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Abstract. A signed graph is a simple graph with two types of edges:
positive and negative. A homomorphism from a signed graph G to
another signed graph H is a mapping ¢ : V(G) — V(H) that pre-
serves vertex adjacencies and balance of closed walks (the balance is the
parity of the number of negative edges). The chromatic number y(G)
of a signed graph G is the order of a smallest signed graph H such that
there is a homomorphism from G to H.
The maximum average degree mad(G) of a graph G is the maximum
of the average degrees of all the subgraphs of G.
The girth g(G) of a graph G is the length of a shortest cycle of G.
In this paper, we consider signed graphs with bounded maximum aver-
age degree and we prove that:
- If mad(G) < 2 and g(G) < 7 then x:(G) < 5.
— If mad(G) < & then x.(G) < 10.
— If mad(G) < 4 — q%:s then xs(G) < ¢+ 1 where ¢ is a prime power
congruent to 1 modulo 4.
The first result implies that the chromatic number of planar signed
graphs of girth at least 7 is at most 5.
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1 Introduction

There exist several notions of colorings of signed graphs which are all natural
extensions and generalizations of colorings of simple graphs. It is well-known
that a (classical) k-coloring of a graph is no more than a homomorphism to
the complete graph on k vertices. Using the notion of homomorphism of signed
graphs introduced by Guenin [9] in 2005, a corresponding notion of coloring of
signed graphs can be defined. This has attracted a lot of attention since then and
the general question of knowing whether every signed graph of a given family
admits a homomorphism to some H has been extensively studied. We can for
example cite the papers by Naserasr et al. [11,12] in which they develop many
aspects of this notion.

Coloring planar graphs has become a famous problem in the middle of the
19*" century thanks to the Four Color Theorem, that states that four colors are
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enough to color any simple planar graph. Various branches of this topic then
arose, one of which being devoted to the coloring of sparse planar graphs. A
way to measure the sparseness of a planar graph is to consider its girth (i.e.
the length of a shortest cycle): the higher the girth is, the sparser the graph is.
Colorings of signed sparse planar graphs have already been considered in the
last decade (see e.g. [1,4,10,11,13,14]).

A way to get results on sparse planar graphs is to consider graphs (not
necessarily planar) with bounded maximum average degree thanks to the well-
known relation that links the maximum average degree and the girth of a planar
graph: Every planar graph of girth at least g has maximum average degree less
than %.

In this paper, we consider homomorphisms of signed graphs with bounded
maximum average degree.

Signed Graphs. A signed graph G = (V,E,s) is a simple graph (V| E) (we
do not allow parallel edges nor loops) with two kinds of edges: positive and
negative edges. The signature s : E(G) — {—1,+1} assigns to each edge its
sign. Switching a vertex v of a signed graph corresponds to reversing the signs of
all the edges that are incident to v. Two signed graphs G and G’ are switching
equivalent if it is possible to turn G into G’ after some number of switches. The
balance of a closed walk of a signed graph is the parity of its number of negative
edges; a closed walk is said to be balanced (resp. unbalanced) if it has an even
(resp. odd) number of negative edges. We can note that a switch does not alter
the balance of any closed walk since a switch reverses the sign of an even number
of edges of a closed walk. Therefore, Zaslavsky [16] showed the following:

Theorem 1 (Zaslavsky [16]). Two signed graphs are switching equivalent if
and only if they have the same underlying graph and the same set of balanced
cycles.

Homomorphisms of Signed Graphs. Given two signed graphs G and H, the
mapping ¢ : V(G) — V(H) is a homomorphism if ¢ preserves vertex adjacencies
(i.e. p(u)p(v) € E(H) whenever uv € E(G)) and the balance of closed walks
(i.e. the closed walk ¢(v1)p(v2) ... ¢(vg) in H has the same balance as the closed
walk v1vs ... v in G). In that case we write G — H. This type of homomorphism
was introduced by Guenin [9] in 2005 and arises naturally from the fact that the
balance of closed walks is central in the field of signed graphs.

There exists an alternate way to define homomorphisms of signed graphs
using the notion of sign-preserving homomorphims. Given two signed graphs G
and H, the mapping ¢ : V(G) — V(H) is a sign-preserving homomorphism
(sp-homomorphism for short) if ¢ preserves vertex adjacencies and the signs of
edges. In that case we write G =% H. Naserasr et al. [12] showed that, given
two signed graphs G and H, we have G — H if and only if there exists a signed
graph G’ switching equivalent to G such that G =% H.

The chromatic number xs(G) (resp. sign-preserving chromatic number
Xsp(G)) of a signed graph G is the order of a smallest graph H such that G — H



The Chromatic Number of Signed Graphs 659

(resp. G 22 H). The (sign-preserving) chromatic number x,/s,(C) of a class of
signed graphs C is the maximum of the (sign-preserving) chromatic numbers of
the graphs in the class. Clearly, an sp-homomorphism is a homomorphism and
thus xs(G) < xsp(G) for any signed graph G.

If G admits a (sp-)homomorphism ¢ to H, we say that G is H (-sp)-colorable
and that ¢ is an H (-sp)-coloring of G.

Target Graphs. Let q be a prime power with
g = 1 (mod 4). Let F; be the finite field of
order q. The signed Paley graph SP; has ver-
tex set V(SP;) = F,. Two vertices u and
v € V(SP,), u# v, are connected with a pos-
itive edge if u — v is a square in F; and with a
negative edge otherwise. See Fig.1 for a pic-
ture of the signed Paley graph on five vertices.

Notice that this definition is consistent
since ¢ = 1 (mod 4) ensures that —1 is always
a square in F, and if © — v is a square then
v — u is also a square.

Given a signed graph SF,, we denote by SP,” the graph obtained from SF, by
removing any vertex (SP, is vertex-transitive) and by SPqJr the graph obtained
from SP, by adding a vertex that is connected with a positive edge to every
other vertex.

Such graphs SF,, SPq‘" and SP,” have remarkable structural properties but
due to lack of space, we will not list them (see [14] for more details). We use
these target graphs to obtain our results.

Fig.1. SPs, the signed Paley
graph on 5 vertices.

2 State of the Art and Results

Let us denote by P, the class of planar signed graphs of girth at least g and by
My the class of signed graphs with maximum average degree less than d.

Table 1. Known results on the chromatic number of signed planar graphs with given
girth and signed graphs with bounded maximum average degree.

Graph families | xs Remarks | Refs
Ps 10 < xs <40 [10,13]
Py 6<xs <25 [14]
M%o Xs <10 7)5CM% [10]
Ms Xs <6 Ps C Mz | [10]
M%s Xs =4 Po C M%s [6]

Note first that for planar graphs, the gap between the lower and upper bounds
is huge (10 < x;s(Ps) < 40) and in 2020, Bensmail et al. [2] conjectured that
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Xs(P3) = 10. Recently, Bensmail et al. [1] proved that if this conjecture is true,
then the target graph is necessarily S PJ . This question remains widely open.

Finally, note that for maximum average degree less than ?, 3, and % (lines
4-6 of Table 1), this gives bounds for planar graphs of girth at least 5, 6, and 9.
Note that since unbalanced even cycles have chromatic number 4 (see [8]), the
bound for maximum average degree 1—78 is tight.

In this paper, we prove the following theorem, improving several above-
mentioned results:

Theorem 2. Let G be a signed graph.
(1) IfGeMy_ s, then G — SPf. Thus xs(G) < q+1, with g =1 (mod 4)
q
and q is a prime power.
(2) If G € M1577, then G — SP9+. Thus xs(G) < 10.
(8) If G € Mz and g(G) > 7, then G — SPs. Thus xs(G) < 5.

It is not hard to see that signed cliques in which each edge is subdivided
once have a maximum average degree that tends to 4 as the number of vertices
grows. Such signed graphs have unbounded chromatic number and Theorem 2(1)
gives an upper bound on the chromatic number of signed graphs of maximum
average degree 4 —e in function of €. Theorem 2(2) improves the previous known
result of Montejano et al. [10] saying that XS(M%O) < 10 by reaching the same
upper bound for a superclass of graphs (M 1w C M ¥) Theorem 2(3) gives,
as a corollary, that xs(P7) < 5 since Py C M%, which are new results that
contribute to the above-mentioned collection of known results.

3 Proof Techniques

To prove our results, let us first introduce what we call antitwinned graphs.
Given a signed graph G of signature s, we can create the signed graph p(G) as
follows: We take two copies GT, G~ of G, hence V(p(G)) = V(GTHUV(G™1);
the edge set is defined as E(p(G)) = {u‘v? : wv € E(G), i,j € {—1,+1}} and
the signature as s,(q)(u'v?) =i x j X sg(u,v). A signed graph G is said to be
antitwinned if there exists a signed graph H such that G = p(H).

Antitwinned signed graphs play a central role for our proofs thanks to the
following lemma:

Lemma 1 ([5]). Given two signed graphs G and H, G admits an sp-
homomorphism to p(H) if and only if G admits a homomorphism to H.

Therefore, Theorem 2 will be proved by showing that:
(1) fGeM, s, thenG 2 p(SP).

(2) If G € Muz, then G =5 p(SFy).
(3) If G € Mz, then G 22, p(SPs).
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We prove these results by contradiction, by assuming that they have coun-
terexamples. Among all of these counterexamples, we take a graph G with the
fewest number of vertices. Our goal is to prove that G satisfies structural proper-
ties incompatible with having a maximum average degree smaller than a certain
value, hence the conclusion.

For each theorem, we start by introducing sets of so-called forbidden con-
figurations, which by minimality G' cannot contain. We then strive to reach a
contradiction with the bounded maximum average degree. To do so, we use the
discharging method. This means that we give some initial weight to vertices of G,
we then redistribute those weights and obtain a contradiction by double count-
ing the total weight. We present appropriate collections of discharging rules, and
argue that every vertex of G ends up with non-negative weight while the total
initial weight was negative.

The discharging method was introduced more than a century ago to study
the Four-Color Conjecture [15], now a theorem. It is especially well-suited for
studying sparse graphs, and leads to many results, as shown in two recent sur-
veys [3,7].
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Fig. 2. Forbidden configurations. Every edge incident to round vertices is represented.
Square vertices can be of any degree. Triangle vertices are replaced by one of the two
represented structures.

Due to lack of space, let us just give the sketch of the proof of Theorem 2(3).
To prove this theorem, we prove that every signed graph of maximum average
degree less than ? and girth at least 7 admits a sp-homomorphism to p(SPs)
which implies the theorem by Lemma 1.

Let G be a smallest signed graph with mad(G) < 22 and girth at least 7
admitting no sp-homomorphism to p(SPs). We start by proving that the config-
urations depicted in Fig.2 cannot appear in G.

We then define the weighting w(v) = d(v) — 22 for each vertex v of degree
d(v). By construction, the sum of all the weights v (g) w(v) is negative since

the maximum average degree of G (and therefore its average degree) is strictly
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smaller than ?. We say that a k-verter (resp. k™ -vertez) is a vertex of degree
k (resp. at least k). A 3-vertex is said to be 3-worse if its adjacent to a 2-vertex,
3-bad if it is adjacent to two 3-worse vertices or 3-good otherwise. We then

introduce the following discharging rules:

R;) Every 3*-vertex gives 2 to each of its 2-neighbors.
7
(R2) Every 3-good, 3-bad or 41-vertex gives % to each of its 3-worse-neighbors.

(R3) Every 3-good or 4T-vertex gives % to each of its 3-bad-neighbors.

Finally, we show that every vertex has a positive final weight by using the
fact that the configurations of Fig. 2 cannot appear in GG, a contradiction.
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