The chromatic number and switching chromatic number of 2-edge-colored graphs of bounded degree

Fabien Jacques, Mickael Montassier, and Alexandre Pinlou

LIRMM, Université de Montpellier, CNRS, France

EXTENDED ABSTRACT

The notion of homomorphisms of 2-edge-colored graphs has already been studied as a way of extending classical results in graph coloring such as Hadwiger's conjecture. Guenin [5] introduced the notion of switching homomorphisms for its relation with a well-known conjecture of Seymour. In 2012, this notion has been further developed by Naserasr et al. [6] as it captures a number of well-known conjectures that can be reformulated using the definition of switching homomorphisms. In this extended abstract, we study homomorphisms of 2-edge colored graphs and switching homomorphisms of bounded degree graphs.

A 2-edge-colored graph G = (V, E, s) is a simple graph (V, E) with two kinds of edges: positive and negative edges. The signature $s : E(G) \to \{-1, +1\}$ assigns to each edge its sign. In the sequel, \mathcal{D}_k (resp. \mathcal{D}_k^c) denotes the class of 2-edge-colored graphs (resp. connected 2-edge-colored graphs) with maximum degree k.

Given two 2-edge-colored graphs G and H, the mapping $\varphi : V(G) \to V(H)$ is a homomorphism if φ maps every edge of G to an edge of H with the same sign. This can be seen as coloring the graph G by using the vertices of H as colors. The target graph H gives us the rules that this coloring must obey. If vertices 1 and 2 in H are connected with a positive (resp. negative) edge, then every pair of adjacent vertices in G colored with 1 and 2 must be connected with a positive (resp. negative) edge. The chromatic number $\chi_2(G)$ of a 2-edge-colored graph G is the order of a smallest 2-edge-colored graph H such that G admits a homomorphism to H. The chromatic number $\chi_2(\mathcal{C})$ of a class of 2-edge-colored graphs \mathcal{C} is the maximum of the chromatic numbers of the graphs in the class. This number can be infinite.

2-edge-colored graphs are, in some sense, similar to oriented graphs since a pair of vertices can be adjacent in two different ways in both kinds of graphs: with a positive or a negative edge in the case of 2-edge-colored graphs, with a toward or a backward arc in the oriented case.

The notion of homomorphism of oriented graphs has been introduced by Courcell [3] in 1994 and has been widely studied since then. Due to the similarity above-mentioned, we try to adapt techniques used to study the homomorphisms of oriented graphs of bounded degree to 2-edge-colored graphs of bounded degree. We also study switching homomorphisms of 2-edge-colored graphs in order to obtain results on signed graphs.

Switching a vertex v of a 2-edge-colored graph corresponds to reversing the signs of all edges incident to v.

Two 2-edge-colored graphs G and G' are *switching equivalent* if it is possible to turn G into G' after some number of switches. We call the classes created by this equivalence relation *switching classes* (note that switching classes are equivalent to the notion of signed graphs).

Given two 2-edge-colored graphs G and H, the mapping $\varphi : V(G) \to V(H)$ is a switching homomorphism if there is a graph G' switching equivalent to G such that φ maps every edge of G' to an edge of H with the same sign. The switching chromatic number $\chi_s(G)$ of a 2-edge-colored graph G is the order of a smallest 2-edge-colored graph H such that G admits a switching homomorphism to H.

Table 1 summarizes results on the chromatic number and switching chromatic number of the classes of (connected) 2-edge-colored graphs of bounded degree.

The first two lines of Table 1 are more or less folklore. Let us explain in the following the difference that exists between the connected case and the non-connected case for the

	$\chi_2(\mathcal{D}_k)$	$\chi_2(\mathcal{D}_k^c)$	$\chi_s(\mathcal{D}_k)$	$\chi_s(\mathcal{D}_k^c)$
k = 1	$\chi_2(\mathcal{D}_k) = 3$	$\chi_2(\mathcal{D}_k^c) = 2$	$\chi_s(\mathcal{D}_k) = \chi_s(\mathcal{D}_k^c) = 2$	
k = 2	$\chi_2(\mathcal{D}_k) = 6$	$\chi_2(\mathcal{D}_k^c) = 5$	$\chi_s(\mathcal{D}_k) = \chi_s(\mathcal{D}_k^c) = 4$	
k = 3	$8 \le \chi_2(\mathcal{D}_k^c) \le \chi_2(\mathcal{D}_k) \le 11$		$6 \le \chi_s(\mathcal{D}_k) \le 7 \ [1]$	$\chi_s(\mathcal{D}_k^c) = 6 \ [1]$
k = 4	$12 \le \chi_2(\mathcal{D}_k^c) \le \chi_2(\mathcal{D}_k) \le 31$		$10 \le \chi_s(\mathcal{D}_k^c) \le \chi_s(\mathcal{D}_k) \le 16$	
$k \ge 5$	$2^{\frac{k}{2}} \le \chi_2(\mathcal{D}_k^c) \le \chi_2(\mathcal{D}_k) \le 2^{k+1}(k-1)^2$ [4]		$\chi_s(\mathcal{D}_k^c) \le \chi_s(\mathcal{D}_k) \le 2^{k+1}(k-1)^2 [4]$	

Table 1: Results on the chromatic number and switching chromatic number of the classes of (connected) 2-edge-colored graphs of bounded degree.

chromatic number of 2-edge-colored graphs with maximum degree 1 or 2. An edge of a 2edge-colored graph has chromatic number 2 and thus $\chi_2(\mathcal{D}_1^c) = 2$; however, a 2-edge-colored graph with two non-adjacent edges, one positive and one negative, has chromatic number 3 (the target graph needs a positive and a negative edge, hence at least three vertices) and thus $\chi_2(\mathcal{D}_1) = 3$. We therefore have a difference between the chromatic numbers of connected and non-connected 2-edge-colored graphs with maximum degree 1. This difference does not exist for switching homomorphisms since a negative edge can be changed into a positive one after a switch. This difference (and lack thereof for switching homomorphisms) appears also in graphs with maximum degree 2. We have $\chi_2(\mathcal{D}_2) \geq 6$ since there is no 2-edge-colored graph on 5 vertices that can color all the four graphs depicted in Figure 1. However, every connected 2-edge-colored graph with maximum degree 2 admits a homomorphism to one of the two graphs on 5 vertices depicted in Figure 2 and thus $\chi_2(\mathcal{D}_2^c) \leq 5$. In order to color any graph of \mathcal{D}_2 , we need a target graph that contains both graphs depicted in Figure 2 as subgraphs. This is possible with 6 vertices so $\chi_2(\mathcal{D}_2) = 6$. We do not know yet if this is also the case for graphs with maximum degree at least 3.

Figure 1: Four examples of 2-edge-colored graphs with chromatic number 5.

Figure 2: Target graphs for connected 2-edge-colored graphs of maximum degree 2.

The last three lines of Table 1 are dedicated to graphs with maximum degree at least 3. Our main results are the following:

Theorem 1 We have:

- $8 \leq \chi_2(\mathcal{D}_3) \leq 11$,
- $12 \leq \chi_2(\mathcal{D}_4) \leq 31$,
- $10 \leq \chi_s(\mathcal{D}_4) \leq 16.$

In order to find an upper bound for a class of graphs, we need to find a target graph that can color every graph in the class. In the case of oriented homomorphisms, oriented graphs that are antiautomorphic, K_n -transitive for some n, or that have Property $P_{n,k}$ for some nand k are good candidates. We analogously define these properties in term of 2-edge-colored graphs.

A 2-edge-colored graph (V, E, s) is said to be *antiautomorphic* if it is isomorphic to (V, E, -s).

A 2-edge-colored graph G = (V, E, s) is said to be K_n -transitive if for every pair of cliques $\{u_1, u_2, \ldots, u_n\}$ and $\{v_1, v_2, \ldots, v_n\}$ in G such that for all $i \neq j$, $s(u_i u_j) = s(v_i v_j)$ there exists an automorphism that maps u_i to v_i for all i. For n = 1, 2, or 3, we say that the graph is vertex, edge, or triangle-transitive, respectively.

A 2-edge-colored graph G has Property $P_{k,n}$ if for every sequence of k distinct vertices (v_1, v_2, \ldots, v_k) that induces a clique in G and for every sign vector $(\alpha_1, \alpha_2, \ldots, \alpha_k) \in \{-1, +1\}^k$ there exist at least n distinct vertices $\{u_1, u_2, \ldots, u_n\}$ such that $s(v_i u_j) = \alpha_i$ for $1 \le i \le k$ and $1 \le j \le n$.

Given an integer $q \equiv 1 \pmod{4}$, we consider the family of complete signed Paley graphs SP_q built from the field of order q which has the above-mentioned properties. The vertices of SP_q are the elements of the field of order q and s(uv) = +1 if u - v is a square and s(uv) = -1 otherwise.

Lemma 2 ([7]) Graph SP_q is vertex-transitive, edge-transitive, antiautomorphic, and has properties $P_{1,\frac{q-1}{2}}$ and $P_{2,\frac{q-5}{4}}$.

Let us consider the following operation. Given a 2-edge-colored graph G, we create the *antitwinned graph* of G denoted by $\rho(G)$ as follows. Let G^{+1} , G^{-1} be two copies of G. The vertex corresponding to $v \in V(G)$ in G^i is denoted by v_i , $V(\rho(G)) = V(G^+) \cup V(G^-)$, $E(\rho(G)) = \{u_i v_j : uv \in E(G), i, j \in \{-1, +1\}\}$ and $s_{\rho(G)}(u_i v_j) = i \times j \times s_G(u, v)$.

Lemma 3 ([2]) Let G and H be two 2-edge-colored graphs. The graph G admits a homomorphism to $\rho(H)$ if and only if it admits a switching homomorphism to H.

In other words, if a 2-edge-colored graph admits a homomorphism to an antitwinned target graph on n vertices, then it also admits a switching homomorphism to a target graph on $\frac{n}{2}$ vertices. The family $\rho(SP_q)$ also are interesting target graphs (especially for bounding the switching chromatic number since they are antitwinned).

Lemma 4 ([7]) The graph $\rho(SP_q)$ is vertex-transitive, antiautomorphic, and has properties $P_{1,q-1}, P_{2,\frac{q-3}{2}}, and P_{3,max(\frac{q-9}{4},0)}.$

One last family of interesting target graphs are the Tromp-Paley graphs (this construction due to Tromp (unpublished) has been widely used in the case of oriented homomorphisms). Let SP_q^+ be SP_q with an additional vertex that is connected to every other vertex with a positive edge. The Tromp-Paley graph $TR(SP_q)$ corresponds to $\rho(SP_q^+)$. This construction improves the properties of $\rho(SP_q)$ at the cost of having two more vertices. Since Tromp-Paley graphs are antitwinned, they are interesting for bounding the switching chromatic number.

Lemma 5 ([7]) $TR(SP_q)$ is vertex-transitive, edge-transitive, antiautomorphic, and has properties $P_{1,q}$, $P_{2,\frac{q-1}{2}}$, and $P_{3,\frac{q-5}{4}}$.

Bensmail et al. [1] recently proved that every 2-edge-colored graph with maximum degree 3 except the all positive and all negative K_4 admits a homomorphism to $TR(SP_5)$, hence $\chi_2(\mathcal{D}_3^c) \leq 12$, and $\chi_s(\mathcal{D}_3^c) \leq 6$ by Lemma 3. In the non-connected case, we can easily get $\chi_2(\mathcal{D}_3) \leq 14$ and thus $\chi_s(\mathcal{D}_3) \leq 7$ by Lemma 3 (it is possible to create an all positive K_4 and an all negative K_4 in $TR(SP_5)$ by adding two vertices). Their proof uses a computer to show that a minimal counter-example cannot contain some configurations and then concludes by using the properties of $TR(SP_5)$. Theorem 1 improves the upper bound of 14 to 11.

Let us give a sketch of proof of the first result of Theorem 1, namely $\chi_2(\mathcal{D}_3) \leq 11$.

Consider the graph SP_9^* obtained from SP_9 by adding two new vertices 0' and 1' as follows. Take the two vertices 0 and 1 of SP_9 (note that s(01) = +1), and link 0' and 1' to the vertices of SP_9 in the same way as 0 and 1 are, respectively; add an edge 0'1' with s(0'1') = -1; finally we add edges 00' and 11' with s(00') = -1 and s(11') = +1. We will prove that every graph from \mathcal{D}_3 admits a homomorphism to SP_9^* .

We first show that every connected 2-degenerate 2-edge-colored graph with maximum degree 3 admits a homomorphism to SP_9 by using its structural properties given by Lemma 2 (a unique exception exists and is separately treated).

Figure 3: The graph SP_9 , non-edges are negative edges

Let G be a connected 3-regular 2-edge-colored graph. If G is all positive, then we color it using an all positive K_4 that SP_9^* contains as a subgraph. Assume now that G is not all positive. Let uv be a negative edge of G. We remove uv from G to create a new graph G'. Graph G' is 2-degenerate so it admits a homomorphism φ' to SP_9 . If $s(\varphi'(u)\varphi'(v)) = -1$, then φ' is also a homomorphism from G to SP_9 .

If $s(\varphi'(u)\varphi'(v)) = +1$, then by edge-transitivity of SP_9 we can recolor the vertices of G' such that $\varphi'(u) = 0$ and $\varphi'(v) = 1$. We can then extend φ' to a homomorphism φ of G to SP_9^* by recoloring u and v such that $\varphi(u) = 0'$ and $\varphi(v) = 1'$ since s(0'1') = -1.

Finally, if $\varphi'(u) = \varphi'(v)$, then by vertex-transitivity of SP_9 we can recolor the vertices of G' such that $\varphi'(u) = \varphi'(v) = 0$. We can then extend φ' to a homomorphism φ of G to SP_9^* by recoloring v such that $\varphi(v) = 0'$ since s(00') = -1.

We have proven that every graph in \mathcal{D}_3^c admits a homomorphism to SP_9^* which means that SP_9^* is universal for \mathcal{D}_3 . This concludes the proof.

To prove the two other upper bounds of Theorem 1, we use the same method on target graphs SP_{29} and $TR(SP_{13})$.

References

- [1] J. Bensmail, T. Pierron, É. Sopena. Personnal communication, 2019.
- R. C. Brewster, T. Graves Edge-switching homomorphisms of edge-coloured graphs. In Discrete Mathematics 309(18):5540-5546, 2009.
- [3] B. Courcelle. The monadic second order-logic of graphs VI : on several representations of graphs by relational structures. In Discrete Applied Mathematics 54:117-149, 1994.
- [4] S. Das, S. Nandi, S. Sen. On chromatic number of colored mixed graphs. In Conf. on Algorithms and Discrete Applied Mathematics 130-140, 2017.
- [5] B. Guenin. Packing odd circuit covers: A conjecture. Manuscript, 2005.
- [6] R. Naserasr, E. Rollova, and É. Sopena. Homomorphisms of signed graphs. In Journal of Graph Theory 79(3):178–212, 2015.
- [7] P. Ochem, A. Pinlou, S. Sen. Homomorphisms of 2-edge-colored triangle-free planar graphs. In Journal of Graph Theory 85(1):258-277, 2017.