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Abstract

We consider improper colorings (sometimes called generalized, defective or relaxed col-
orings) in which every color class has a bounded degree. We propose a natural extension
of improper colorings: acyclic improper choosability. We prove that subcubic graphs are
acyclically (3,1)*-choosable (i.e. they are acyclically 3-choosable with color classes of
maximum degree one). Using a linear time algorithm, we also prove that outerplanar graphs
are acyclically (2,5)*-choosable (i.e. they are acyclically 2-choosable with color classes of
maximum degree five). Both results are optimal. We finally prove that acyclic choosability
and acyclic improper choosability of planar graphs are equivalent notions.

Keywords: Improper coloring; Acyclic coloring; Choosability; Cubic graphs; Outerplanar
graphs.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. Let G be a
graph and let V(G) and E(G) be its vertex set and its edge set, respectively.
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Many variations and extensions of graph colorings have been considered. In
particular, improper colorings (sometimes called generalized, defective or relaxed
colorings) have been extensively studied. A t-improper k-coloring of G, or simply
a (k,t)*-coloring, is a partition of V(G) into k color classes V},Va, ...,V such that
each V; induces a graph with maximum degree ¢; in other words, each vertex has
at most ¢ neighbors of the same color as itself. The t-improper chromatic number
of G is therefore defined as the smallest integer k such that G is (k,t)*-colorable.
Notice that O-improper coloring corresponds to the usual notion of proper coloring:
a (k,0)*-coloring of G is a proper k-coloring of G, and the 0-improper chromatic
number of G is the chromatic number of G.

Improper colorings were introduced by Cowel et al. [5]. They proved that every
planar graph is (3,2)*-colorable and every outerplanar graph is (2,2)*-colorable.
They also showed, without using the Four Color Theorem, that every planar graph
is (4,1)*-colorable. In the last past years, several authors studied this coloring and
the problem of bounding the #-improper chromatic number has been investigated
for various classes of graph (see e.g. [6,14,15]).

A graph G is L-colorable if for a given list-assignment L = {L(v) : v € V(G)},
there exists a proper coloring f of G such that f(v) € L(v) forevery v € V(G). If G
is L-colorable for any list-assignment L with |L(v)| > [ for every v, then we say that
G is [-choosable. The list chromatic number is then defined as the smallest integer
[ such that G is [-choosable. Notice that a graph which is /-choosable is obviously
[-colorable. Thomassen [12] proved that every planar graph is 5-choosable and
Voigt [13] showed the tightness of this bound.

Eaton and Hull [7] generalized the notion of choosability to improper choos-
ability: a graph G is t-improper l-choosable, or simply (I,t)*-choosable, if for any
list-assignment L such that |L(v)| > [ for every v, there exists a t-improper coloring
f of G such that f(v) € L(v) for every v. Eaton and Hull [7], and independently
Skrekovski [11], proved that every planar graph is (3,2)*-choosable, which extends
the above-mentioned Cowel et al.’s result. This result is sharp in a certain way since
there exist planar graphs which are not (3, 1)*-colorable and planar graphs which
are not (2,7)*-colorable for every r. Moreover, Eaton and Hull, and Skrekovski,
both conjectured that every planar graph is (4, 1)*-choosable.

Recall that an acyclic coloring of G is a coloring f of G such that for any two
distinct colors i and j, the edges uv such that f(u) =i and f(v) = j induce a forest.
A cycle is said alternating if it is properly colored with two colors. Notice that a
coloring of G is acyclic if and only G does not contain any alternating cycle. We
can also note that improper bicolored cycles are not necessarily alternating cycles.

Acyclic choosability was recently introduced by Borodin et al. in [4]. A graph
is acyclically /-choosable if for any list-assignment L such that |L(v)| > [ for every
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v, there exists an acyclic coloring f of G such that f(v) € L(v). Borodin et al. [4]
proved that every planar graph is acyclically 7-choosable. They also conjectured
that every planar graph is acyclically 5-choosable. Acyclic choosability of graph
with bounded degree was also investigated, and Gongalves and Montassier [10]
showed that every subcubic graphs (graphs with maximum degree three) is acycli-
cally 4-choosable.

Boiron et al. [2] extended in a natural way the notion of acyclic coloring to the
notion of acyclic improper coloring as follows. An acyclic t-improper k-coloring,
or simply an acyclic (k,#)*-coloring, of G is a (k,t)*-coloring which is acyclic, that
is G contains no alternating cycle. The main motivation in the study of acyclic im-
proper coloring is the link with oriented coloring (see [2] for more details). Boiron
et al. [1] proved that every subcubic graph is acyclically (3, 1)*-colorable and con-
jectured that every subcubic graph is acyclically (2,2)*-colorable. Moreover, they
constructed subcubic which are not acyclically (2, 1)*-colorable. They also proved
that every outerplanar graph is acyclically (2,5)*-colorable and constructed outer-
planar graphs which are not acyclically (2,4)*-colorable. They also proved that for
every k > 0, there exist planar graphs which are not acyclically (4,k)*-colorable.

This paper is devoted to introduce and study the acyclic improper choosability
for some classes of graphs.

In a natural way, one can define acyclic improper choosability of graphs: a
graph G is acyclically t-improper L-colorable if for a given list-assignment L =
{L(v) : v € V(G)}, there exists an acyclic t-improper coloring f such that f(v) €
L(v) forevery v. If G is acyclically z-improper L-colorable for any list-assignment L
with |L(v)| > [ for every v, then we say that G is acyclically t-improper [-choosable,
or simply acyclically (1,t)*-choosable. The acyclic t-improper list chromatic num-
ber of G is therefore defined as the smallest integer / such that G is acyclically
(1,1)*-choosable.

Our first result concerns subcubic graphs (graphs with maximum degree three)
and extends the above-mentioned result of Boiron et al. [1].

Theorem 1.1 Every subcubic graph is acyclically (3,1)*-choosable.

Note that the authors recently studied with Colin McDiarmid the behavior of the
acyclic t-improper chromatic number of graphs with bounded maximum degree [8]:
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Theorem 1.2 There exists a constant 1| > 0 such that if t < ( 1 > , then

logn
d4/3
"d)=Q ——— |.

Our second result concerns outerplanar graphs (see [9] for a detailed proof):
Theorem 1.3 Every outerplanar graph is acyclically (2,5)*-choosable.

Notice that this theorem extends the above-mentioned result of Boiron et al. [2].

This paper is organized as follows. We give a sketch of proof of Theorem 1.1
in Section 2 and a sketch of proof of Theorem 1.3 in Section 3. Finally, in Section
4, we make some final remarks about the acyclic improper choosability of planar
graphs.

2 Acyclic (3,1)*-choosability of subcubic graphs
In this section, we give the main ideas of the proof of Theorem 1.1.

Proof of Theorem 1.1 (Sketch) Let H be a counter-example to Theorem 1.1 with
minimum order, and L be a list-assignment, with |L(v)| > 3 for every v € V(H),
such that H is not acyclically 1-improper L-colorable.

First, the graph H is a 2-connected cubic graph. Then, recall that Boiron et
al. [2] proved that every subcubic graph is acyclically (3, 1)-colorable. So, we can
assume that H contains two adjacent vertices * and v* such that L(u*) # L(v*).

We can order the vertices xj,xp,...,x, of H such that x; = u*, x, = v* and for
every i, 1 <i < n, the vertex x; is adjacent to some vertex x; with j > i.

We then define a sequence of graphs Hy,H,,...,H, such that H; = H \ {xj}1,
Xit2y. .y ) for 1 <i<n.

We now describe an algorithm which colors H. At Step 1, we set f(x]) =c €
L(x1)\ L(x,) (recall that we assumed that L(u*) # L(v*), x; = u* and x,, = v*) and
therefore f is an acyclic 1-improper L-coloring of H. Suppose that at Stepi — 1, f
is an acyclic 1-improper L-coloring of H;_; such that x| remains colored with color
c. We can then extend f to H; (i.e. color the vertex x;) without changing the color
of x1. At Step n, the vertex x, is the only vertex of H which remains uncolored.
The vertex x, is adjacent to x; and f(x;) = ¢ ¢ L(x,). We can then extend f to
H, = H. The graph H is therefore acyclically 1-improper L-colorable, which is a
contradiction. O
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Fig. 1. A subcubic graph which is not acyclically 3-colorable.

The result of Theorem 1.1 is optimal. Indeed, some graphs with maximum de-
gree A are not acyclically (A— 1,¢)*-choosable, for any # > 0. Therefore, there exist
subcubic graphs which are not acyclically (2,7)-choosable for any # > 0. Moreover,
the graph depicted on Fig. 1 is clearly not acyclically 3-colorable and therefore not
acyclically (3,0)-choosable.

3 Acyclic (2,5)*-choosability of outerplanar graphs

Let T be a rooted tree and let v{,va,...,v, be its vertices ordered according to
some depth-first search walk in 7. Let ¢:V(T) — V(T') be the function defined as
follows:

0 d(vi—1), if vi_1 is v;’s father,
Vi
v; a brother of v; with j the maximum index smaller than i, otherwise.

Observe that the function ¢ is not defined for the vertices vi,v2,...,v_1, Where k
is the smallest integer such that v;_; is not v;’s father: we denote this set of vertices
by W.

In [3], Bonichon et al. proved that for any outerplanar graph G, we can find an
order vy, ...,v, on the vertices of G and a rooted spanning tree 7 of G such that

e the order vy, ..., v, is a depth-first search order in 7g,

* let ¢ be defined as above by the rooted tree 7 and the order vy,...,v,. The
graph H obtained from Tg by adding the set of transversal edges M = {vo(v),v €
V(T5)} is a near-triangulated outerplanar graph such that V(G) =V (H) and G C
H.

Fig. 2 shows an example of decomposition of G. The transversal edges are
dashed for more clarity. Observe that in this example, W = {vy,v2,v3}.

Observe that for every i, there is at most one integer j < i such that v;v; is a
transversal edge. This means that in any greedy coloring algorithm according to
the order vy,...,v,, at each step i, the vertex v; will be adjacent to at most two
already colored vertices: its father and possibly ¢(v;).

Let p* be the function defined as p*(v) = v if k = 0, and p*(v) equals to
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Vi

The original The spanning tree T
outerplanar graph G and the depth-first search
order vi,...,v,

The outerplanar graph H

Fig. 2. The Bonichon et al.’s outerplanar graph decomposition.

p*=1(v)’s father otherwise. In other words, p*(v) is the ancestor of v at distance
k in Tg. Again, p¥ is not defined for every vertex of V and every k.

Let v; be a vertex of G with at least k children in 7¢;. For k > 1, the k-th child of
v;, denoted by sx(v;), is vi+1 if k = 1 and is v; otherwise with j being the smallest
integer such that ¢(v;) is v;’s (k — 1)-th child.

Proof of Theorem 1.3 (Sketch) Let G be an outerplanar graph. Let L be a list-
assignment for the vertices of G such that |L(v)| > 2 for every v. We decompose
G as described above: we obtain an order vy,...,v,, a rooted spanning tree 7, a
set of transversal edges M = {vo(v),v € V(G)} and as a result a near-triangulated
outerplanar graph H.

Let Hy,H,, ..., H, be the sequence of graphs defined as H; = H\ {vi1,vi{2,. ..,
vy} for 1 <i<n.

We color H greedily following the order vi,va,...,v,. At Step 1, we color
the graph H; by assigning any color from L(v;) to its unique vertex v;. At Step
2 <i<n,let f be the coloring of H;_, which is also a partial coloring of H;.
We use the following coloring rules to extend f to H; (”f(v;) € X” means that we
choose any color ¢ € X and set f(v;) = ¢).

Coloring rules:
RO - Ifv; e W: f(v;) € L(v;).
R1 - If v; is the first child of p ( ;) (in other words, if p (v,) =vi_1):
(@) if f(0(vi)) # f(p ( i): f(vz) € L) \{f(0(vi))};
(b) if £(0(vi)) = f(p' (v1)) =
i if f(p2(n) = a:
A. if p?(v;) and p'(¢(v;)) are the same vertex:
o. if 0(v;) is a leaf in Ti; and belongs to W: f(v;) € L(v;);
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B.if &(v;) is a leaf in Tg or f(*() # f(p'(w)):
f(vi) € L) \{f(0°(vi))};
Y. otherwise: f(v;) € L(vi)\ {f(s1(¢(vi)))}:
B. if p?(v;) and p'(¢(v;)) are distinct vertices: f(v;) € L(v;)\{f(p*(v))};
ii. if f(p?(vi)) # a: f(vi) € L) \{f(P*(v))}.
R2 - If v; is the second child of p!(v;):
(@) if p' (vi) € W or £(0(vi)) # f(p' (vi)): f(vi) € Lvi) \ {f(p' (vi))};
(b) if f(0(vi)) = f(p' (v)):
i. if 0(v;) is aleafin Tg or f(*(vi)) # f(p' () or F(p*(vi)) # f(p' (vi)):
fvi) € L) \{f(0(p' (vi)) 1
ii. otherwise: f(v;) € L(vi) \ {f(s1(d(v;)))}.
R3 - If v; is the k-th child of p!(v;) with k > 3: f(v;) € L(v;) \ {f(p' (v))}.

These rules ensure that the coloring f is a 5-improper L-coloring of H and that the
graph H does not contain any alternating cycle. O

Since the Bonichon et al. decomposition can be computed in linear time [3],
this proof provides a linear time algorithm for finding a 5-improper coloring of any
outerplanar graph given lists of size at least two.

The result of Theorem 1.3 is optimal. Indeed, it is clear that outerplanar graphs
are not (1,7)*-choosable for every ¢+ > 0 and therefore are not acyclically (1,7)*-
choosable. Moreover, Boiron et al. [2] constructed outerplanar graphs which are
not acyclically (2,4)*-colorable and therefore not acyclically (2,4)*-choosable.

4 Concluding remarks

As noted in Introduction, Borodin et al. [4] conjectured that every planar graph is
acyclically 5-choosable. We prove that acyclic choosability and acyclic improper
choosability of planar graphs are equivalent notions.

Proposition 4.1 [f for somet > 0, every planar graph is acyclically (1,t)*-choosa-
ble, then every planar graph is acyclically I-choosable.

As a consequence, proving that for some ¢ > 0, every planar graph is acyclically
(5,1)*-choosable is equivalent to proving Borodin et al.’s conjecture.

Since there exist planar graphs which are not acyclically 4-choosable [13],
Proposition 4.1 also implies that planar graphs are not acyclically (4,¢)*-choosable
for all > O (which also follows from the results of Boiron et al. [2]).
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