Vi] admits an induced forest, say Fi, with at least ani − bmi vertices. Now the
union of F1 and F2 (more formally, G[V (F1) ∪ V (F2)]) is an induced forest of G having at least an1 − bm1 + an2 − bm2 =

a(n1 + n2) − b(m1 + m2) ≥ an − bm vertices asm ≥ m1 + m2. A contradiction. □

In particular, Lemma 16 implies that there is no 1−-vertex in G.

Lemma 17. Every vertex in G has degree at most 5.

Proof. By contradiction, suppose v ∈ V (G) is a 6+-vertex. Observation 15 applied to H∗
= G − v with (α, β, γ ) = (1, 6, 0)

and F = F∗ completes the proof. □

Lemma 18. If v is a 3-vertex adjacent to a 4+-vertexw in G, then the two other neighbors of v have a common neighbor different
from v.

Proof. Let x and y be the two neighbors of v different from w. Suppose that they do not have a common neighbor different
from v. Let H∗

= G + xy − {w, v}. Graph H∗ has n − 2 vertices and m′
≤ m − 5 edges. As x and y do not have a common

neighbor in G other than v, the addition of the edge xy does not create any triangle inH∗, thusH∗
∈ P4. Let F ′ be any induced

forest of H∗. Adding v to F ′ (more formally, consider G[V (F ′) ∪ {v}]) leads to an induced forest of G. Observation 15 applied
to (α, β, γ ) = (2, 5, 1) completes the proof. □

Lemma 19. There is no 2-vertex adjacent to a 4+-vertex in G.

Proof. Let v be a 2-vertex adjacent to a 4+-vertexw andH∗
= G−{v, w}. GraphH∗ has n−2 vertices andm′

≤ m−5 edges.
Let F ′ be any induced forest ofH∗. Adding v to F ′ leads to an induced forest ofG. Observation 15 applied to (α, β, γ ) = (2, 5, 1)
completes the proof. □

Lemma 20. There is no 3-vertex adjacent to two 2-vertices in G.

Proof. Let v be a 3-vertex adjacent to two 2-vertices u and w and H∗
= G − {u, v, w}. Graph H∗ has n − 3 vertices and

m′
= m − 5 edges. Let F ′ be any induced forest of H∗. Adding u and w to F ′ leads to an induced forest of G. Observation 15

applied to (α, β, γ ) = (3, 5, 2) completes the proof. □

Lemma 21. Every vertex in G has degree at least 3.

Proof. Let v be a 2-vertex. Suppose that v has a neighbor u of degree 2 and a neighbor w of degree 3. Let H∗
= G−{u, v, w}.

Graph H∗ has n − 3 vertices and m′
= m − 5 edges. Let F ′ be any induced forest of H∗. Adding u and v to F ′ leads to an

induced forest of G. Observation 15 applied to (α, β, γ ) = (3, 5, 2) leads to a contradiction.
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Suppose that v has two neighbors of degree 3, say u and w. Consider three cases according to the number of neighbors u
and w have in common.

• Suppose u and w have only v in common. Let H∗
= G + uw − v. Graph H∗ has n − 1 vertices and m′

= m − 1 edges.
Observe that H∗

∈ P4. Let F ′ be any induced forest of H∗. Adding v to F ′ (more formally, consider G[V (F ′) ∪ {v}]) does
not create any cycle (the edge uw is just subdivided in uv, vw). Observation 15 applied to (α, β, γ ) = (1, 1, 1) leads to
a contradiction.

• Suppose u andw have two neighbors in common, say v and x. Let y be the last neighbor of u. By Lemma 20, both x and y
have degree at least 3. Note that x and y are not adjacent becauseGhas girth at least 4. LetH∗

= G−{u, v, w, x, y}. Graph
H∗ has n−5 vertices and, since y andw are not adjacent (otherwise u andw have three commonneighbors),m′

≤ m−9
edges. Let F ′ be any induced forest ofH∗. Adding u, v andw to F ′ leads to an induced forest of G. Observation 15 applied
to (α, β, γ ) = (5, 9, 3) leads to a contradiction.

• Suppose u and w have three neighbors in common. Let x and y be the ones that are not v. Suppose x is a 4+-vertex
and let H∗

= G − {u, v, w, x, y}. Graph H∗ has n − 5 vertices and m′
≤ m − 9 edges (recall that y is a 3+-vertex by

Lemma 20). Let F ′ be any induced forest of H∗. Adding u, v and w to F ′ leads to an induced forest of G. Observation 15
applied to (α, β, γ ) = (5, 9, 3) leads to a contradiction.W.l.o.g. we assume that x and y are 3-vertices. Let z be the third
neighbor of x. Let H∗

= G− {u, v, w, x, y, z}. Graph H∗ has n− 6 vertices andm′
≤ m− 8 edges. Let F ′ be any induced

forest of H∗. Adding u, v, x and y to F ′ leads to an induced forest of G. Observation 15 applied to (α, β, γ ) = (6, 8, 4)
leads to a contradiction.

Therefore, by Lemmas 16 and 19, every 2-vertex has only neighbors of degree 2. As G is connected (Lemma 16), either
G does not have any 2-vertex or it is 2-regular. If G is 2-regular, then G is a n-cycle and thus m = n. Since G ∈ P4, we have
n ≥ 4. It is clear that G has an induced forest of size n − 1. Recall that 8a − 12b ≤ 5 and a ≤ 1; this gives that 4(a − b) ≤ 3.
Since n ≥ 4, we can deduce that an−bm = (a−b)n ≤ n−1. This contradicts the fact that G is a counter-example. Therefore,
G has minimum degree at least 3. This completes the proof. □

Lemma 22. There is no 4-cycle in G with

• at least one 4+-vertex and two opposite 3-vertices, or
• one 3-vertex opposite to a 4-vertex that has an edge going to the interior of the cycle and one going to the exterior of it.

In particular there is no 4-cycle with exactly three 3-vertices in G.

Proof.

• Let C = v0v1v2v3 be a cycle such that v0 and v2 have degree 3 and v3 is a 4+-vertex. Suppose v1 is a 4+-vertex. Let
H∗

= G−C . GraphH∗ has n−4 vertices andm′
≤ m−10 edges. Let F ′ be any induced forest ofH∗. Adding v0 and v2 to

F ′ leads to an induced forest of G. Observation 15 applied to (α, β, γ ) = (4, 10, 2) leads to a contradiction. Therefore
v1 has degree 3.
Let u0, u1 and u2 be the third neighbors of v0, v1 and v2, respectively. Suppose u0 = u2. LetH∗

= G−{v0, v1, v2, v3, u0}.
GraphH∗ has n−5 vertices andm′

≤ m−9 edges. Let F ′ be any induced forest ofH∗. Adding v0, v1 and v2 to F ′ leads to
an induced forest of G. Observation 15 applied to (α, β, γ ) = (5, 9, 3) leads to a contradiction. So u0 and u2 are distinct.
By Lemma 18, u0u1 ∈ E and u1u2 ∈ E. Assume u0 (or u2) has at most one neighbor w ̸∈ {v0, v1, v2, v3, u0, u1, u2}. Let
H∗

= G−{v0, v1, v2, v3, u0, u1, u2}. GraphH∗ has n−7 vertices andm′
≤ m−13 edges. Let F ′ be any induced forest of

H∗. Adding v0, v1, v2 andu0 toH∗ leads to an induced forest ofG. Observation 15 applied to (α, β, γ ) = (7, 13, 4) leads to
a contradiction. Thus both of the vertices u0 and u2 have at least two neighbors that are not in {v0, v1, v2, v3, u0, u1, u2}.
LetH∗

= G−{v0, v1, v2, v3, u0, u2}. GraphH∗ has n−6 vertices andm′
≤ m−14 edges. Let F ′ be any induced forest of

H∗. Adding the vertices v0, v1 and v2 to F ′ leads to an induced forest ofG. Observation 15 applied to (α, β, γ ) = (6, 14, 3)
leads to a contradiction.

• Let C = v0v1v2v3 be a cycle such that v0 is a 3-vertex and v2 is a 4-vertex with an edge going to the interior of the cycle
and one going to the exterior of it. If v1 and v3 have degree 3, then we fall into the previous case. Therefore w.l.o.g. v1
is a 4+-vertex. Let H∗

= G− C . Graph H∗ has n− 4 vertices andm′
≤ m− 10 edges. Let F ′ be any induced forest of H∗.

Adding v0 and v2 to F ′ leads to an induced forest of G. Indeed, if adding v2 creates a cycle, then there is a path from the
interior to the exterior of C in H∗, which is impossible. Observation 15 applied to (α, β, γ ) = (4, 10, 2) completes the
proof. □

Lemma 23. There is no 4-face with four 3-vertices in G.

Proof. Suppose that there is such a 4-face C = v0v1v2v3, and let ui be the third neighbor of vi for i = 0..3. In the following,
we consider the indices of the ui and vi modulo 4. If for some i0 ∈ {0, 1, 2, 3}, ui0 = ui0+1, then we have a triangle. Suppose
now that ui0 = ui0+2 for some i0 ∈ {0, 1, 2, 3}, w.l.o.g. say i0 = 0. In the cycle v0v1v2u0, the vertices v0 and v2 are two
opposite 3-vertices. By Lemma 22, u0 is a 3-vertex. Observe that u1v1 and u3v3 are separated by the cycle v0v1v2u0. Hence
one of them is a bridge, contradicting Lemma 16.
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Fig. 5. The graph G[A] (only the edges that are known to be there are represented).

Therefore all the ui are distinct. We now consider the question of the presence or not of the edges uiui+1. Consider the
case uiui+1 ̸∈ E and ui+1ui+2 ̸∈ E for some i ∈ {0, 1, 2, 3}, w.l.o.g. say i = 0. If u0u2 ∈ E, then either u2u3 ̸∈ E or u0u3 ̸∈ E
(otherwise G has a triangle), and u1u3 ̸∈ E by planarity of G. Therefore up to the permutation of the indices, u0u1 ̸∈ E,
u1u2 ̸∈ E and u0u2 ̸∈ E. We then define H∗

= G + x + {xu0, xu1, xu2} − {v0, v1, v2, v3}. Graph H∗ has n − 3 vertices and
m′

= m − 5 edges and belongs to P4 as u0u1, u0u2 and u1u2 are not in E. Let F ′ be any induced forest of H∗. Let F be the
subgraph of G induced by V (F ′) \ {x} plus v0, v1 and v2 if x ∈ F ′ or plus v0 and v2 if x ̸∈ F ′. Subgraph F is an induced forest
of G. Hence, Observation 15 applied to (α, β, γ ) = (3, 5, 2) leads to a contradiction. Therefore there must be an i such that
uiui+1 ∈ E and ui+2ui+3 ∈ E, w.l.o.g. u0u1 ∈ E and u2u3 ∈ E.

Let G′
= G − C . Graph G′ has n − 4 vertices and m − 8 edges. Let us now count, for each of the ui’s, the number of the

neighbors of ui that are not in A = {v0, v1, v2, v3, u0, u1, u2, u3}. The edges that are known in G[A] are represented in Fig. 5.

• Suppose w.l.o.g. u0 has only neighbors in A, and another ui′ has at most one neighbor not in A. Let H∗
= G′

−

{u0, u1, u2, u3}. GraphH∗ has n−8 vertices. By Lemma 21, each of the ui has degree at least 3. GraphH∗ hasm′
≤ m−12

edges. Let F ′ be any induced forest of H∗. Adding the vertices u0, ui′ , v1, v2 and v3 to F ′ leads to an induced forest of G.
Observation 15 applied to (α, β, γ ) = (8, 12, 5) leads to a contradiction.

• Suppose w.l.o.g. u0 has at most one neighbor not in A, and all the other ui have each at least one neighbor not in A.
Vertex u0 is not adjacent both to u2 and u3 since G has girth at least 4. Let i0 be such that i0 ̸= 0 and u0ui0 ̸∈ E (either
i0 = 2 or i0 = 3). Let H∗

= G′
− {ui0+1, ui0+2, ui0+3} (we remove all the vertices of A except ui0 ). Graph H∗ has n − 7

vertices. Let us count the number of edges in G′ that have an endvertex in {ui0+1, ui0+2, ui0+3}. If i0 = 2, then there are
at least two edges for the neighbors of u1 and u3 that are not in A, plus the edges u0u1 and u2u3, plus one edge since u0
has degree at least 3, thus at least 5 edges of H∗ have an endvertex in {ui0+1, ui0+2, ui0+3}. If i0 = 3, then there are at
least two edges for the neighbors of u1 and u2 that are not in A, plus the edges u0u1 and u2u3, plus one edge since u0 has
degree at least 3, thus at least 5 edges ofH∗ have an endvertex in {ui0+1, ui0+2, ui0+3}. In both cases,H∗ hasm′

≤ m−13
edges. Let F ′ be any induced forest of H∗. Adding the vertices u0, v1, v2 and v3 to F ′ leads to an induced forest of G, since
there is no path between u0 and ui0 in G[{v1, v2, v3, u0, ui0}]. Observation 15 applied to (α, β, γ ) = (7, 13, 4) leads to
a contradiction.

• So all the ui have at least two neighbors not in A. Let H∗
= G − {v0, v1, v2, v3, u0, u2}. Graph H∗ has n − 6 vertices and

m′
≤ m−14 edges, and if F ′ is any induced forest in H∗, then adding the vertices v0, v1 and v2 to F ′ leads to an induced

forest of G. Observation 15 applied to (α, β, γ ) = (6, 14, 3) leads to a contradiction and completes the proof. □

Lemma 24. There is no separating 4-cycle with four 3-vertices in G.

Proof. Let C = v0v1v2v3 be such a cycle. We will consider the indices of the vi modulo 4 in what follows. Since G is 2-edge-
connected (Lemma 16), two of the vi have their third neighbor in the interior of C , and the two other have theirs outside of
it. There is a vi such that the third neighbors of vi+1 and vi+2 are separated by C , w.l.o.g. for i = 0. Then let u be the third
neighbor of v0. Let H∗

= G − C − u. Graph H∗ has n − 5 vertices, and m′
≤ m − 9 edges. Let F ′ be any induced forest of H∗.

Adding the vertices v0, v1 and v2 to F ′ leads to a forest of G, thus Observation 15 applied to (α, β, γ ) = (5, 9, 3) leads to a
contradiction. □

Lemma 25. There is no 3-vertex adjacent to a 5-vertex in G.
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Proof. Let v be a 3-vertex adjacent to a 5-vertex u. Let w and x be the two other neighbors of v.
We first assume that w or x, w without loss of generality, is a 4+-vertex. Let H∗

= G − {u, v, w}. Graph H∗ has n − 3
vertices and m′

≤ m − 10 edges. Let F ′ be any induced forest of H∗. Adding v to F ′ leads to an induced forest of G. Thus
Observation 15 applied to (α, β, γ ) = (3, 10, 1) leads to a contradiction.

Therefore w and x are 3-vertices. By Lemma 18, w and x have a common neighbor (distinct from v), which has degree 3
by Lemma 22. Finally Lemma 23 and 24 lead to a contradiction, completing the proof. □

Lemma 26. There is no separating 4-cycle with at least two 3-vertices in G.

Proof. Let C = v0v1v2v3 be such a cycle. By Lemmas 22 and 24, C has exactly two 3-vertices. By Lemmas 21, 22 and 25, the
two 3-vertices are adjacent, the two other vertices have degree 4 and none of the 4-vertices has a neighbor inside C and the
other one outside C . W.l.o.g. the 3-vertices are v0 and v1. Let u0 and u1 be the third neighbors of v0 and v1, respectively.

If u0v2 ∈ E or u1v3 ∈ E, say u0v2 ∈ E w.l.o.g., then either v0v1v2u0 or v0v3v2u0 has a 3-vertex (v0) opposite to a 4-vertex
(v2) with an edge going inside and one going outside of it, contradicting Lemma 22. Therefore u0v2 ̸∈ E and u1v3 ̸∈ E.

By Lemma 18, u0u1 ∈ E; thus C does not separate u0 and u1, say u0 and u1 are in the exterior of C up to changing the
plane embedding. By Lemmas 21–25, u0 and u1 are 4-vertices. At least one of v2 or v3, say v2, has two neighbors inside of C
(otherwise the cycle is not separating). Let H∗

= G − {v0, v1, v3, u1}. Graph H∗ has n − 4 vertices and m′
≤ m − 10 edges,

and if F ′ is any induced forest of H∗, then adding v0 and v1 to F ′ leads to an induced forest of G (since v2 is only connected to
the interior and u0 to the exterior of C). Observation 15 applied to (α, β, γ ) = (4, 10, 2) completes the proof. □

Lemma 27. There is no 4-face with exactly two 3-vertices in G.

Proof. Let C = v0v1v2v3 be such a face. By Lemmas 21 and 22 the two 3-vertices are adjacent. W.l.o.g. v0 and v1 have degree
3, and v2 and v3 have degree 4 (by Lemmas 21 and 25). Let u0 and u1 be the third neighbors of v0 and v1, respectively. By
Lemma 18 applied to v0 and v3, and v1 and v2, u0u1 ∈ E. Then by Lemma 26, v0v1u1u0 cannot be a separating cycle, and so
it is the boundary of some 4-face. If both u0 and u1 have degree 3, we have a contradiction to Lemma 23. If one has degree 3
and the other has degree at least 4, we have a contradiction to Lemma 22. Finally, by Lemma 25, u0 and u1 are 4-vertices.

If v2 is adjacent to u0, then u0v0v1v2 is a separating 4-cycle, with two 3-vertices, contradicting Lemma 26. Hence v2u0 is
not in E. Similarly, v3u1 is not in E. Since G ∈ P4, either u0 and v2 do not have a common neighbor, or u1 and v3 do not have a
common neighbor. By symmetry assume that u0 and v2 do not have a common neighbor. LetH∗

= G+u0v2−{u1, v0, v1, v3}.
Graph H∗ has n− 4 vertices,m′

≤ m− 10 edges and belongs to P4. Let F ′ be any induced forest of H∗. Adding v0 and v1 to F ′

leads to an induced forest of G (intuitively the edge u0v2 is just subdivided). Observation 15 applied to (α, β, γ ) = (4, 10, 2)
completes the proof. □

Lemma 28. There is no 4-cycle with at least two 3-vertices in G.

Proof. It follows from Lemmas 22, 23, 26 and 27. □

Lemma 29. There is no 4-face with exactly one 3-vertex in G.

Proof. Let C = v0v1v2v3 be such a face. W.l.o.g. v0 is the 3-vertex and v1, v2 and v3 are 4+-vertices. By Lemma 25, v1
and v3 are 4-vertices. Let u0 be the third neighbor of v0. Vertex u0 is different from v2 and non-adjacent to v1 and v3 (G is
triangle-free).

Let us first assume that u0v2 ∈ E. By Lemmas 21, 25 and 28, u0 is a 4-vertex. Assume v2 has degree 5. Let H∗
=

G − {u0, v0, v2}. Graph H∗ has n − 3 vertices and m − 10 edges. Let F ′ be any induced forest of H∗. Adding the vertex v0
to F ′ leads to an induced forest of G (since u0v0v1v2 separates the neighbors of v1 that are not in C and the neighbors of v3
that are not in C). Observation 15 applied to (α, β, γ ) = (3, 10, 1) leads to a contradiction. Hence v2 has degree 4. Then
either v0v1v2u0 or v0v3v2u0 has a 3-vertex opposite to a 4-vertex with a neighbor in the interior and one in the exterior of
it, contradicting Lemma 22.

Thus u0 is non-adjacent to v2. By Lemma 18, v1 and u0 have a common neighbor other than v0, say u1. It is distinct from
all the vertices we defined previously. By Lemma 28 applied to v0v1u1u0, u0 and u1 have degree at least 4. By Lemma 25, u0
has degree exactly 4.

Suppose u1v3 ∈ E. As C is a face, the last neighbor of v1 (̸= v0, v2, u1), say w1, is not in the interior of C . The cycle
v0v1u1v3 separates u0 and v2. Suppose first that v0v1u1v3 does not separate u0 and w1. Then v0v1u1u0 separates v3 and w1.
Let H∗

= G − {v0, v1, v2, v3, u0, u1}. Graph G∗ has n − 6 vertices andm′
≤ m − 14 edges. Let F ′ be any induced forest of H∗.

Adding the vertices v0, v1 and v3 to F ′ leads to an induced forest of G. Hence Observation 15 applied to (α, β, γ ) = (6, 14, 3)
leads to a contradiction. Therefore v0v1u1v3 separates u0 andw1. Assume u1 has degree 5. LetH∗

= G−{u1, v0, v3}. GraphH∗

has n−3 vertices andm−10 edges. Let F ′ be any induced forest ofH∗. Adding the vertex v0 to F ′ leads to an induced forest of
G. Observation 15 applied to (α, β, γ ) = (3, 10, 1) leads to a contradiction. Hence u1 has degree 4. Then v0v1u1v3, v0u0u1v3
or v0v1u1u0 has a 3-vertex opposite to a 4-vertex with a neighbor in the interior and one in the exterior of it, contradicting
Lemma 22.
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Fig. 6. Graph G[{v0, v1, v2, v3, u0, u1, u3}].

Fig. 7. Vertices v0 , v1 , v2 , v3 , u0 , u1 , u3 , w0 , w1 and w3 .

So u1 cannot be adjacent to v3. As u1v3 ̸∈ E and u0v2 ̸∈ E, by Lemma 18 v3 and u0 have a common neighbor distinct from
v0, say u3. By what precedes and by symmetry, it is of degree at least 4 and non-adjacent to v0, v1, v2 and u1 (it has a role
similar to that of u1, and is non-adjacent to u1 because of the girth assumption). See Fig. 6 for a reminder of the structure
of G[{v0, v1, v2, v3, u0, u1, u3}]. Vertex v0 has degree 3, v1, v3 and u0 are 4-vertices, and v2, u1 and u3 are 4+-vertices. Recall
that u1v3 ̸∈ E, u3v1 ̸∈ E and u0v2 ̸∈ E.

Let w0, w1 and w3 be the fourth neighbors of u0, v1 and v3, respectively. In the following we will no longer use the
fact that C is a face. By the girth assumption, w0 is not adjacent to u1 or u3. Suppose w0 is adjacent to v1 or to v3,
say w0v1 ∈ E. Then by the girth assumption, w0v2 ̸∈ E. By Lemma 28 applied to v0v1w0u0, w0 is a 4+-vertex. Let
H∗

= G − {v0, v1, v2, v3, u0, u1, u3, w0}. Graph H∗ has n − 8 vertices and m′
≤ m − 19 edges. Let F ′ be any induced

forest of H∗. Adding the vertices v0, v1, v3 and u0 to F ′ leads to an induced forest of G. Hence Observation 15 applied to
(α, β, γ ) = (8, 19, 4) leads to a contradiction. So w0 is not adjacent to v1 or v3. By symmetry, w0, w1 and w3 are distinct.

Suppose w0v2 ∈ E. Assume that C separates w1 and w3, or that it does not separate w1 and w3 nor w0 and w1. Then
either C or v0v1v2w0u0 separates w1 and w3. Let H∗

= G − {v0, v1, v2, v3, u0, u1, u3, w0}. Graph H∗ has n − 8 vertices and
m′

≤ m− 19 edges. Let F ′ be any induced forest of H∗. Adding the vertices v0, v1, v3 and u0 to F ′ leads to an induced forest of
G. Hence Observation 15 applied to (α, β, γ ) = (8, 19, 4) leads to a contradiction. Thus C does not separate w1 and w3 but
separates w1 and w0. Let H∗

= G− {v0, v1, v2, v3, u0, u1, u3, w3}. Graph H∗ has n− 8 vertices andm′
≤ m− 19 edges. Let F ′

be any induced forest of H∗. Adding the vertices v0, v1, v3 and u0 to F ′ leads to an induced forest of G. Hence Observation 15
applied to (α, β, γ ) = (8, 19, 4) leads to a contradiction. So w0v2 ̸∈ E, and similarly w1u3 ̸∈ E and w3u1 ̸∈ E.

Thus the only edges that may or may not exist between the vertices we defined are w0w1, w0w3 and w1w3. See Fig. 7 for
a reminder of the edges and vertices we know to this point. Vertex v0 has degree 3, v1, v3 and u0 are 4-vertices and v2, u1
and u3 are 4+-vertices. Vertices v0, v1, v3 and u0 have all their incident edges represented in Fig. 7.

Suppose w0w1 ̸∈ E, w0w3 ̸∈ E, and w1w3 ̸∈ E. Let H∗
= G + x + {xw0, xw1, xw3} − {v0, v1, v2, v3, u0, u1, u3}. Graph H∗

has n − 6 vertices and m′
≤ m − 14 edges, and is in P4. Let F ′ be any induced forest of H∗. Either x ∈ F ′, then the graph

induced by V (F ′) ∪ {v0, v1, v3, u0} \ {x} in G is a forest, or x ̸∈ F ′, then adding v1, v3 and u0 to F ′ leads to an induced forest
of G. Observation 15 applied to (α, β, γ ) = (6, 14, 3) leads to a contradiction. Thus there is at least one edge among w0w1,
w0w3 and w1w3. Moreover, since there is no triangle in G, there are no more than two of these edges. W.l.o.g. let us assume
that w0w1 ̸∈ E and w0w3 ∈ E.

Let us now prove some claims that we will use later:

(a) Suppose that w0 and w1 are 4+-vertices, or that one is a 3-vertex, the other a 4+-vertex, and v2, u1 or u3 has degree 5.
Let H∗

= G−{v0, v1, v2, v3, u0, u1, u3, w0, w1}. Graph H∗ has n−9 vertices andm′
≤ m−24 edges, and adding v0, v1,

v3 and u0 to any induced forest of H∗ leads to an induced forest of G. Observation 15 applied to (α, β, γ ) = (9, 24, 4)
leads to a contradiction.

(b) Suppose w0 or w3, say wi0 , is a 3-vertex and either one of the wi is a 4+-vertex, or w1w3 ̸∈ E. Let H∗
= G −

{v0, v1, v2, v3, u0, u1, u3, w0, w1, w3}. Graph H∗ has n − 10 vertices and m′
≤ m − 23 edges, and adding v0, v1, v3,
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Fig. 8. Vertices v0 , v1 , v2 , v3 , u0 , u1 , u3 , w0 , w1 and w3 .

Fig. 9. Vertices v0 , v1 , v2 , v3 , u0 , u1 , u3 , w0 , w1 , w3 , y0 and y1 .

u0 andwi0 to any induced forest of H∗ leads to an induced forest of G. Observation 15 applied to (α, β, γ ) = (10, 23, 5)
leads to a contradiction.

(c) Suppose w0 and w3 are 3-vertices and w1 and w3 are adjacent. Let H∗
= G− {v0, v1, v3, u0, u1, u3, w0, w1, w3}. Graph

H∗ has n − 9 vertices and m′
≤ m − 19 edges, and adding v0, v1, u0, w0 and w3 to any induced forest of H∗ leads to

an induced forest of G (by planarity, since w1w3 ∈ E and w0w3 ∈ E, the cycle v0v1w1w3v3 separates v2 from w0 in G).
Observation 15 applied to (α, β, γ ) = (9, 19, 5) leads to a contradiction.

If w1w3 ∈ E, then both w0 and w3 are 4+-vertices (by (b) and (c)), and by symmetry w1 is also a 4+-vertex, which is
impossible (by (a)). Hence w1w3 ̸∈ E.

Therefore w0 and w3 are 4+-vertices (by (b)), thus w1 has degree 3 (by (a)), and v2, u1 and u3 have degree 4 (by (a)) (see
Fig. 8). Let y0 and y1 the two neighbors of w1 other than v1. By Lemma 18 they have a common neighbor other than w1, say
t . So by Lemmas 25 and 28 in w1y0ty1, y0 and y1 have degree 4, and by Lemma 18 each one is adjacent either to v2 or to u1.
If they are both adjacent to the same one, say v2 w.l.o.g., then either v2v1w1y0 or v2v1w1y1 is a 4-cycle with a 3-vertex (w1)
opposite to a 4-vertex (v2) that has both an edge going outside and one going inside of it, which is impossible by Lemma 22.
W.l.o.g., say y0 is adjacent to v2 and y1 is adjacent to u1. At this point we know that v0, v1, v2, v3, u0, u1, w1, y0 and y1 are
distinct and do not share an edge that we do not already know. See Fig. 9 for a reminder of the edges and vertices we know
to this point.

Let z be the neighbor of v2 different from v1, v3 and y0. The only edges that may or not be among v0, v1, v2, v3,
u0, u1, w1, y0, y1 and z are zy1 and zu1, and as G is triangle-free, there is at most one of those edges. Let H∗

= G −

{v0, v1, v2, v3, u0, u1, w1, y0, y1, z}. Graph H∗ has n − 10 vertices and m′
≤ m − 23 edges (recall that u1 cannot be adjacent

both to y0 and y1, and thus is not adjacent to y0). Adding to any induced forest of H∗ the vertices v0, v1, v2, u1 and w1 leads to
an induced forest ofG, so Observation 15 applied to (α, β, γ ) = (10, 23, 5) leads to a contradiction, completing the proof. □

Lemma 30. There is no 5-face with only 3-vertices in G.

Proof. Let C = v0v1v2v3v4 be such a face, and u0, u1, u2, u3, and u4 be the third neighbors of v0, v1, v2, v3 and v4, respectively.
The ui are all distinct due to the girth assumption and Lemma 26. We will consider the indices of the ui and vi modulo 5.
There is no edge uiui+1 for any i due to Lemma 28. LetH∗

= G+x+y+{xu0, xu1, yu2, yu3, xy}−C . GraphH∗ has n−3 vertices
andm − 5 edges. Let F ′ be any induced forest of H∗. Let F be the subgraph of G induced by the vertices of V (F ′) \ {x, y}, plus
the vertices v0 and v3, plus v1 if x ∈ V (F ′), and plus v2 if y ∈ V (F ′). Subgraph F is an induced forest of G. Thus Observation 15
applied to (α, β, γ ) = (3, 5, 2) leads to a contradiction completing the proof. □

Lemma 31. There is no 3-vertex adjacent to a 3-vertex and to a 4-vertex in G.
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Proof. Let v be a 3-vertex adjacent to a 3-vertex u and to a 4-vertex w. Let x be the third neighbor of v. By Lemma 18, x and
u have a common neighbor distinct from v which contradicts Lemma 28. □

For every face f of G, let l(f ) be the length of f , and let c4+ (f ) be the number of 4+-vertices in f . For every vertex v, let d(v)
be the degree of v. Let k be the number of faces of G, and for every 3 ≤ d ≤ 5 and every 4 ≤ l, let kl be the number of faces
of length l and nd the number of d-vertices in G.

Each 4-vertex is in the boundary of atmost four faces, and each 5-vertex is in the boundary of atmost five faces. Therefore
the sum of the c4+ (f ) over all the 4-faces and 5-faces is

∑
f ,4≤l(f )≤5c4+ (f ) ≤ 4n4 + 5n5. From Lemmas 25, 30 and 31 we can

deduce that for each 5-face f we have c4+ (f ) ≥ 2. Moreover, by Lemmas 28 and 29, for each 4-face f , c4+ (f ) ≥ 4. Thus∑
f ,l(f )=4c4+ (f ) +

∑
f ,l(f )=5c4+ (f ) ≥ 4k4 + 2k5. Thus we have the following:

4n4 + 5n5 ≥ 4k4 + 2k5

By Euler’s formula, we have

− 12 = 6m − 6n − 6k
= 2

∑
v∈V (G)

d(v) +

∑
f∈F (G)

l(f ) − 6n − 6k

=

∑
d≥3

(2d − 6)nd +

∑
l≥4

(l − 6)kl

≥ 2n4 + 4n5 − 2k4 − k5
≥ 0

This is a contradiction, which ends the proof of Theorem 14.
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