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Abstract A contact representation by triangles of a graph is a set of triangles in the
plane such that two triangles intersect on at most one point, each triangle represents
a vertex of the graph and two triangles intersects if and only if their corresponding
vertices are adjacent. De Fraysseix, Ossona de Mendez and Rosenstiehl proved that
every planar graph admits a contact representation by triangles. We strengthen this in
terms of a simultaneous contact representation by triangles of a planar map and of its
dual.

A primal–dual contact representation by triangles of a planar map is a contact
representation by triangles of the primal and a contact representation by triangles
of the dual such that for every edge uv, bordering faces f and g, the intersection
between the triangles corresponding to u and v is the same point as the intersection
between the triangles corresponding to f and g. We prove that every 3-connected
planar map admits a primal–dual contact representation by triangles. Moreover, the
interiors of the triangles form a tiling of the triangle corresponding to the outer face
and each contact point is a corner of exactly three triangles. Then we show that these
representations are in one-to-one correspondence with generalized Schnyder woods
defined by Felsner for 3-connected planar maps.

Keywords Triangle contact representation · 3-Connected planar maps · Schnyder
wood · Duality

1 Introduction

A contact system is a set of curves (closed or not) in the plane such that two curves
cannot cross but may intersect tangentially. A contact point of a contact system is
a point that is in the intersection of at least two curves. A contact representation of
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a graph G = (V ,E) is a contact system C = {c(v) : v ∈ V }, such that two curves
intersect if and only if their corresponding vertices are adjacent.

The Circle Packing Theorem of Koebe [14] states that every planar graph admits
a contact representation by circles.

Theorem 1 (Koebe [14]) Every planar graph admits a contact representation by
circles.

Theorem 1 implies that every planar graph has a contact representation by convex
polygons, and de Fraysseix et al. [3] strengthened this by showing that every planar
graph admits a contact representation by triangles. A contact representation by trian-
gles is strict if each contact point is a corner of exactly one triangle. De Fraysseix et
al. [3] proved the following:

Theorem 2 (De Fraysseix et al. [3]) Every planar graph admits a strict contact rep-
resentation by triangles.

Moreover, de Fraysseix et al. [3] proved that strict contact representations by tri-
angles of a planar triangulation are in one-to-one correspondence with its Schnyder
woods defined by Schnyder [16]. (Schnyder wood will be defined in Sect. 2.2.)

Andreev [1] strengthen Theorem 1 in terms of a simultaneous contact representa-
tion of a planar map and of its dual. The dual of a planar map G = (V ,E) is noted
G∗ = (V ∗,E∗). A primal–dual contact representation (V , F ) of a planar map G is
two contact systems V = {c(v) : v ∈ V } and F = {c(f ) : f ∈ V ∗}, such that V is a
contact representation of G, and F is a contact representation of G∗, and for every
edge uv, bordering faces f and g, the intersection between c(u) and c(v) is the same
point as the intersection between c(f ) and c(g). A contact point of a primal–dual
contact representation is a contact point of V or a contact point of F . Andreev [1]
proved the following:

Theorem 3 (Andreev [1]) Every 3-connected planar map admits a primal–dual con-
tact representation by circles.

Our main result is an analogous strengthening of Theorem 2. We say that a primal–
dual contact representation by triangles is tiling if the triangles corresponding to ver-
tices and those corresponding to bounded faces form a tiling of the triangle corre-
sponding to the outer face (see Fig. 1). We say that a primal–dual contact represen-
tation by triangles is strict if each contact point is a corner of exactly three triangles
corresponding to vertices or faces (see Fig. 1). We prove the following:

Theorem 4 Every 3-connected planar map admits a strict tiling primal–dual contact
representation by triangles.

Gansner et al. [11] study representation of graphs by triangles where two vertices
are adjacent if and only if their corresponding triangles are intersecting on a side
(touching representation by triangles). Theorem 4 shows that for 3-connected planar
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Fig. 1 A strict tiling
primal–dual contact
representation by triangles

graphs, the incidence graph between vertices and faces admits a touching representa-
tion by triangles.

The tools needed to prove Theorem 4 are introduced in Sect. 2. In Sect. 2.1, we
present a result of de Fraysseix et al. [5] concerning the stretchability of a contact
system of arcs. In Sect. 2.2, we define (generalized) Schnyder woods and present
related results obtained by Felsner [7]. In Sect. 3, we define a contact system of arcs,
based on a Schnyder wood, and show that this system of arcs is stretchable. When
stretched, this system gives the strict tiling primal–dual contact representation by
triangles. In Sect. 4, we show that strict tiling primal–dual contact representations by
triangles of a planar map are in one-to-one correspondence with its Schnyder woods.
In Sect. 5, we define the class of planar maps admitting a Schnyder wood and thus
a strict tiling primal–dual contact representation by triangles. In Sect. 6, we discuss
possible improvements of Theorem 4.

2 Tools

2.1 Stretchability

An arc is a non-closed curve. An internal point of an arc is a point of the arc distinct
from its extremities. A contact system of arcs is strict if each contact points is internal
to at most one arc. A contact system of arcs is stretchable if there exists a homeomor-
phism which transforms it into a contact system whose arcs are straight line segments.
An extremal point of a contact system of arcs is a point on the outer-boundary of the
system and which is internal to no arc.

We define in Sect. 3 a contact system of arcs such that when stretched it gives a
strict tiling primal–dual contact representation by triangles. To prove that our contact
system of arcs is stretchable, we need the following theorem of de Fraysseix et al. [5].

Theorem 5 (de Fraysseix et al. [5]) A strict contact system of arcs is stretchable
if and only if each subsystem of cardinality at least two has at least three extremal
points.
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Fig. 2 (a) Edge colored, respectively, with color 0, 1, and 2. We use distinct arrow types to distinguish
those colors. (b) Rules for Schnyder woods and angle labelings. (c) Example of angle labeling around an
uni-directed edge colored 0. (d) Example of angle labeling around a bi-directed edge colored 2 and 1

2.2 Schnyder Woods

The contact system of arcs defined in Sect. 3 is constructed from a Schnyder wood.
Schnyder woods where introduced by Schnyder [16] and then generalized by Fel-

sner [7]. Here we use the definition from [7] except if explicitly mentioned. We refer
to classic Schnyder woods defined by Schnyder [16] or generalized Schnyder woods
defined by Felsner [7] when there is a discussion comparing both.

Given a planar map G. Let x0, x1, x2 be three distinct vertices occurring in clock-
wise order on the outer face of G. The suspension Gσ is obtained by attaching a
half-edge that reaches into the outer face to each of these special vertices. A Schny-
der wood rooted at x0, x1, x2 is an orientation and coloring of the edges of Gσ with
the colors 0, 1, 2 satisfying the following rules (see Fig. 2):

• Every edge e is oriented in one direction or in two opposite directions. We will,
respectively, say that e is uni- or bi-directed. The directions of edges are colored
such that if e is bi-directed the two directions have distinct colors.

• The half-edge at xi is directed outwards and colored i.
• Every vertex v has out-degree one in each color. The edges e0(v), e1(v), e2(v)

leaving v in colors 0, 1, 2, respectively, occur in clockwise order. Each edge en-
tering v in color i enters v in the clockwise sector from ei+1(v) to ei−1(v) (where
i + 1 and i − 1 are understood modulo 3).

• There is no interior face the boundary of which is a directed monochromatic cycle.

The difference with the original definition of Schnyder [16] it that edges can be
oriented in two opposite directions.

A Schnyder wood of Gσ defines a labeling of the angles of Gσ where every angle
in the clockwise sector from ei+1(v) to ei−1(v) is labeled i.

A Schnyder angle labelings of Gσ is a labeling of the angles of Gσ with the labels
0, 1, 2 satisfying the following rules (see Fig. 2):

• The two angles at the half-edge of the special vertex xi have labels i + 1 and i − 1
in clockwise order.
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Fig. 3 Directed paths and
regions corresponding to a
vertex

• Rule of vertices: The labels of the angles at each vertex form, in clockwise order,
a nonempty interval of 0’s, a nonempty interval of 1’s and a nonempty interval
of 2’s.

• Rule of faces: The labels of the angles at each interior face form, in clockwise or-
der, a nonempty interval of 0’s, a nonempty interval of 1’s and a nonempty interval
of 2’s. At the outer face the same is true in counterclockwise order.

Felsner [8] proved the following correspondence:

Theorem 6 (Felsner [8]) Schnyder woods of Gσ are in one-to-one correspondence
with Schnyder angle labelings.

Several properties of Schnyder woods will be used. Given a Schnyder wood, let
Ti be the set of edges colored i with the direction they have in this color. Felsner [7]
proved the following:

Lemma 1 (Felsner [7]) For i ∈ {0,1,2}, the digraph Ti is a tree rooted at xi .

By Lemma 1, every vertex v is the starting vertex of a unique directed path Pi(v)

from v to xi , composed of arcs colored i (see Fig. 3). Felsner [7] proved the following:

Lemma 2 (Felsner [7]) For every vertex v and i, j ∈ {0,1,2}, i �= j , the two paths
Pi(v) and Pj (v) have v as only common vertex.

By Lemma 2, for every vertex v, the three paths P0(v), P1(v), P2(v) divide G into
three regions R0(v), R1(v) and R2(v), where Ri(v) denotes the region bounded by
and including the two paths Pi−1(v) and Pi+1(v) (see Fig. 3). In fact Ri(v) will also
be used to denote the set of vertices in this region. Let ri(v) be the number of faces
in the region Ri(v).

Felsner [7] proved the following:

Lemma 3 (Felsner [7]) For all distinct vertices u, v, we have

(i) Ri(u) ⊆ Ri(v) if and only if u ∈ Ri(v).
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(ii) Ri(u) = Ri(v) if and only if there is a path between u and v, with all edges
oriented in two opposite directions, colored i − 1 in one direction and i + 1 in
the other direction.

(iii) There exist i and j with Ri(u) � Ri(v) and Rj (v) � Rj (u).

From Lemma 3 we can deduce some lemmas that will be use several time in the
proof of Lemma 7.

Lemma 4 For all distinct vertices u, v such that u ∈ Pi(v), we have v ∈ Ri(v) �

Ri(u).

Proof We can assume without loss of generality that i = 1. By induction it suffices
to show that for all u, v such that e1(v) = uv, we have R1(v) � R1(u). We have
u ∈ P1(v), so u ∈ R0(v) and u ∈ R2(v) (see Fig. 3). By Lemma 3(i), we have R0(u) ⊆
R0(v) and R2(u) ⊆ R2(v). So by Lemma 3(iii), R1(v) � R1(u). �

Lemma 5 Let vertices u,v be such that u ∈ Pi−1(v) and v ∈ Pi+1(u), then Ri(u) =
Ri(v) and there is a bi-directed path between u and v colored i − 1 from v to u and
colored i + 1 from u and v.

Proof We can assume without loss of generality that i = 1. As u ∈ P0(v) ⊆ R1(v),
Lemma 3(i) implies that R1(u) ⊆ R1(v). As v ∈ P2(u) ⊆ R2(u), Lemma 3(i) also
implies that R0(v) ⊆ R0(u). So R0(w) = R0(v) and by Lemma 3(ii), there is a bi-
directed path Q in color 0 and 2 between v and w. As u ∈ P0(v), by Lemma 2, we
have u /∈ P2(v), so Q is colored 0 from v to u and colored 2 from u to v. �

Lemma 6 Let u,v,w be such that uv is uni-directed from u to v in color i + 1,
w ∈ Pi(v) and v /∈ Pi−1(w), then Ri(u) � Ri(w).

Proof We can assume without loss of generality that i = 1.
Suppose R1(u) � R1(w). Then by Lemma 3(i) u /∈ R1(w). Since w ∈ P1(v),

Lemma 4 implies that v ∈ R1(w). Since u and v are adjacent, vertex v is on the
“border“ of R1(w), that is, we have either v ∈ P0(w) or v ∈ P2(w) (see Fig. 3). So
by the assumption that v /∈ P0(w), we have v ∈ P2(w). We also have w ∈ P1(v), so
Lemma 5 implies that R0(v) = R0(w). Now since u /∈ R1(w) and u is adjacent to v

in P2(w), we have u ∈ R0(w). So u ∈ R0(v), a contradiction to the fact that the edge
uv is uni-directed from u to v in color 2 by definition of Schnyder woods (see Fig. 2).

Suppose we have equality R1(u) = R1(w), then by Lemma 3(ii) there is a bi-
directed path Q in colors 0,2 between u and w. The edge e2(u) (leaving u in color 2)
is equal to uv and is uni-directed so it is not an edge of Q. So the path Q is colored
0 from u to w and colored 2 from w to u. The path P2(w) goes from w to u by path
Q and then to v by edge uv, so v ∈ P2(w). We also have w ∈ P1(v), so Lemma 5
implies that R0(w) = R0(v) and that there is a bi-directed path Q′ in colored 1 from
v to w and colored 2 from w to v. There is a unique path from w to v colored 0, so
the neighbor of v along Q′ is u, contradicting the fact that uv is uni-directed.

So R1(u) � R1(w). �
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Fig. 4 A Schnyder wood with
its corresponding angle labeling
and contact system of arcs

3 Mixing Tools

Given a planar map G and a Schnyder wood of G rooted at x0, x1, x2 we construct
a contact system of arcs A corresponding to the Schnyder wood by the following
method (see Fig. 4).

Each vertex v is represented by three arcs a0(v), a1(v), a2(v), where the arc ai(v)

is colored i and represent the interval of angles labeled i of v. It may be the case
that ai(u) = ai(v) for some values of i, u and v. For every edge e of G, we choose a
point p(e) on its interior. There is also such a point on the half-edge leaving xi , for
i ∈ {0,1,2}. The points p(e) are the contact points of the contact system of arcs.

Actually the arcs of A are completely defined by the following subarcs: For each
angle labeled i at a vertex v in-between the edges e and e′, there is a subarc of ai(v)

going from p(e) to p(e′) along e and e′. Each contact point p(e) is the end of 4 such
subarcs. The Schnyder labeling implies that the three colors are represented at p(e)

and so the two subarcs with the same color are merged and form a longer arc.
One can easily see that this defines a contact system of arcs whose contact points

are the points p(e). By construction, there are no crossing arcs. Moreover, there is no
closed curve as a closed curve in color i would imply the existence of a cycle of G

with edges bi-oriented in color i − 1 and i + 1, which is forbidden by Lemma 1.
It is also clear that the arcs satisfy the following rules:

• For every edge e = vw uni-directed from v to w in color i: The arcs ai+1(v) and
ai−1(v) end at p(e) and the arc ai(w) goes through p(e).

• For every edge e = vw bi-directed, leaving v in color i and leaving w in color j :
Let k be such that {i, j, k} = {0,1,2}. The arcs aj (v) and ai(w) ends at p(e), and
the arcs ak(v) and ak(w) are equal and go through p(e).
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Remark Felsner [8] has shown that generalized Schnyder woods can be embedded
on orthogonal drawings where the position of a vertex in the 3-dimensional space
is given by the coordinates (r1(v), r2(v), r3(v)). The contact system of arcs corre-
sponding to a Schnyder wood can also be drawn on this surface in such a way that
the contact points are precisely the edge-vertices of the drawing (see [9] for defini-
tion of edge-vertices). A possible generalization of shelling orders [6] to generalized
Schnyder wood is to consider the orders given by the three coordinates in the orthog-
onal drawing. The proof of Lemma 7 is not using orthogonal drawings but relies on
considering the orders on ri(v) and thus can be understood as considering the cor-
responding shelling orders in orthogonal drawings. Here we do not use orthogonal
drawings in the proof as the only properties that are useful concerning the regions
Ri(v) are given by Lemma 3.

The following lemma will be used to transform the contact system of arcs into a
strict tiling primal–dual contact representation by triangles.

Lemma 7 The contact system of arcs corresponding to a Schnyder wood is stretch-
able.

Proof Let G be a planar map, given with a Schnyder wood rooted at x0, x1, x2.
Let A be the contact system of arcs corresponding to the Schnyder wood as defined
before. By definition of A, every point p(e), corresponding to an edge e uni- or bi-
directed, is interior to one arc and is the end of two other arcs, so the contact system
of arcs A is strict. By Theorem 5, we have to prove that each subsystem of A, of
cardinality at least two, has at least three extremal points. Let B be a subsystem of
arcs of cardinality at least two. Let SB be the set of vertices v such that there exists
i ∈ {0,1,2} with ai(v) ∈ B. The set SB has cardinality at least one. We have to prove
that B has at least three extremal points.

Let si be a vertex v of SB , such that (ri(v), ri+1(v)) is lexicographically minimum.

Claim 1 Pi−1(si) ∩ SB = {si}.

Proof Suppose there exists v ∈ Pi−1(si) ∩ SB distinct from {si}. Vertex v is in
Ri(si) and in Ri+1(si), so by Lemma 3(i) it satisfies Ri(v) ⊆ Ri(si) and Ri+1(v) ⊆
Ri+1(si). By the choice of si we have in fact Ri(v) = Ri(si) and Ri+1(v) = Ri+1(si).
This contradicts Lemma 3(iii). This proves Claim 1. �

Let s′
i be the last vertex of Pi+1(si) (i.e. the farthest from si ) that is in SB (maybe

si = s′
i ). By Lemma 3(i), we have Ri(s

′
i ) ⊆ Ri(si). Thus, by definition of si , we have

Ri(s
′
i ) = Ri(si). By Lemma 3(ii), there is a bi-directed path Qi in color i − 1 and

i + 1 between si and s′
i . By Claim 1 we have s′

i /∈ Pi−1(si) \ {si} so Q is colored i + 1
from si to s′

i and colored i − 1 from s′
i to si . By definition of s′

i , we have the analog
of Claim 1, that is, Pi+1(s

′
i ) ∩ SB = {s′

i}.
Claim 1 can be restated by

Claim 2 (Ri(si) ∩ SB) = (Ri(s
′
i ) ∩ SB) ⊆ Qi .
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We now try to find some extremal points of B on the edges leaving si , s′
i .

Claim 3 If p(ei−1(si)) belongs to some arc in B, then it is an extremal point of B.
Similarly, if p(ei+1(s

′
i )) belongs to some arc in B, then it is an extremal point of B.

Proof Suppose p(ei−1(si)) belongs to some arc in B. Let v such that ei−1(si) = siv.
Since siv is not uni-directed from v to si , the only arc going through p(ei−1(si))

is an arc aj (v) for some j ∈ {1,2,3}. Then, since v /∈ SB , this arc does not belong
to B and p(ei−1(si)) is not an internal point of an arc of B. By Claim 1, we have
Pi−1(si) ∩ SB = {si}, so p(ei−1(si)) is the only contact point on Pi−1(si) that is
a point of B. Thus we can go along Pi−1(si) from p(ei−1(si)) to the outer-region
without crossing any arc of B . This means that the point p(ei−1(si)) is on B’s outer
boundary, and thus this point is an extremal point of B. Similarly for p(ei+1(s

′
i )).

This proves Claim 3. �

By Claim 3, we have many candidates for extremal points of B , but the points
p(ei−1(si)) and p(ei+1(s

′
i )), for i ∈ {0,1,2}, do not necessarily belongs to some arc

in B and also they are not necessarily disjoint.

Claim 4 At least one of p(ei−1(si)), p(ei+1(si)) and at least one of p(ei−1(s
′
i )),

p(ei+1(s
′
i )) is an extremal point of B .

Proof Since si ∈ SB , at least one of the arcs ai−1(si), ai(si), ai+1(si) is in B. If ai(si)

or ai+1(si) is in B, then p(ei−1(si)) belongs to some arc in B and so it is an extremal
point by Claim 3. So we can assume that ai−1(si) is in B and that ai(si) and ai+1(si)

are not. If si = s′
i , then the point p(ei+1(si)) = p(ei+1(s

′
i )) belongs to some arc in B

and so it is extremal by Claim 3. So we can assume that si �= s′
i . The edge ei+1(si)

is in Qi and bi-directed in colors i + 1 and i − 1. By definition the arc ai−1(si) ends
at p(ei+1(si)), and since ai(si) is not in B, p(ei+1(si)) is not an internal point of an
arc of B. By Claim 1, we have Pi−1(si) ∩ SB = {si} so there is no contact point on
Pi−1(si) that is a point of B. Thus we can go along ei−1(si) and then along Pi+1(si)

from p(ei−1(si)) to the outer-region without crossing any arc. This means that the
point p(ei−1(si)) is on B’s outer boundary, and thus this point is an extremal point
of B. Similarly for s′

i . This proves Claim 4. �

For i ∈ {0,1,2}, let consider the three arcs ai(si), that, respectively, go from
p(ei−1(si)) to p(ei+1(s

′
i )). If the three of them are in B, by Claim 3 the ends of

these three arcs are extremal; and since no three of them coincide, we have the three
required extremal points. If exactly two of them are in B, for example a0(s0) and
a1(s1), then we may have s′

1 = s0 but the points p(e0(s1)), p(e2(s
′
1)) and p(e1(s

′
0))

are distinct (by Claim 1) and form our three extremal points (by Claim 3). If none
of the ai(si) are in B, then by Claim 4, for each i ∈ {0,1,2}, one of p(ei−1(si))

and p(ei+1(si)) is an extremal point for si . We choose one of these extremal point
for each i and claim that they are distinct. Suppose not, then either (a) there ex-
ists i such that si = si+1 and the point p(ei−1(si)) = p(ei−1(si+1)) is extremal, or
(b) there exist i, j �= i and k �= i + 1 such that si and si+1 are adjacent and the point
p(ej (si)) = p(ek(si+1)) = p(sisi+1) is extremal.
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Fig. 5 Case where a1(s1) is an arc of B

(a) The point p(ei−1(si)) is extremal and neither ai(si) nor ai+1(si+1) belong to B,
so the arc ai−1(v) ∈ B, where siv = ei−1(si). Thus v ∈ SB contradicting Claim 1.

(b) Note that by definition of a Schnyder wood we also have j �= k. If j = i − 1 or
k = i we have si+1 ∈ Pi−1(si) or si ∈ Pi(si+1) contradicting Claim 1. So j =
i + 1 and k = i − 1. The edge sisi+1 is bi-directed with colors i − 1, i + 1, so
by Lemma 3(ii) we have Ri(si) = Ri(si+1). Vertex si is in Pi−1(si+1), so by
Lemma 3(i) we have Ri+1(si) ⊆ Ri+1(si+1). Moreover, by definition of si+1, we
have Ri+1(si) = Ri+1(si+1), contradicting Lemma 3(iii).

It remains to study the case where exactly one of the ai(si) is in B. We can assume
by symmetry that a1(s1) ∈ B and a0(s0), a2(s2) are not in B (see Fig. 5). By Claim 3
the two distinct points p(e0(s1)) and p(e2(s

′
1)) are extremal points of B. It remains

to find a third extremal point, distinct from these two. By Claim 4, one of p(e1(s2))

and p(e0(s2)) is an extremal point. Suppose p(e1(s2)) is extremal. By Claim 1, there
is no vertex of P0(s1) \ {s1} in SB , so e0(s1) is distinct from e1(s2). Similarly e2(s

′
1)

is distinct from e1(s2) and so p(e1(s2)) is a third extremal point. So we can assume
that p(e1(s2)) is not extremal and that p(e0(s2)) is. Edge e2(s

′
1) has an extremity not

in SB , so it is distinct to e0(s2). If p(e0(s2)) �= p(e0(s1)), we are done. So we can
assume that p(e0(s2)) = p(e0(s1)), and so s2 = s1. Note that s′

2 = s1 by definition of
s′

2 and Claim 1. Similarly, we can assume that s′
0 = s0 = s′

1.
The rest of the proof is dedicated to find a third extremal point.
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Claim 5 We have SB ⊆ R0(s1) ∩ R2(s
′
1).

Proof As s1 = s′
2 = s2 and s′

1 = s0 = s′
0, by Claim 2 for i = {0,1,2}, we have

R1(s1) ∩ SB ⊆ Q1 and R2(s1) ∩ SB ⊆ Q2 = {s1} and R0(s
′
1) ∩ SB ⊆ Q2 = {s′

1}. So
SB ⊆ R0(s1) ∩ R2(s

′
1) (see Fig. 5). This proves Claim 5. �

For an edge e = uv we define ri(e) = max(ri(u), ri(v)), for i ∈ {0,1,2}. For
the three half-edges of the outer boundary ej (xj ) (added to G to obtain Gσ , see
Sect. 2.2), we define ri(ej (xj )) equal to +∞ if i = j and 0 otherwise. Let e∗ be an
edge e (maybe half-edge) such that p(e) belongs to some arc in B and (r1(e), r2(e))

is lexicographically maximum. We prove that p(e∗) is a third extremal point. If
p(e1(x1)) is a point of B, it is extremal and distinct from e0(s1) and e2(s

′
1). So we

may assume that e∗ is distinct from the half-edge e1(x1).

Claim 6 The edge e∗ is distinct from e0(s1) and e2(s
′
1).

Proof We have r1(e0(s1)) = r1(s1) = r1(s
′
1) = r1(e2(s

′
1)). So we can prove the claim

by showing that r1(e
∗) > r1(s1).

Suppose there exists v ∈ SB \ Q1. Vertex v has an incident edge ei(v) such that
p(ei(v)) belongs to some arc in B and such that r1(e

∗) ≥ r1(ei(v)) ≥ r1(v). So it
suffices to show that r1(v) > r1(s1). By Claim 5, we have v ∈ R0(s1), so Lemma 3(i)
implies that R0(v) ⊆ R0(s1). So Lemma 3(iii) implies that R2(s1) � R2(v) or
R1(s1) � R1(v). If R1(s1) � R1(v) we are done as r1(v) > r1(s1). So we may as-
sume that R2(s1) � R2(v). Similarly we may assume that R0(s

′
1) � R0(v). So P0(v)

intersects P2(s1) and P2(v) intersects P0(s
′
1). By Lemma 2, the two paths P0(v) and

P2(v) have only v has a common point, so they both intersects Q1 and then con-
tinue, one on P0(s

′
1) and the other on P2(s1). So R1(s1) ⊆ R1(v). As v /∈ R1(s1), by

Lemma 3(i) we have R1(v) � R1(s1), so R1(s1) � R1(v) and we are done.
We can now assume that SB ⊆ Q1. Consider an arc a in B \ {a1(s1)} (it exists

since |B| ≥ 2). Let v ∈ SB and i ∈ {0,2} such that a = ai(v). This implies that
p(e1(v)) belongs to some arc in B. If e1(v) is a half-edge, then clearly r1(e

∗) =
r1(e1(v)) > r1(s1). So we may assume that e1(v) is not a half-edge. Let e1(v) = uv.
By Lemma 4, R1(v) � R2(u). Thus r1(e

∗) ≥ r1(e1(v)) = r1(u) > r1(v) = r1(s1).
This proves Claim 6. �

Claim 7 The point p(e∗) is extremal.

Proof Suppose p(e∗) is not extremal. By definition of an extremal point, it is either
not on B’s outer boundary or internal to an arc a of B.

Let e∗ = xy in such a way that r1(x) ≥ r1(y). By Lemma 4, for any vertex v

on P1(x) we have r1(v) > r1(x). So none of the contact points on P1(x)’s edges is
a point of B. Since P1(x) does not intersect any arc of B, p(e∗) lies on B’s outer
boundary.

Now suppose there exists an arc a of B such that p(e∗) is internal to a. We consider
three cases corresponding to the color of a.

Case 1: a is an arc of color 2. By definition of the arcs, either e∗ is uni-directed
in color 2 or e∗ is bi-directed in colors 0,1. Let e∗ = uv such that e∗ is directed



250 Discrete Comput Geom (2012) 48:239–254

from u to v in color 1 or 2. Then a = a2(v) by definition of the arcs. Let z be the
vertex of P1(v) such that there is a bi-directed path Q in colors 0,1 between v and
z which length is maximum (maybe v = z if e1(v) is not bi-directed). When v �= z,
since z ∈ P1(v), Lemma 2 implies that z /∈ P0(v). So Q is colored 1 from v to z and
colored 0 from z to v. By definition of the arcs, the arc a = a2(v) = a2(z) ends at
p(e1(z)). Thus p(e1(z)) belongs to some arc in B. If z = x1, then r1(e1(z)) = +∞,
contradicting the choice of e∗. So we may assume that z �= x1. Let w be such that
e1(z) = zw. By Lemma 4, R1(v) � R1(w). If uv is bi-directed, that is, uv is directed
from u to v in color 1, then Lemma 4 implies that R1(u) � R1(w). If uv is uni-
directed in color 2 from u to v, then Lemma 6 implies that R1(u) � R1(w). In both
cases we have r1(e

∗) = max{r1(u), r1(v)} < r1(w) ≤ r1(e1(z)), a contradiction to the
choice of e∗.

Case 2: a is an arc of color 0. This case is completely symmetric to Case 1 as in
the proof of case 1 we just use the fact that e∗ was chosen in order to maximize r1.
(In case 3, the proof is similar to case 1 but this time the order on r2 will also useful.)

Case 3: a is an arc of color 1. By definition of the arcs, either e∗ is uni-directed
in color 1 or e∗ is bi-directed in colors 0,2. Let e∗ = uv such that e∗ is directed
from u to v in color 1 or 2. Then a = a1(v) by definition of the arcs. Let z be the
vertex of P2(v) such that there is a bi-directed path Q in colors 0,2 between v and
z which length is maximum (maybe v = z if e2(v) is not bi-directed). When v �= z,
since z ∈ P2(v), Lemma 2 implies that z /∈ P0(v). So Q is colored 2 from v to z

and colored 0 from z to v. By definition of the arcs, the arc a = a1(v) = a1(z) ends
at p(e2(z)). Thus p(e2(z)) belongs to some arc in B. Vertex v is in P0(z), so by
Lemma 3(i), R1(v) ⊆ R1(z). If e∗ is bi-directed, then it is directed from v to u in
color 0 and by Lemma 3(i), R1(u) ⊆ R1(v). If e∗ is directed from u to v in color 1,
then by Lemma 4 R1(u) � R1(v). In both cases R1(u) ⊆ R1(v) ⊆ R1(z), so r1(e

∗) =
max{r1(u), r1(v)} ≤ r1(z) ≤ r1(e2(z)), and by the choice of e∗ we have r1(e

∗) =
r1(e2(z)). If z = x2, then r2(e2(z)) = +∞, contradicting the choice of e∗. So we may
assume that z �= x2. Let w be such that e2(z) = zw. By Lemma 4, R2(v) � R2(w).
If uv is bi-directed, that is, directed from u to v in color 2, then Lemma 4 implies,
R2(u) � R2(w). If uv is uni-directed in color 1 from u to v, then Lemma 6 implies
that R2(u) � R2(w). In both cases R2(u) � R2(w), so r2(e

∗) = max{r2(u), r2(v)} <

r2(w) ≤ r2(e2(z)), a contradiction to the choice of e∗. This proves Claim 7. �

By Claims 6 and 7, we have a third extremal point of B. Thus the contact system
of arcs is stretchable. �

4 One-to-One Correspondence

De Fraysseix et al. [3] already proved that strict contact representations by triangles
of a planar triangulation are in one-to-one correspondence with its Schnyder woods
defined by Schnyder [16]. In this section, we are going to prove a similar result for
primal–dual contact representations.

De Fraysseix et al. [4] proved that classic Schnyder woods of a planar triangulation
are in one-to-one correspondence with orientation of the edges of the graph where
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each interior vertex has out-degree 3. This shows that it is possible to retrieve the
coloring of the edges of a classic Schnyder wood from the orientation of all the edges
of this Schnyder wood.

For generalized Schnyder woods (with some edges bi-directed) such a property is
not true: it is not always possible to retrieve the coloring of the edges of a generalized
Schnyder wood from the orientation of the edges (see for example the graph of Fig. 8
in [9]). But Felsner proved that a Schnyder wood of a planar map uniquely defines a
Schnyder wood of the dual and when both the orientation of the edges of the primal
and the dual are given, then the coloring of the Schnyder wood can be retrieved.
We will use this to obtain the one-to-one correspondence with strict tiling primal–
dual contact representations by triangles. To this purpose, we need to introduce some
formalism from [9].

The suspension dual Gσ∗ is obtained from the dual G∗ by the following: The dual-
vertex corresponding to the unbounded face is replaced by a triangle with vertices
y0, y1, y2. More precisely, let Xi be the set of edges on the boundary of the outer face
of G between vertices xj and xk , with {i, j, k} = {0,1,2}. Let Yi be the set of dual
edges to the edges in Xi , i.e. Y0 ∪Y1 ∪Y2 is the set of edges containing the vertex f∞
of G∗ which corresponds to the unbounded face of G. Exchange f∞ by yi at all the
edges of Yi , add three edges y0y1, y1y2, y2y0, and finally add a half-edge at each yi

inside the face y0y1y2. The resulting graph is the suspension dual Gσ∗. Felsner [8, 9]
proved that Schnyder woods of Gσ are in one-to-one correspondence with Schnyder
woods of Gσ∗.

The completion of a plane suspension Gσ and its dual Gσ∗ is obtain by the follow-
ing: Superimpose Gσ and Gσ∗ so that exactly the primal–dual pairs of edges cross
(the half-edge at xi cross the dual edge yjyk , for {i, j, k} = {0,1,2}). The common
subdivision of each crossing pair of edges is a new edge-vertex. Add a new vertex
v∞ which is the second endpoint of the six half-edges reaching into the unbounded
face. The resulting graph is the completion ˜Gσ .

An s-orientation of ˜Gσ is an orientation of the edges of ˜Gσ satisfying the follow-
ing out-degrees:

• d+(v) = 3 for all primal- and dual-vertices v.
• d+(e) = 1 for all edge-vertices e.
• d+(v∞) = 0 for the special vertex v∞.

Felsner [9] proved the following:

Theorem 7 (Felsner [9]) Schnyder woods of Gσ are in one-to-one correspondence
with s-orientations of ˜Gσ .

We are now able to prove the following correspondence:

Theorem 8 The non-isomorphic strict tiling primal–dual contact representations by
triangles of a planar map are in one-to-one correspondence with its Schnyder woods.

Proof Given a strict tiling primal–dual contact representation by triangles (V , F ) of
a graph G, one can associate a corresponding suspension Gσ , its suspension dual
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Gσ∗, the completion ˜Gσ and a s-orientation of the completion. The three vertices
x0, x1, x2 that define the suspension Gσ are, in clockwise order, the three triangles of
V that share a corner with the triangle corresponding to the outer face. We modify our
contact system by exchanging the triangle c(f∞), representing the outer face f∞, by
three triangles c(y0), c(y1), c(y2) each one representing y0, y1, y2 of the suspension
dual. Each c(yi) share a side with c(f∞) and two c(yi) have parallel and intersecting
sides. The interiors of the triangles of this new system still form a tiling of a trian-
gle c(v∞) representing the vertex v∞ of the completion. The edge-vertices of the
completion corresponds to the corners of the triangles of the new system.

The s-orientation of ˜Gσ is obtained by the following. For a primal- or dual-vertex
v, represented by a triangle c(v), all edges ve of ˜Gσ are directed from v to e if e

corresponds to a corner of c(v) and from e to v otherwise. For the special vertex v∞,
all its incident edges are directed toward itself. Clearly, for every primal- or dual-
vertex v, we have d+(v) = 3 as c(v) is a triangle and for v∞ we have d+(v∞) = 0.
As the primal–dual contact representation (V , F ) is strict, i.e. each contact point is
a corner of exactly three triangles, we have d+(e) = 1 for every edge-vertex that is
a contact point of (V , F ). For edge-vertices between special vertices xi , yj and v∞
one can check that the out-degree constraint is also satisfied.

One can remark that two non-isomorphic triangle contact systems representing
the same planar map G define two distinct orientations of ˜Gσ and thus two different
Schnyder woods of Gσ by Theorem 7.

Conversely, let G be a planar map, given with a Schnyder wood rooted at x0, x1,
x2 and the corresponding s-orientation of ˜Gσ . Let A be the contact system of arcs
corresponding to the Schnyder wood as defined in Sect. 3. For each vertex v ∈ V ,
we note c(v) the closed curve that is the union, for i ∈ {0,1,2}, of the part of the
arc ai(v) between the contact point with ai−1(v) and ai+1(v). The set of curves
V = (c(v))v∈V is a contact representation of G by closed curves. For each interior
face F , the labels of its angles form a nonempty interval of 0’s, a nonempty interval
of 1’s and a nonempty interval of 2’s by Theorem 6. By definition of the arcs, each
interval of i’s corresponds to only one arc, noted ai(f ). We note c(f ) the closed
curve that is the union, for i ∈ {0,1,2}, of the part of the arc ai(f ) between the
contact point with ai−1(f ) and ai+1(f ). For the outer face f∞, the curve c(f∞) is
the union, for i ∈ {0,1,2}, of ai+1(xi). The set of curves F = (c(f ))f ∈V ∗ is a contact
representation of G∗ by closed curves.

By Lemma 7, the contact system of arcs A is stretchable. For each v ∈ V ∪ V ∗,
the closed curves c(v) is the union of three part of arcs of A, so when stretched it
becomes a triangle. Thus, we obtain a primal–dual contact representation by triangles
(V , F ) of G. By definition of (V , F ) the interiors of the triangles form a tiling of the
triangle corresponding to the outer face. Thus, the primal–dual contact representation
by triangles (V , F ) is tiling. By definition of A, every contact point, corresponding to
an uni- or bi-directed edge, is interior to one arc and is the extremity of two arcs. So
each contact point of (V , F ) is a corner of exactly three triangles. Thus, the primal–
dual contact representation by triangles (V , F ) is strict. The strict tiling primal–dual
contact representation by triangles (V , F ) corresponds to the s-orientation of ˜Gσ and
thus to the Schnyder wood by Theorem 7. �
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5 Internally 3-Connected Planar Maps

A planar map G is internally 3-connected if there exist three vertices on the outer face
such that the graph obtain from G by adding a vertex adjacent to the three vertices is
3-connected. Miller [15] proved the following (see also [7] for existence of Schnyder
woods for 3-connected planar maps and [2] were the following result is stated in this
form):

Theorem 9 (Miller [15]) A planar map admits a Schnyder wood if and only if it is
internally 3-connected.

As a corollary of Theorems 8 and 9, we obtain the following:

Corollary 1 A planar map admits a strict tiling primal–dual contact representation
by triangles if and only if it is internally 3-connected.

A 3-connected planar map is obviously internally 3-connected, so we obtain The-
orem 4 as a consequence of Corollary 1.

Note that the representation of Theorem 4 is efficiently computable. Finding a
Schnyder wood of an internally 3-connected planar map can be done linearly by
contracting edges in a particular way (see [10]). Then the proof relies on the fact that
the system of arcs defined in Sect. 3 is stretchable. Stretching a system of arc can be
done by solving a system of linear equation (see [5]) and the number of equation and
variable is linear in the size of the graph.

6 Particular Types of Triangle

The construction given by de Fraysseix et al. [3] to obtain a strict contact representa-
tion by triangles of a planar triangulation can be slightly modified to give a strict tiling
primal–dual contact representation by triangles (the three triangles corresponding to
the outer face have to be modified to obtain the tiling property). In de Fraysseix et
al.’s construction, all the triangles have a horizontal side at their bottom and moreover
it is possible to require that all the triangles are right (with the right angle on the left
extremity of the horizontal side). This leads us to propose the following conjecture.

Conjecture 1 Every 3-connected planar map admits a strict tiling primal–dual con-
tact representation by right triangles where all triangles have a horizontal and a ver-
tical side and where the right angle is bottom-left for primal vertices and the outer
face and top-right otherwise.

One may wonder if further requirements can be asked. Is it possible to obtain
primal–dual contact representation by homothetic triangles? Such a representation
is a representation where vertex-triangles and the outer-face-triangle are positively
homothetic to a given triangle T and inner-face-triangles are negatively homothetic
to T . The 4-connected planar triangulation of Fig. 6 has a unique contact represen-
tation by homothetic triangles (for a fixed size of the external triangles). The central
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Fig. 6 A 4-connected planar
triangulation and its contact
representation by homothetic
triangles

face corresponds to an empty triangle and there are some extra contacts between non
adjacent faces. So it is not possible to have an “exact” primal–dual contact repre-
sentation by homothetic triangles for this graph. The extended abstract version of this
paper [12] contains results concerning representation by homothetic triangles that are
now presented in a more general paper on the subject [13].
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