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Abstract. In this paper, we conclude the calculation of the domination number of all ðn;mÞ grid graphs.
Indeed, we prove Chang’s conjecture saying that for every 16 ≤ n ≤ m, γðGn;mÞ ¼ bðnþ2Þðmþ2Þ
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1. Introduction. A dominating set in a graph G is a subset of vertices S such that
every vertex in V ðGÞ \ S is a neighbor of some vertex of S . The domination number ofG
is the minimum size of a dominating set of G; we denote it by γðGÞ. This paper is
devoted to the calculation of the domination number of complete grids.

The notation ½i� denotes the set f1; 2; : : : ; ig. Ifw is a word in the alphabet A,w½i� is
the ith letter of w, and for every a in A, jwja denotes the number of occurrences of a inw
(i.e., jfi ∈ f1; : : : ; jwjg∶w½i� ¼ agj). For a vertex v, N ½v� denotes the closed neighbor-
hood of v (i.e., the set of neighbors of v and v itself). For a subset of vertices S of a
vertex set V of a graph, we denote by N ½S � ¼ S

v∈S N ½v�. Note that D is a dominating
set ofG if and only ifN ½D� ¼ V ðGÞ. LetGn;m be the complete ðn;mÞ grid; i.e., the vertex
set of Gn;m is Vn;m ≔ ½n�× ½m�, and two vertices ði; jÞ and ðk; lÞ are adjacent if
jk− ij þ jl− jj ¼ 1. The couple ð1; 1Þ denotes the bottom-left vertex of the grid and
the couple ði; jÞ denotes the vertex of the ith column and the jth row. We will always
assume in this paper that n ≤ m. Let us illustrate our purpose by an example of a
dominating set of the complete grid G24;24 on Figure 1.

The first results on the domination number of grids were obtained about 30 years
ago with the exact values of γðG2;nÞ, γðG3;nÞ, and γðG4;nÞ found by Jacobson and Kinch
[8] in 1983. In 1993, Chang and Clark [3] found those of γðG5;nÞ and γðG6;nÞ. These
results were obtained analytically. Chang [2] devoted his Ph.D. thesis to study the
domination number of grids; he conjectured that this invariant behaves well provided
that n is large enough. Specifically, Chang conjectured the following.

CONJECTURE 1 (Chang [2]). For every 16 ≤ n ≤ m,

γðGn;mÞ ¼
�ðnþ 2Þðmþ 2Þ

5
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Observe that, for instance, this formula would give 131 for the domination number
of the grid in Figure 1. To motivate his bound, Chang proposed some constructions of
dominating sets achieving the upper bound.

LEMMA 1 (Chang [2]). For every 8 ≤ n ≤ m,

γðGn;mÞ ≤
�ðnþ 2Þðmþ 2Þ

5

�
− 4.

In the meantime, some algorithms based on dynamic programming were designed to
compute a lower bound of γðGn;mÞ. There were numerous intermediate results found for
γðGn;mÞ for small values of n andm (see [4, 9, 10] for details). In 1986, Hare, Hedetniemi,
and Hare [9] gave a polynomial time algorithm to compute γðGn;mÞ when n is fixed.
Nevertheless, this algorithm is not usable in practice when n is over 20. Fisher [6] devel-
oped the idea of searching for periodicity in the dynamic programming algorithms, and
using this technique, he found the exact values of γðGn;mÞ for all n ≤ 21. We recall these
values for the sake of completeness.

THEOREM 2 (Fisher [6]). For all n ≤ m and n ≤ 21, we have

FIG. 1. Example of a set of size 131 dominating the grid G24;24.
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γðGn;mÞ ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�
m
3

�
if n ¼ 1�

mþ1
2

�
if n ¼ 2�

3mþ1
4

�
if n ¼ 3

mþ 1 if n ¼ 4 and m ¼ 5; 6; 9
m if n ¼ 4 and m ≠ 5; 6; 9�
6mþ4

5

�
− 1 if n ¼ 5 and m ¼ 7�

6mþ4
5

�
if n ¼ 5 and m ≠ 7�

10mþ4
7

�
if n ¼ 6�

5mþ1
3

�
if n ¼ 7�

15mþ7
8

�
if n ¼ 8�

23mþ10
11

�
if n ¼ 9�

30mþ15
13

�
− 1 if n ¼ 10 and m≡13 10 or m ¼ 13; 16�

30mþ15
13

�
if n ¼ 10 and m ≢13 10 and m ≠ 13; 16�

38mþ22
15

�
− 1 if n ¼ 11 and m ¼ 11; 18; 20; 22; 33�

38mþ22
15

�
if n ¼ 11 and m ≠ 11; 18; 20; 22; 33�

80mþ38
29

�
if n ¼ 12�

98mþ54
33

�
− 1 if n ¼ 13 and m≡33 13; 16; 18; 19�

98mþ54
33

�
if n ¼ 13 and m ≢33 13; 16; 18; 19�

35mþ20
11

�
− 1 if n ¼ 14 and m≡22 7�

35mþ20
11

�
if n ¼ 14 and m ≢22 7�

44mþ28
13

�
− 1 if n ¼ 15 and m≡26 5�

44mþ28
13

�
if n ¼ 15 and m ≢26 5�

ðnþ2Þðmþ2Þ
5

�
− 4 if n ≥ 16

:

Note that these values are obtained by specific formulas for every 1 ≤ n ≤ 15 and by
the formula of Conjecture 1 for every 16 ≤ n ≤ 21. This proves Chang’s conjecture for
all values 16 ≤ n ≤ 21.
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In 2004, Conjecture 1 was confirmed up to an additive constant.
THEOREM 3 (Guichard [7]). For every 16 ≤ n ≤ m,

γðGn;mÞ ≥
�ðnþ 2Þðmþ 2Þ

5

�
− 9:

In this paper, we prove Chang’s conjecture, hence finishing the computation of
γðGn;mÞ. We adapt Guichard’s ideas to improve the additive constant from −9 to
−4 when 24 ≤ n ≤ m. Cases n ¼ 22 and n ¼ 23 can be proved in a couple of hours using
Fisher’s method (described in [6]) on a modern computer. They can also be proved by a
slight improvement of the technique presented in the next section.

2. Values of γ�Gn;m�when 24 ≤ n ≤ m. Our method follows the idea of Guichard
[7]. A slight improvement is enough to give the exact bound.

A vertex of the grid Gn;m dominates at most 5 vertices (its 4 neighbors and itself). It
is then clear that γðGn;mÞ ≥ n⋅m

5 . The previous inequality would become an equality if
there would be a dominating set D such that every vertex of Gn;m is dominated only
once, and all vertices of D are of degree 4 (i.e., dominates exactly 5 vertices); in this
case, we would have 5 ⋅ jDj− n ⋅m ¼ 0. This is clearly impossible (e.g., to dominate
the corners of the grid, we need vertices of degree at most 3). Therefore, our goal is
to find a dominating set D ofGn;m such that the difference 5 ⋅ jDj− n ⋅m is the smallest.

Let S be a subset of V ðGn;mÞ. The loss of S is lðSÞ ¼ 5 ⋅ jS j− jN ½S�j.
PROPOSITION 4. The following properties of the loss function are straightforward:

(i) For every S, lðSÞ ≥ 0 (positivity).
(ii) If S1 ∩ S2 ¼ ∅, then lðS1 ∪ S2Þ ¼ lðS1Þ þ lðS2Þ þ jN ½S1� ∩ N ½S2�j.
(iii) If S  0 ⊆ S, then lðS  0Þ ≤ lðSÞ (increasing function).
(iv) If S1 ∩ S2 ¼ ∅, then lðS1 ∪ S2Þ ≥ lðS1Þ þ lðS2Þ (superadditivity).

Let us denote by ln;m the minimum of lðDÞ when D is a dominating set of Gn;m.
LEMMA 5. γðGn;mÞ ¼ dn⋅mþln;m

5 e.
Proof. IfD is a dominating set ofGn;m, then lðDÞ ¼ 5 ⋅ jDj− jN ½D�j ¼ 5 ⋅ jDj−n ⋅m.

Hence, by minimality of ln;m and γðGn;mÞ, we have ln;m ¼ 5 ⋅ γðGn;mÞ− n ⋅m. ▯
Our aim is to get a lower bound for ln;m. As the reader can observe in Figure 1, the

loss is concentrated on the border of the grid. We now analyze more carefully the loss
generated by the border of thickness 10.

We define the border Bn;m ⊆ Vn;m of Gn;m as the set of vertices ði; jÞ where i ≤ 10,
or j ≤ 10, or i > n− 10, or j > m− 10 to which we add the four vertices ð11; 11Þ,
ð11;m− 10Þ, ðn− 10; 11Þ, ðn− 10;m− 10Þ. Given a subset S ⊆ V , let I ðSÞ be the in-
ternal vertices of S , i.e., I ðSÞ ¼ fv ∈ S∶N ½v� ⊆ Sg. These sets are illustrated in Figure 2.
We will compute bn;m ¼ minD lðDÞ, where D is a subset of Bn;m and dominates I ðBn;mÞ,
i.e., D ⊆ Bn;m and I ðBn;mÞ ⊆ N ½D�. Observe that this lower bound bn;m is a lower bound
of ln;m. Indeed, for every dominating set D of Gn;m, the set D  0 ≔ D ∩ Bn;m dominates
I ðBn;mÞ; hence bn;m ≤ lðD  0Þ ≤ lðDÞ. In the remainder, we will compute bn;m, and we
will show that bn;m ¼ ln;m.

In the following, we split the border Bn;m into four parts, Om−12, Pn−12, Qm−12,
Rn−12, which are defined just below.

For p ≥ 12, let Pp ⊂ Bn;m defined as follows: Pp ¼ ð½10�× f12gÞ ∪ ð½11�× f11gÞ ∪
ð½p�× ½10�Þ. We define the input vertices of Pp as ½10�× f12g and the output vertices of
Pp as fpg× ½10�. The set Pp, illustrated for p ¼ 19 in Figure 3, corresponds to the set of
black and gray vertices. The input vertices are the gray circles, and the output vertices
are the gray squares. Recall that in our drawing conventions, the vertex ð1; 1Þ is the
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bottom-left vertex, and hence the vertex ði; jÞ is in the ith column from the left and in
the jth row from the bottom.

For n;m ∈ N�, let fn;m∶½n�× ½m� → ½m�× ½n� be the bijection such that fn;mði; jÞ ¼
ðj; n− iþ 1Þ. It is clear that the set Bn;m is the disjoint union of the following four sets
depicted in Figure 4: Pn−12, Qm−12 ¼ fn;mðPm−12Þ, Rn−12 ¼ fm;n ∘ fn;mðPn−12Þ, and
Om−12 ¼ f−1

n;mðPm−12Þ. Similar to Pn−12, the sets Om−12, Qn−12, and Rm−12 have input

FIG. 2. The graphG30;40. The setB30;40 is the set of vertices filled in black or in gray. The set I ðB30;40Þ is the
set of vertices filled in black.

FIG. 3. The set P19 (black and gray), the set of input vertices (gray circles), and the set of output vertices
(gray squares).
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and output vertices. For instance, the output vertices of Qm−12 correspond in Figure 3
to the white squares. Every set playing a symmetric role, we now focus on Pn−12.

Given a subset S of Vn;m, let the labeling ϕS∶Vn;m → f0; 1; 2g be such that

ϕSði; jÞ ¼
8<
:

0 if ði; jÞ ∈ S;
1 if ði; jÞ ∈ N ½S � \ S;
2 otherwise:

Note that ϕS is such that any two adjacent vertices in Gn;m cannot be labeled 0
and 2.

Given p ≥ 12 and a set S ⊆ Pp, the input word (respectively, output word) of S for
Pp, denoted by winðSÞ (respectively, wout

p ðSÞ), is the 10-letter word in the alphabet
f0; 1; 2g obtained by reading ϕS on the input vertices (respectively, output vertices)
of Pp. More precisely, its ith letter is ϕSði; 12Þ (respectively, ϕSðp; iÞ). This notion
extends to Op, Qp, and Rp in a natural way: For example, the output word of
S ⊆ Op for Op is wout

p ðfn;mðSÞÞ.
According to the definition of ϕ, the input and output words belong to the setW of

10-letter words in f0; 1; 2g, which avoid 02 and 20. The number of k-digit trinary
numbers without 02 or 20 is given by the following formula [6]:

ð1þ ffiffiffi
2

p Þkþ1 þ ð1− ffiffiffi
2

p Þkþ1

2
.ð1Þ

The size of W is therefore jW j ¼ 8119.

Pn 12

Rn 12

Qm 12

Om 12
V

G
n

m
B

n
m

FIG. 4. The sets Om−12, Pn−12, Qm−12, and Rn−12.
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Given two words w;w 0 ∈ W , we define Dw;w 0
p as the family of subsets D of Pp

such that
• D dominates I ðPpÞ,
• w is the input word winðDÞ,
• w 0 is the output word wout

p ðDÞ.
To complete our calculation, we will need to know, for two given words w;w 0 ∈ W ,

the minimum loss over all losses lðDÞ, where D ∈ Dw;w 0
p . For this purpose, we introduce

the ð8119; 8119Þ square matrix Cp. For w;w 0 ∈ W , let Cp½w;w 0� ¼ min
D∈Dw;w  0

p
lðDÞ,

where the minimum of the empty set is þ∞.
Let w;w 0 ∈ W be two given words. Because of the symmetry of P12 with respect to

the first diagonal (bottom-left to top-right) of the grid, if a vertex setD belongs toDw;w  0
12 ,

then D  0 ¼ fðj; iÞjði; jÞ ∈ Dg belongs to Dw 0;w
12 . Moreover, it is clear that, again because of

the symmetry, lðDÞ ¼ lðD  0Þ. Therefore, we have C12½w;w 0� ¼ C12½w 0; w�, and thus C 12

is a symmetric matrix. Despite the size of C 12 and the size of P12 (141 vertices), it is
possible to computeC12 in less than one hour by computer. Indeed, we choose a sequence
of subsets X0 ¼ ∅; X1; : : : ; X141 ¼ P12 such that for every i ∈ f1; : : : ; 141g, Xi ⊆ Xiþ1

and Xiþ1 \ Xi ¼ fxiþ1g. Moreover, we choose the sequence such that for every i,
Xi \ I ðXiÞ is at most 21. This can be done, for example, by taking xiþ1 ¼
minfðx; yÞ∶ðx; yÞ ∈ P12 \ Xig, where the order is the lexical order. For i ∈ f0; : : : ;
141g, we compute for every labeling f ∈ Fi, where Fi is the set of functions
ðXi \ I ðXiÞÞ → f0; 1; 2g, the minimal loss li;f of a set S ⊆ Xi that dominates I ðXiÞ
and such that ϕSðvÞ ¼ f ðvÞ for every v ∈ Xi \ I ðXiÞ. Note that not every labeling is
possible since two adjacent vertices cannot be labeled 0 and 2. The number of possible
labelings can be computed using formula (1), and since jXi \ I ðXiÞj can be covered by a
path of at most 23 vertices, this gives, in the worst case, that this number is less than 109

and can then be processed by a computer. We compute inductively the sequence
ðli;f Þf∈Fi

from the sequence ðli−1;f Þf∈Fi−1
by dynamical programming, and the matrix

C is easily deduced from ðl141;f Þf∈F141
.

In the following, our aim is to glue Pn−12, Qm−12, Rn−12, and Om−12 together. For
two consecutive parts of the border, say, Pn−12 and Qm−12, the output word of Qm−12

should be compatible with the input word of Pn−12. Two words, w and w 0 of W , are
compatible if the sum of their corresponding letters is at most 2, i.e., w½i� þw 0½i� ≤ 2
for all i ∈ ½9�. Note that w½10� þw 0½10� could be greater than 2 since the corresponding
vertices can be dominated by some vertices of Vn;m \ Bn;m.

Given two words w;w 0 ∈ W , let

lðw;w 0Þ ¼ jfi ∈ ½10�∶w½i� ≠ 2 andw 0½i� ¼ 0gj þ jfi ∈ ½10�∶w 0½i� ≠ 2 andw½i� ¼ 0gj:
LEMMA 6. Let D be a dominating set of Gn;m, and let us denote DP ¼ D ∩ Pn−12 and

DQ ¼ D ∩ Qm−12. Then lðD ∩ ðPn−12 ∪ Qm−12ÞÞ ¼ lðDPÞ þ lðDQÞ þ lðw;w 0Þ, where
w ¼ winðDPÞ and w 0 ¼ wout

m−12ðf−1
n;mðDQÞÞ. Moreover, w and w 0 are compatible.

Proof. By Proposition 4(ii), lðD ∩ ðPn−12 ∪ Qm−12ÞÞ ¼ lðDPÞ þ lðDQÞþ
jN ½DP � ∩ N ½DQ�j. It suffices then to note that lðw;w 0Þ ¼ jN ½DP � ∩ N ½DQ�j to get
lðD ∩ ðPn−12 ∪ Qm−12ÞÞ ¼ lðDPÞ þ lðDQÞ þ lðw;w 0Þ.

In what remains, we prove that w and w 0 are compatible. If those two words were
not compatible, there would exist an index i ∈ ½9� such that wout

m−12ðf−1
n;mðDQÞÞ½i�þ

winðDPÞ½i� > 2. Thus at least one of these two letters should be a 2, and the other
one should not be 0.

Suppose that wout
m−12ðf−1

n;mðDQÞÞ½i� ¼ 2, and note that this means that the vertex
ði; 13Þ is not dominated by a vertex in DQ. Since D is a dominating set of Gn;m, every
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output vertex of Qm−12 except ð10; 13Þ (and every input vertex of Pn−12 except ð10; 12Þ)
is dominated by a vertex ofDQ or by a vertex ofDP . Thus ði; 13Þ should be dominated by
its unique neighbor in Pn−12, namely, ði; 12Þ. This would imply that ði; 12Þ ∈ D, contra-
dicting the fact that winðDPÞ½i� ≠ 0.

Similarly, if winðDPÞ½i� ¼ 2, the vertex ði; 12Þ is not dominated by a vertex in DP ;
thus ði; 12Þ must be dominated by the vertex ði; 13Þ ∈ D, contradicting the fact that
wout

m−12ðf−1
n;mðDQÞÞ½i� ≠ 0. ▯

Lemma 6 is designed for the two consecutive parts Pn−12 andQm−12 of the border of
Gn;m. It is easy to see that this extends to any pair of consecutive parts of the border, i.e.,
Qm−12 and Rn−12, Rn−12 and Om−12, Om−12 and Pn−12.

We define the matrix ð8119; 8119Þ square matrix L, which contains, for every pair of
words w;w 0 ∈ W , the value lðw;w 0Þ:

L½w;w 0� ¼
� þ∞ if w and w 0 are not compatible;
lðw;w 0Þ otherwise:

Note that L is symmetric since lðw;w 0Þ ¼ lðw 0; wÞ.
Let ⊗ be matrix multiplication in ðmin;þÞ algebra; i.e., C ¼ A ⊗ B is the matrix

where for all i, j, C ½i; j� ¼ mink A½i; k� þ B½k; j�.
Let Mp ¼ L ⊗ Cp for p ≥ 12.
By construction, Mn−12½w;w 0� corresponds to the minimum possible loss

lðD ∩ Pn−12Þ of a dominating set D ⊆ Vn;m that dominates I ðPn−12Þ and such that
w is the output word of Qm−12 and w 0 is the output word of Pn−12.

LEMMA 7. For all 24 ≤ n ≤ m, we have

bn;m ≥ min
w1;w2;w3;w4∈W

Mn−12½w1; w2� þMm−12½w2; w3� þMn−12½w3; w4� þMm−12½w4; w1�:

Proof. Consider a set D ⊆ Bn;m that dominates I ðBn;mÞ and achieves lðDÞ ¼ bn;m.
Let DP ¼ D ∩ Pn−12, DQ ¼ D ∩ Qm−12, DR ¼ D ∩ Rn−12, and DO ¼ D ∩ Om−12. Let
wP (wQ, wR, and wO, respectively) be the input word of Pn−12 (Qm−12, Rn−12, and
Om−12), and w 0

P (w 0
Q, w

 0
R, and w 0

O) be the output word of Pn−12 (Qm−12, Rn−12, and
Om−12). By definition of Cp, the loss of DP is at least Cn−12½wP;w

 0
P �. Similarly, we have

lðDQÞ ≥ Cm−12½wQ;w
 0
Q�, lðDRÞ ≥ Cn−12½wR;w

 0
R�, and lðDOÞ ≥ Cm−12½wO;w

 0
O�. By the

definition of the loss,

lðDÞ ¼ bn;m

¼ 5 ⋅ jDj− jN ½D�j
¼ lðDOÞ þ lðDPÞ þ lðDQÞ þ lðDRÞ þ L½w 0

O;wP � þ L½w 0
P;wQ�

þ L½w 0
Q;wR� þ L½w 0

R;wO�
by Lemma 6 and sinceN ½DP � ∩ N ½DR� ¼ N ½DQ� ∩ N ½DO� ¼ ∅

≥ Cm−12½wO;w
 0
O� þ Cn−12½wP;w

 0
P � þ Cm−12½wQ;w

 0
Q� þ Cn−12½wR;w

 0
R�

þ L½w 0
O;wP � þ L½w 0

P;wQ� þ L½w 0
Q;wR� þ L½w 0

R;wO�
≥ Mm−12½wO;wP � þMn−12½wP;wQ� þMm−12½wQ;wR� þMn−12½wR;wO�
since w 0

O and wP ðrespectively; w 0
P and wQ;w

 0
Q and wR;w

 0
R and wOÞ

are compatibles: ▯
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According to Lemma 7, to bound bn;m it would be thus interesting to know Mp for
p > 12. It is why we introduce the following ð8119; 8119Þ square matrix T .

LEMMA 8. There exists a matrix T such that Cpþ1 ¼ Cp ⊗ T for all p ≥ 12. This
matrix is defined as follows:

T ½w;w 0� ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

þ∞ if ∃i ∈ ½10� s:t:w ½i� ¼ 0 and w 0½i� ¼ 2
þ∞ if ∃i ∈ ½9� s:t: w½i� ¼ 2 and w 0½i� ≠ 0
þ∞ if ∃i ∈ f2; : : : ; 9g s:t:w 0½i� ¼ 1;w½i� ≠ 0;w 0½i− 1� ≠ 0

and w 0½iþ 1� ≠ 0
þ∞ if w 0½1� ¼ 1;w½1� ≠ 0 and w 0½2� ≠ 0
þ∞ if w 0½10� ¼ 1;w½10� ≠ 0 and w 0½9� ≠ 0
3 ⋅ jw 0j0 − jwj2 − jw 0j1 þ jwj0 − 1 if w 0½10� ¼ 0
3 ⋅ jw 0j0 − jwj2 − jw 0j1 þ jwj0 otherwise:

Proof. Consider a set S  0 ⊆ Ppþ1 dominating I ðPpþ1Þ, and let S ¼ S  0 ∩ Pp. Let w ¼
wout

p ðSÞ and w 0 ¼ wout
pþ1ðS  0Þ. Let ΔðS; S  0Þ ¼ lðS  0Þ− lðSÞ. By definition of the loss,

ΔðS; S  0Þ ¼ 5 ⋅ jS  0 \ S j− jN ½S  0� \ N ½S �j. Let us compute ΔðS; S  0Þ in terms of the number
of occurrences of 0’s, 1’s, and 2’s in the wordsw andw 0. The set S  0 \ S corresponds to the
vertices fðpþ 1; iÞ ∣ i ∈ ½10�; w 0½i� ¼ 0g. The set N ½S  0� \ N ½S� corresponds to the vertices
dominated by S  0 but not dominated by S; these vertices clearly belong to the columns p,
pþ 1, and pþ 2. Since S  0 dominates I ðPpþ1Þ, those in the column p are the vertices
fðp; iÞ ∣ i ∈ ½10�; w½i� ¼ 2g. Those in the column pþ 1 are the vertices fðpþ 1; iÞ ∣ i ∈
½10�; w 0½i� ≠ 2; w½i� ≠ 0g and possibly the vertex ðpþ 1; 11Þ when w 0½10� ¼ 0. Finally,
those in the column pþ 2 are the vertices fðpþ 2; iÞ ∣ i ∈ ½10�; w 0½i� ¼ 0g. We then get

ΔðS; S  0Þ ¼
�
3 ⋅ jw 0j0 − jwj2 − jw 0j1 þ jwj0 − 1 if w 0½10� ¼ 0;
3 ⋅ jw 0j0 − jwj2 − jw 0j1 þ jwj0 otherwise;

where jwjn denotes the number of occurrences of the letter n in the word w.
Thus ΔðS; S  0Þ depends only on the output words of S and S  0, and we can denote this

value by Δðw;w 0Þ. Note, however, that there exist pairs of words ðw;w 0Þ that could not
be the output words of S and S  0; there are three cases:

Case 1. w½i� ¼ 0 and w 0½i� ¼ 2 since the vertex ðpþ 1; iÞ would be dominated by
ðp; iÞ contradicting its label 2.
Case 2. w½i� ¼ 2 and w 0½i� ≠ 0 for i ∈ ½9� since ðp; iÞ would not be dominated, con-
tradicting the fact that S  0 dominates I ðPpþ1Þ.
Case 3. w 0½i� ¼ 1 and w 0½i− 1� ≠ 0, w 0½iþ 1� ≠ 0, w½i� ≠ 0 since ðpþ 1; iÞ would be
dominated according to its label but none of its neighbors belong to S  0.

For these forbidden cases, we set Δðw;w 0Þ ¼ þ∞.
By definition, Cpþ1½wi;w

 0� is the minimum loss lðS  0Þ of a set S  0 ⊆ Ppþ1 that dom-
inates I ðPpþ1Þ, withwi as input word andw 0 as output word. It is clear that S ¼ S  0 ∩ Pp

dominates I ðPpÞ and has wi as input word. Let w be its output word and note that
Cpþ1½wi;w� ¼ lðS  0Þ ¼ lðSÞ þ Δðw;w 0Þ. The minimality of lðS  0Þ implies the minimality
of lðSÞ over the sets X ∈ Dwi;w

 0
p . Indeed, any set X ∈ Dwi;w

 0
p could be turned into a set

X  0 ∈ Dwi;w
pþ1 by adding vertices of the pþ 1th column accordingly to w 0. Thus

Cpþ1½wi;w� ¼ Cp½wi;w
 0� þ Δðw;w 0Þ;

which implies that
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Cpþ1½wi;w� ≥ min
w

Cp½wi;w
 0� þ Δðw;w 0Þ:

On the other hand, for every word wo ∈ W such that Cp½wi;wo� ≠ þ∞ and
Δðwo;w

 0Þ ≠ þ∞, there is a set S ∈ Dwi;wo
p , with lðSÞ ¼ Cp½wi;wo�, that can be turned

into a set S  0 ∈ Dwi;w
 0

pþ1 with lðS  0Þ ¼ Cp½wi;wo� þ Δðwo;w
 0Þ. Thus

Cpþ1½wi;w� ≤ min
wo

Cp½wi;wo� þ Δðwo;w
 0Þ:

This concludes the proof of the lemma. ▯
By the definition of Mp, we have also Mpþ1 ¼ Mp ⊗ T . Note that T is a sparse ma-

trix: About 95.5% of its 81192 entries are þ∞. Thus the multiplication by T in the
ðmin;þÞ algebra can be done in a reasonable amount of time by an algorithm using
Oðn3Þ additions and comparisons. Note that the best known algorithm for multiplication
of the ðn; nÞmatrix in the ðmin;þÞ algebra is due to Chan [1]: He provided aOð n3

log nÞ-time

algorithm. However, for simplicity reasons, we implemented the algorithm in Oðn3Þ.
Fact 9. The computations give us that M 126 ¼ M 125 þ 1. Thus, since ðAþ cÞ ⊗

B ¼ ðA ⊗ BÞ þ c for any matrices A, B and any integer c, we have that M 125þk ¼
M 125 þ k for every k ∈ N.

Let us defineM  0
p ¼ mink∈N ðMpþk − kÞ. Then, for all q ≥ p,Mq ≥ M  0

p þ ðq− pÞ. By
Fact 9, M  0

p ¼ mink∈f0; : : : 125−pgðMpþk − kÞ.
Fact 10. By computing M  0

12, and A  0 ¼ M  0
12 ⊗ M  0

12, we obtain that minw1;w3
ðA  0 þ

A 0T Þ½w1; w3� ¼ 76 (where AT is the transpose of A).
This implies that

min
w1;w3

ðmin
w2

M  0
12½w1; w2� þM  0

12½w2; w3�Þ þ ðmin
w4

M  0
12½w3; w4� þM  0

12½w4; w1�Þ ¼ 76;

min
w1;w2;w3;w4

M  0
12½w1; w2� þM  0

12½w2; w3� þM  0
12½w3; w4� þM  0

12½w4; w1� ¼ 76:

THEOREM 11. If 24 ≤ n ≤ m, then

γðGn;mÞ ¼
�ðnþ 2Þðmþ 2Þ

5

�
− 4:

Proof. By Chang’s construction [2], γðGn;mÞ ≤ bðnþ2Þðmþ2Þ
5 c− 4. Let us now

compute a lower bound for the loss of a dominating set of Gn;m.

ln;m ≥ bn;m

≥ min
w1;w2;w3;w4

Mn−12½w1; w2� þMm−12½w2; w3� þMn−12½w3; w4� þMm−12½w4; w1�

by Lemma7

≥ min
w1;w2;w3;w4

M  0
12½w1; w2� þ ðn− 12− 12Þ þM  0

12½w2; w3� þ ðm− 12− 12Þ

þM  0
12½w3; w4� þ ðn− 12− 12Þ þM  0

12½w4; w1� þ ðm− 12− 12Þ
≥ 2ðnþm− 48Þ þ min

w1;w2;w3;w4

M  0
12½w1; w2� þM  0

12½w2; w3�

þM  0
12½w3; w4� þM  0

12½w4; w1�
≥ 2ðnþm− 48Þ þ 76

≥ 2ðnþmÞ− 20:

1452 D. GONÇALVES, A. PINLOU, M. RAO, AND S. THOMASSÉ

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Thus by Lemma 5, we have

γðGn;mÞ ≥
�
n:mþ 2ðnþmÞ− 20

5

�

≥
�ðnþ 2Þðmþ 2Þ− 4

5

�
− 4

≥
�ðnþ 2Þðmþ 2Þ

5

�
− 4: ▯

Our proofs and computations in this paper led us to get a lower bound on the loss
bn;m, namely, bn;m ≥ 2ðnþmÞ− 20. This lower bound appeared to be the best possible
and allowed us to conclude the proof of our main theorem. This lower bound is highly
related to the shape of the border Bn;m (thickness of 10 with four extra vertices in the
corners). This shape was obtained after several unsuccessful attempts using other dif-
ferent shapes. Indeed, a border of thickness less than 10 or a border of thickness 10 with-
out the extra four vertices in the corner did not give a big enough lower bound to
conclude.
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