
Entropy compression method applied to graph colorings

D. Gonçalves, M. Montassier, and A. Pinlou
LIRMM - Univ. Montpellier 2, CNRS

May 28, 2014

Abstract

We propose a framework based on the entropy compression method, inspired by the one of Esperet and Parreau [L. Esperet
and A. Parreau, Acyclic edge-coloring using entropy compression, European J. Combin., 34(6):1019–1027, 2013], to prove upper
bounds for some chromatic numbers. From this method, in particular, we derive that every graph with maximum degree ∆ has an
acyclic vertex-coloring using at most 3

2
∆

4
3 + O(∆) colors, and a non-repetitive vertex-coloring using at most ∆2 + 1.89∆

5
3 +

O(∆
4
3) colors.

1 Introduction
In the 70’s Lovász introduced the celebrated Lovász Local Lemma (LLL for short) to prove results on 3-chromatic hypergraphs [6].
It is a powerful probabilistic method to prove the existence of combinatorial objects satisfying a set of constraints. Since then,
this lemma has been used in many occasions. In particular, it is a very efficient tool in graph coloring to provide upper bounds
on several chromatic numbers [1, 3, 7, 9, 10, 11, 12, 13]. Recently Moser and Tardos [14] designed an algorithmic version of
LLL by means of the so-called Entropy Compression Method (ECM for short). This method seems to be applicable whenever
LLL is, with the benefits of providing tighter bounds. For example, the ECM has been used in graph coloring to get bounds on
non-repetitive coloring [4] that improve previous results using LLL (see e.g. [1]) and on acyclic-edge coloring [5]. In this latter
paper, Esperet and Parreau provide a framework applicable to many graph colorings. Inspired by this work, we provide a slightly
different framework and give new tools to improve the analysis.

This extended abstract is organized as follows. In Section 2, we apply the ECM to acyclic vertex coloring. This serves as an
introductory example of our framework, which is then roughly described in Section 3. We also provide tools for its analysis and
apply it to non-repetitive coloring.

2 Acyclic coloring of graphs
A proper coloring of a graph is an assignment of colors to the vertices of the graph such that two adjacent vertices do not use the
same color. An acyclic coloring of a graph G is a proper coloring of G such that G contains no bicolored cycles; in other words,
the graph induced by every two color classes is a forest. Let χa(G), called the acyclic chromatic number, be the smallest integer
k such that the graph G admits an acyclic k-coloring.

We consider the family Fγ of graphs having no copy of K2,γ+1 (the complete bipartite graph with partite sets of size 2 and
γ + 1) in which the two vertices in the first class are non-adjacent. Alon, McDiarmid, and Reed [2] considered graphs G ∈ Fγ
and using LLL, they proved that these graphs satisfy χa(G) ≤ d32

√
γ∆e (∆ denotes the maximum degree). We improve this

bound by a constant factor:

Theorem 1 For some γ ≥ 1, let G ∈ Fγ with maximum degree ∆. We have χa(G) < 1 + ∆
(
1 +
√

2γ + 4
)
.

We prove Theorem 1 by contradiction. Suppose there exists G ∈ Fγ such that χa(G) ≥ 1 + ∆(1 +
√

2γ + 4). Let κ be the
unique integer such that ∆(1 +

√
2γ + 4) ≤ κ < 1 + ∆(1 +

√
2γ + 4). We define an algorithm that "tries" to acyclically color

G with κ colors; by hypothesis, it should fail. Define a total order ≺ on the vertices of G.

2.1 The algorithm
Let V = {1, 2, . . . , κ}t be a vector of length t, for some arbitrarily large t � n = |V (G)|. Algorithm ACYCLICCOLOR-
INGGAMMA_G takes the vector V as input and returns a partial acyclic coloring ϕ : V (G) → {•, 1, 2, . . . , κ} of G (• means
that the vertex is uncolored) and a text file R that is called a record. The acyclic coloring ϕ is necessarily partial since we try to
color G with a number of colors less than its acyclic chromatic number. For a given vertex v of G, we denote by N(v) the set of
neighbors of v.

1

Algorithm 1: ACYCLICCOLORINGGAMMA_G
Input : V (vector of length t).
Output: (ϕ, R).

1 for i← 1 to t do
2 Let v be the smallest (w.r.t ≺) uncolored vertex of G
3 ϕ(v)← V [i]
4 Write "Color \n" in R
5 if ϕ(v) = ϕ(u) for u ∈ N(v) then
6 ϕ(v)← •
7 Write "Uncolor, neighbor u \n" in R

8 else if v belongs to a bicolored cycle of length 2k (k ≥ 2), say (v = u1, . . . , u2k) then
9 for j ← 1 to 2k − 2 do

10 ϕ(uj)← •
11 Write "Uncolor, cycle (v = u1, . . . , u2k) \n" in R

12 return (ϕ, R)

Algorithm ACYCLICCOLORINGGAMMA_G runs as follows. Let ϕi be the partial coloring ofG after i steps (at the end of the
ith loop). At Step i, we first consider ϕi−1 and we color the smallest uncolored vertex v with V [i] (lines 2 and 3 of Algorithm 1).
We then verify whether one of the two following events happens: (1) the graph G contains a monochromatic edge vu for some u
(line 5 of Algorithm 1) or (2) the graph G contains a bicolored cycle of length 2k (v = u1, u2, . . . , u2k) (line 8 of Algorithm 1).
If such events happen, then we uncolor some vertices (including v) in order that none of the two previous events remains. Clearly,
ϕi is a partial acyclic coloring of G.

Proof of Theorem 1. Let us first note that the function defined by Algorithm ACYCLICCOLORINGGAMMA_G is injective.
This comes from the fact that from each output of the algorithm, one can determine the corresponding input (by Lemma 2). Now
we obtain a contradiction by showing that the number of possible outputs is strictly smaller than the number of possible inputs
when t is chosen large enough compared to n. The number of possible inputs is exactly κt while the number of possible outputs
is o(κt), as it is at most (1 + κ)n × o(κt). Indeed, there are at most (1 + κ)n possible partial κ-colorings of G and there are at
most o(κt) possible records (by Lemma 3). This concludes the proof of Theorem 1. 2

2.2 Algorithm analysis
Recall that ϕi denotes the partial acyclic coloring obtained after i steps. Let us denote by ϕi ⊂ V (G) the set of vertices that are
colored in ϕi. Let also vi, Ri and Vi respectively denote the current vertex v of the ith step, the record R after i steps, and the
input vector V restricted to its i first elements. Observe that as ϕi is a partial acyclic κ-coloring of G, and as G is not acyclically
κ-colorable, we have that ϕi (V (G), and thus vi+1 is well defined. This also implies that R has t "Color" lines.

Lemma 2 One can recover Vi from (ϕi, Ri).

We omit here its proof due to lack of space. By Lemma 2, Algorithm ACYCLICCOLORINGGAMMA_G defines an injective
mapping. Let us now bound the number of possible records.

Lemma 3 Algorithm ACYCLICCOLORINGGAMMA_G produces at most o(κt) distinct records R.

Sketch of proof. Since Algorithm ACYCLICCOLORINGGAMMA_G fails to color G, the record R has exactly t "Color" lines.
It contains also "Uncolor" lines of two types: "neighbor" and "cycle". Let t1 be the number of "Uncolor, neighbor"
lines, and let tk be the number of "Uncolor, cycle" lines, where the cycle has length 2k (2 ≤ k ≤ bn/2c). Observe now that
for every "Uncolor, neighbor" step (resp. "Uncolor, cycle" step), the algorithm uncolors 1 (resp. 2k− 2) previously
colored vertex. It follows that t1 +

∑
2≤k≤bn/2c(2k − 2)tk ≤ t. By the previous equation, let us define the non-negative integer

t0 = t −
∑

1≤k≤bn/2c tk. Let us bound the number #Seq(t1, t2, . . . tbn/2c) of possible sequences of "Color" | "Uncolor,
neighbor" | "Uncolor, cycle" lines in the record, for fixed t1, t2, . . . , tbn/2c:

#Seq(t1, t2, . . . , tbn/2c) ≤
(
t

t0

)
×
(
t− t0
t1

)
×
(
t− t0 − t1

t2

)
× · · · ×

(
t−
∑

0≤i<bn/2c ti
tbn/2c

)
=

(
t

t0, t1, t2, . . . , tbn/2c

)
To compute the total number of possible records, let us compute how many different records a given "Uncolor" step can
produce. Observe that an "Uncolor, neighbor" line can be of ∆ different types according to the neighbor of v that shares

2

the same color, and an "Uncolor, cycle" line involving a cycle of length 2k can be of at most 1
2γ∆2k−2 types (the number

of types is equal to the number of 2k-cycles going through v; this number is given by Lemma 3.2 in [2]). Consequently, the
number of different records for fixed t, t0, t1, . . . , tbn2 c is bounded by the following function Bt:

Bt(t0, t1, . . . , tbn2 c) =

(
t

t0, t1, . . . , tbn2 c

)
×∆t1 ×

∏
2≤k≤n/2

(
1

2
γ∆2k−2

)tk
Summing over all possible tuples (t0, t1, . . . , tbn2 c), the number of different records #Rec is bounded by:

#Rec ≤
∑

(t0,t1,...,tbn
2

c)

Bt(t0, t1, . . . , tbn2 c)

After some calculations, we can prove that, for a sufficiently large t and any real x such that 0 < x ≤ 1,

#Rec < t(t+ 1)b
n
2 c

1

xt

1 + ∆x+
1

2
γ

∑
2≤i≤bn2 c

(∆x)2i−2

t

Setting x =
1

∆
√

γ
2 + 1

, we obtain that 1
x

(
1 + ∆x+ 1

2γ
∑

2≤i≤bn2 c
(∆x)2i−2

)
<
(
∆
(
1 +
√

2γ + 4
))
≤ κ. Finally, this gives

#Rec = o(κt). This completes the proof of Lemma 3. 2

3 Our framework and applications
Let us now describe the framework. Given an arbitrarily chosen graphG, our method proves the existence of a particular coloring
of G using κ colors, for some κ. The proof is done by contradiction: we consider that G needs more that κ colors.

Algorithm 2: COLORING_G

Input : V = {1, 2, . . . , κ}t (vector of length t).
Output: (ϕ, R).

1 for i← 1 to t do
2 v ← NextUncolorVertex(ϕ)
3 ϕ(v)← V [i]
4 Write "Color \n" in R
5 for j ← 1 to p do
6 if BadEventj(v, ϕ) then
7 k ← BadEventClassj(v, ϕ)
8 for ∀u ∈ UncolorSetBadEventj(v, ϕ, k) do
9 ϕ(u)← •

10 Write "Uncolor, Bad Event j, k \n" in R

11 return (ϕ, R)

Following the same scheme as in Section 2, we define an algorithm COLORING_G. To do so, we first define a set of forbidden
partial colorings of G and call them bad events. We partition this set into p types (for example, we had 2 types of bad events in
Section 2). Moreover, each type of bad events is divided into classes. Let Cj denote the number of type-j bad event classes. The
algorithm COLORING_G needs the following functions:

• NextUncolorVertex outputs an uncolored vertex of G.

• BadEventj tests whether the current partial coloring is a bad event of type j.

• Given a type-j bad event, BadEventClassj outputs the class of this bad event.

• Given a type-j bad event and its class, UncolorSetBadEventj outputs a sj-subset of V (G) whose uncoloring leads to a
valid partial coloring, for some sj ≥ 1.

• If at some step i of the main loop in COLORING_G a type-j bad event occurs, given the class of this bad event and the
partial coloring ϕi obtained at the end of the step, then RecoverBadEventj outputs the partial coloring ϕi−1 of G.

3

The latter function ensures the injectivity of COLORING_G. Now let κ be the smallest integer such that κ > inf0<x≤1Q(x),
where

Q(x) =
1

x

1 +
∑

1≤j≤p

Cjx
sj

One can prove that Algorithm COLORING_G produces at most o(κt) distinct outputs. This is less than the κt possible inputs,
and thus contradicts the injectivity of COLORING_G.

Let us now apply this framework to non-repetitive coloring, that is a vertex coloring with no path of even length so that the
sequence of colors of the first half equals the sequence of colors of the second half. In that case, let the bad events of type j be
the colorings with a badly colored 2j-path, j ≥ 1. A given current vertex v may belong to at most j∆2j−1 paths of length 2j.
Each type of bad event is partitioned into Cj = j∆2j−1 classes. One can define the above-mentioned functions so that sj = j,
for all j ≥ 1. As we have

Q

(
1

∆2
−
(

2

∆7

) 1
3

)
≤ ∆2 + 1.89∆

5
3 +O(∆

4
3)

this implies that G admits a non-repetitive coloring with ∆2 + 1.89∆
5
3 + O(∆

4
3) colors. This slightly improves on previously

known bounds. The framework also implies the following new results:

• Any graph G with maximum degree ∆ has acyclic chromatic number at most 3
2∆

4
3 +O(∆).

• Any graph G with maximum degree ∆ has generalized r-acyclic chromatic number at most ∆` + O(∆
2
3 (l+1)), where

` = br/2c.

• Any graph G with maximum degree ∆ has Thue choice index at most ∆2 + 2
4
3 ∆

5
3 +O(∆

4
3).

• Any plane graph G with maximum degree ∆ ≥ 3 has facial Thue choice number at most ∆ + 4
√

∆ + 4.

• Any plane graph G has facial Thue choice index at most 10.

References
[1] N. Alon, J. Grytczuk, M. Hałuszczak, and O. Riordan. Nonrepetitive colorings of graphs. Random Structures & Algorithms

21(3-4):336-346, 2002.

[2] N. Alon, C. McDiarmid, and B. Reed. Acyclic coloring of graphs. Random structures and algorithms, 2(3):277–288, 1991.

[3] N. Alon, B. Sudakov, and A. Zaks. Acyclic edge colorings of graphs. Journal of Graph Theory, 37(3):157–167, 2001.

[4] V. Dujmović, G. Joret, J. Kozik, and D.R. Wood. Nonrepetitive colouring via entropy compression. Combinatorica to
appear, 2014.

[5] L. Esperet and A. Parreau. Acyclic edge-coloring using entropy compression. European J. Combin., 34(6):1019–1027,
2013.

[6] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In A. Hajnal, R.
Rado, and V. T. Sós, eds. Infinite and Finite Sets (to Paul Erdős on his 60th birthday) II. North-Holland. pp. 609–627.

[7] G. Fertin, A. Raspaud, and B. Reed. Star coloring of graphs. Journal of Graph Theory, 47(3):163–182, 2004.

[8] A. Fiedorowicz. Acyclic 6-colouring of graphs with maximum degree 5 and small maximum average degree. Discussiones
Mathematicae Graph Theory, 33(1):91–99, 2013.

[9] C. Greenhill and O. Pikhurko. Bounds on the generalised acyclic chromatic numbers of bounded degree graphs. Graphs
and Combinatorics, 21(4):407–419, 2005.

[10] H. Hatami. ∆ + 300 is a bound on the adjacent vertex distinguishing edge chromatic number. J. Combin. Theory Ser. B,
95(2):246–256, 2005.

[11] F. Havet, J. van den Heuvel, C. McDiarmid, and B. Reed. List colouring squares of planar graphs. Research Report
RR-6586, INRIA, July 2008.

[12] M. Molloy and B. Reed. A bound on the strong chromatic index of a graph. J. Combin. Theory Ser. B, 69(2):103–109,
1997.

[13] M. Molloy and B. Reed. A bound on the total chromatic number. Combinatorica, 18(2):241–280, 1998.

[14] R. A. Moser G. Tardos. A constructive proof of the general lovasz local lemma. Journal of ACM, 57(2):1-15, 2010.

4

