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Abstract

We consider improper colorings (sometimes called generalized, defective or relaxed col-
orings) in which every color class has a bounded degree. We propose a natural extension
of improper colorings: acyclic improper choosability. We prove that subcubic graphs are
acyclically (3,1)∗-choosable (i.e. they are acyclically 3-choosable with color classes of
maximum degree one). Using a linear time algorithm, we also prove that outerplanar graphs
are acyclically (2,5)∗-choosable (i.e. they are acyclically 2-choosable with color classes of
maximum degree five). Both results are optimal. We finally prove that acyclic choosability
and acyclic improper choosability of planar graphs are equivalent notions.

Keywords: Improper coloring; Acyclic coloring; Choosability; Cubic graphs; Outerplanar
graphs.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. Let G be a
graph and let V (G) and E(G) be its vertex set and its edge set, respectively.
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Many variations and extensions of graph colorings have been considered. In
particular, improper colorings (sometimes called generalized, defective or relaxed
colorings) have been extensively studied. A t-improper k-coloring of G, or simply
a (k, t)∗-coloring, is a partition of V (G) into k color classes V1,V2, . . . ,Vk such that
each Vi induces a graph with maximum degree t; in other words, each vertex has
at most t neighbors of the same color as itself. The t-improper chromatic number
of G is therefore defined as the smallest integer k such that G is (k, t)∗-colorable.
Notice that 0-improper coloring corresponds to the usual notion of proper coloring:
a (k,0)∗-coloring of G is a proper k-coloring of G, and the 0-improper chromatic
number of G is the chromatic number of G.

Improper colorings were introduced by Cowel et al. [5]. They proved that every
planar graph is (3,2)∗-colorable and every outerplanar graph is (2,2)∗-colorable.
They also showed, without using the Four Color Theorem, that every planar graph
is (4,1)∗-colorable. In the last past years, several authors studied this coloring and
the problem of bounding the t-improper chromatic number has been investigated
for various classes of graph (see e.g. [6,14,15]).

A graph G is L-colorable if for a given list-assignment L = {L(v) : v ∈ V (G)},
there exists a proper coloring f of G such that f (v) ∈ L(v) for every v ∈V (G). If G
is L-colorable for any list-assignment L with |L(v)| ≥ l for every v, then we say that
G is l-choosable. The list chromatic number is then defined as the smallest integer
l such that G is l-choosable. Notice that a graph which is l-choosable is obviously
l-colorable. Thomassen [12] proved that every planar graph is 5-choosable and
Voigt [13] showed the tightness of this bound.

Eaton and Hull [7] generalized the notion of choosability to improper choos-
ability: a graph G is t-improper l-choosable, or simply (l, t)∗-choosable, if for any
list-assignment L such that |L(v)| ≥ l for every v, there exists a t-improper coloring
f of G such that f (v) ∈ L(v) for every v. Eaton and Hull [7], and independently
Škrekovski [11], proved that every planar graph is (3,2)∗-choosable, which extends
the above-mentioned Cowel et al.’s result. This result is sharp in a certain way since
there exist planar graphs which are not (3,1)∗-colorable and planar graphs which
are not (2, t)∗-colorable for every t. Moreover, Eaton and Hull, and Škrekovski,
both conjectured that every planar graph is (4,1)∗-choosable.

Recall that an acyclic coloring of G is a coloring f of G such that for any two
distinct colors i and j, the edges uv such that f (u) = i and f (v) = j induce a forest.
A cycle is said alternating if it is properly colored with two colors. Notice that a
coloring of G is acyclic if and only G does not contain any alternating cycle. We
can also note that improper bicolored cycles are not necessarily alternating cycles.

Acyclic choosability was recently introduced by Borodin et al. in [4]. A graph
is acyclically l-choosable if for any list-assignment L such that |L(v)| ≥ l for every
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v, there exists an acyclic coloring f of G such that f (v) ∈ L(v). Borodin et al. [4]
proved that every planar graph is acyclically 7-choosable. They also conjectured
that every planar graph is acyclically 5-choosable. Acyclic choosability of graph
with bounded degree was also investigated, and Gonçalves and Montassier [10]
showed that every subcubic graphs (graphs with maximum degree three) is acycli-
cally 4-choosable.

Boiron et al. [2] extended in a natural way the notion of acyclic coloring to the
notion of acyclic improper coloring as follows. An acyclic t-improper k-coloring,
or simply an acyclic (k, t)∗-coloring, of G is a (k, t)∗-coloring which is acyclic, that
is G contains no alternating cycle. The main motivation in the study of acyclic im-
proper coloring is the link with oriented coloring (see [2] for more details). Boiron
et al. [1] proved that every subcubic graph is acyclically (3,1)∗-colorable and con-
jectured that every subcubic graph is acyclically (2,2)∗-colorable. Moreover, they
constructed subcubic which are not acyclically (2,1)∗-colorable. They also proved
that every outerplanar graph is acyclically (2,5)∗-colorable and constructed outer-
planar graphs which are not acyclically (2,4)∗-colorable. They also proved that for
every k ≥ 0, there exist planar graphs which are not acyclically (4,k)∗-colorable.

This paper is devoted to introduce and study the acyclic improper choosability
for some classes of graphs.

In a natural way, one can define acyclic improper choosability of graphs: a
graph G is acyclically t-improper L-colorable if for a given list-assignment L =
{L(v) : v ∈ V (G)}, there exists an acyclic t-improper coloring f such that f (v) ∈
L(v) for every v. If G is acyclically t-improper L-colorable for any list-assignment L
with |L(v)| ≥ l for every v, then we say that G is acyclically t-improper l-choosable,
or simply acyclically (l, t)∗-choosable. The acyclic t-improper list chromatic num-
ber of G is therefore defined as the smallest integer l such that G is acyclically
(l, t)∗-choosable.

Our first result concerns subcubic graphs (graphs with maximum degree three)
and extends the above-mentioned result of Boiron et al. [1].

Theorem 1.1 Every subcubic graph is acyclically (3,1)∗-choosable.

Note that the authors recently studied with Colin McDiarmid the behavior of the
acyclic t-improper chromatic number of graphs with bounded maximum degree [8]:
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Theorem 1.2 There exists a constant η > 0 such that if t ≤ η
(

n
logn

)3/4
, then

χt
a(d) = Ω

(
d4/3

(logd)1/3

)
.

Our second result concerns outerplanar graphs (see [9] for a detailed proof):

Theorem 1.3 Every outerplanar graph is acyclically (2,5)∗-choosable.

Notice that this theorem extends the above-mentioned result of Boiron et al. [2].

This paper is organized as follows. We give a sketch of proof of Theorem 1.1
in Section 2 and a sketch of proof of Theorem 1.3 in Section 3. Finally, in Section
4, we make some final remarks about the acyclic improper choosability of planar
graphs.

2 Acyclic (3,1)∗-choosability of subcubic graphs

In this section, we give the main ideas of the proof of Theorem 1.1.

Proof of Theorem 1.1 (Sketch) Let H be a counter-example to Theorem 1.1 with
minimum order, and L be a list-assignment, with |L(v)| ≥ 3 for every v ∈ V (H),
such that H is not acyclically 1-improper L-colorable.

First, the graph H is a 2-connected cubic graph. Then, recall that Boiron et
al. [2] proved that every subcubic graph is acyclically (3,1)-colorable. So, we can
assume that H contains two adjacent vertices u∗ and v∗ such that L(u∗) �= L(v∗).

We can order the vertices x1,x2, . . . ,xn of H such that x1 = u∗, xn = v∗ and for
every i, 1 ≤ i < n, the vertex xi is adjacent to some vertex x j with j > i.

We then define a sequence of graphs H1,H2, . . . ,Hn such that Hi = H \ {xi+1,
xi+2, . . . ,xn} for 1 ≤ i ≤ n.

We now describe an algorithm which colors H. At Step 1, we set f (x1) = c ∈
L(x1)\L(xn) (recall that we assumed that L(u∗) �= L(v∗), x1 = u∗ and xn = v∗) and
therefore f is an acyclic 1-improper L-coloring of H1. Suppose that at Step i−1, f
is an acyclic 1-improper L-coloring of Hi−1 such that x1 remains colored with color
c. We can then extend f to Hi (i.e. color the vertex xi) without changing the color
of x1. At Step n, the vertex xn is the only vertex of H which remains uncolored.
The vertex xn is adjacent to x1 and f (x1) = c /∈ L(xn). We can then extend f to
Hn = H. The graph H is therefore acyclically 1-improper L-colorable, which is a
contradiction. �
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Fig. 1. A subcubic graph which is not acyclically 3-colorable.

The result of Theorem 1.1 is optimal. Indeed, some graphs with maximum de-
gree Δ are not acyclically (Δ−1, t)∗-choosable, for any t ≥ 0. Therefore, there exist
subcubic graphs which are not acyclically (2, t)-choosable for any t ≥ 0. Moreover,
the graph depicted on Fig. 1 is clearly not acyclically 3-colorable and therefore not
acyclically (3,0)-choosable.

3 Acyclic (2,5)∗-choosability of outerplanar graphs

Let T be a rooted tree and let v1,v2, . . . ,vn be its vertices ordered according to
some depth-first search walk in T . Let φ:V (T ) → V (T) be the function defined as
follows:

φ:vi �→

⎧⎨
⎩ φ(vi−1), if vi−1 is vi’s father,

v j a brother of vi with j the maximum index smaller than i, otherwise.

Observe that the function φ is not defined for the vertices v1,v2, . . . ,vk−1, where k
is the smallest integer such that vk−1 is not vk’s father: we denote this set of vertices
by W .

In [3], Bonichon et al. proved that for any outerplanar graph G, we can find an
order v1, . . . ,vn on the vertices of G and a rooted spanning tree TG of G such that

• the order v1, . . . ,vn is a depth-first search order in TG,
• let φ be defined as above by the rooted tree TG and the order v1, . . . ,vn. The

graph H obtained from TG by adding the set of transversal edges M = {vφ(v),v∈
V (TG)} is a near-triangulated outerplanar graph such that V (G) =V (H) and G ⊆
H.

Fig. 2 shows an example of decomposition of G. The transversal edges are
dashed for more clarity. Observe that in this example, W = {v1,v2,v3}.

Observe that for every i, there is at most one integer j < i such that viv j is a
transversal edge. This means that in any greedy coloring algorithm according to
the order v1, . . . ,vn, at each step i, the vertex vi will be adjacent to at most two
already colored vertices: its father and possibly φ(vi).

Let pk be the function defined as pk(v) = v if k = 0, and pk(v) equals to
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order v1, . . . ,vn

The original
outerplanar graph G

The outerplanar graph H

v1 v1

vn vn

v2 v2

v3

vn−1 vn−1

v3

The spanning tree TG

and the depth-first search

Fig. 2. The Bonichon et al.’s outerplanar graph decomposition.

pk−1(v)’s father otherwise. In other words, pk(v) is the ancestor of v at distance
k in TG. Again, pk is not defined for every vertex of V and every k.

Let vi be a vertex of G with at least k children in TG. For k ≥ 1, the k-th child of
vi, denoted by sk(vi), is vi+1 if k = 1 and is v j otherwise with j being the smallest
integer such that φ(v j) is vi’s (k−1)-th child.

Proof of Theorem 1.3 (Sketch) Let G be an outerplanar graph. Let L be a list-
assignment for the vertices of G such that |L(v)| ≥ 2 for every v. We decompose
G as described above: we obtain an order v1, . . . ,vn, a rooted spanning tree TG, a
set of transversal edges M = {vφ(v),v ∈ V (G)} and as a result a near-triangulated
outerplanar graph H.

Let H1,H2, . . . ,Hn be the sequence of graphs defined as Hi = H \{vi+1,vi+2, . . . ,
vn} for 1 ≤ i ≤ n.

We color H greedily following the order v1,v2, . . . ,vn. At Step 1, we color
the graph H1 by assigning any color from L(v1) to its unique vertex v1. At Step
2 ≤ i ≤ n, let f be the coloring of Hi−1, which is also a partial coloring of Hi.
We use the following coloring rules to extend f to Hi (” f (vi) ∈ X” means that we
choose any color c ∈ X and set f (vi) = c).

Coloring rules:

R0 - If vi ∈W : f (vi) ∈ L(vi).

R1 - If vi is the first child of p1(vi) (in other words, if p1(vi) = vi−1):
(a) if f (φ(vi)) �= f (p1(vi)): f (vi) ∈ L(vi)\{ f (φ(vi))};
(b) if f (φ(vi)) = f (p1(vi)) = a:

i. if f (p2(vi)) = a:
A. if p2(vi) and p1(φ(vi)) are the same vertex:

α. if φ(vi) is a leaf in TG and belongs to W : f (vi) ∈ L(vi);
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β. if φ(vi) is a leaf in TG or f (φ2(vi)) �= f (p1(vi)):
f (vi) ∈ L(vi)\{ f (φ2(vi))};

γ. otherwise: f (vi) ∈ L(vi)\{ f (s1(φ(vi)))};
B. if p2(vi) and p1(φ(vi)) are distinct vertices: f (vi)∈ L(vi)\{ f (p3(vi))};

ii. if f (p2(vi)) �= a: f (vi) ∈ L(vi)\{ f (p2(vi))}.

R2 - If vi is the second child of p1(vi):
(a) if p1(vi) ∈W or f (φ(vi)) �= f (p1(vi)): f (vi) ∈ L(vi)\{ f (p1(vi))};
(b) if f (φ(vi)) = f (p1(vi)):

i. if φ(vi) is a leaf in TG or f (φ2(vi)) �= f (p1(vi)) or f (p2(vi)) �= f (p1(vi)):
f (vi) ∈ L(vi)\{ f (φ(p1(vi)))};

ii. otherwise: f (vi) ∈ L(vi)\{ f (s1(φ(vi)))}.

R3 - If vi is the k-th child of p1(vi) with k ≥ 3: f (vi) ∈ L(vi)\{ f (p1(vi))}.

These rules ensure that the coloring f is a 5-improper L-coloring of H and that the
graph H does not contain any alternating cycle. �

Since the Bonichon et al. decomposition can be computed in linear time [3],
this proof provides a linear time algorithm for finding a 5-improper coloring of any
outerplanar graph given lists of size at least two.

The result of Theorem 1.3 is optimal. Indeed, it is clear that outerplanar graphs
are not (1, t)∗-choosable for every t ≥ 0 and therefore are not acyclically (1, t)∗-
choosable. Moreover, Boiron et al. [2] constructed outerplanar graphs which are
not acyclically (2,4)∗-colorable and therefore not acyclically (2,4)∗-choosable.

4 Concluding remarks

As noted in Introduction, Borodin et al. [4] conjectured that every planar graph is
acyclically 5-choosable. We prove that acyclic choosability and acyclic improper
choosability of planar graphs are equivalent notions.

Proposition 4.1 If for some t ≥ 0, every planar graph is acyclically (l, t)∗-choosa-
ble, then every planar graph is acyclically l-choosable.

As a consequence, proving that for some t ≥ 0, every planar graph is acyclically
(5, t)∗-choosable is equivalent to proving Borodin et al.’s conjecture.

Since there exist planar graphs which are not acyclically 4-choosable [13],
Proposition 4.1 also implies that planar graphs are not acyclically (4, t)∗-choosable
for all t ≥ 0 (which also follows from the results of Boiron et al. [2]).
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