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a b s t r a c t

A signed graph is a simple graph with two types of edges: positive and negative edges.
Switching a vertex v of a signed graph corresponds to changing the type of each edge
incident to v.

A homomorphism from a signed graph G to another signed graph H is a mapping
ϕ : V (G) → V (H) such that, after switching some of the vertices of G, ϕ maps every
edge of G to an edge of H of the same type. The chromatic number χs(G) of a signed
graph G is the order of a smallest signed graph H such that there is a homomorphism
from G to H .

The maximum average degree mad(G) of a graph G is the maximum of the average
degrees of all the subgraphs of G. We denote Mk the class of signed graphs with
maximum average degree less than k and Pg the class of planar signed graphs of girth
at least g .

We prove:

• χs(P7) ≤ 5,
• χs(M 17

5
) ≤ 10 which implies χs(P5) ≤ 10,

• χs(M4− 8
q+3

) ≤ q + 1 with q a prime power congruent to 1 modulo 4.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

There exist several notions of colorings of signed graphs which are all natural extensions and generalizations of
olorings of simple graphs. It is well-known that a k-coloring of a graph is no more than a homomorphism to the complete
graph on k vertices. Using the notion of homomorphism of signed graphs introduced by Guenin [9] in 2005, we can define a
corresponding notion of coloring of signed graphs. This has attracted a lot of attention since then and the general question
of knowing whether every signed graphs in a family admits a homomorphism to some H has been extensively studied. We
can for example cite the expansive papers by Naserasr et al. [12,13] where they developed many aspects of this notion.

Coloring planar graphs has become an illustrious problem in the middle of the 19th century thanks to the Four Color
Theorem, that states that four colors are enough to color any simple planar graph. Various branches of this topic then
arose, one of which being devoted to the coloring of sparse planar graphs. A good indicator of sparseness of a planar graph
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s girth (i.e. the length of a shortest cycle): the higher the girth is, the sparser the graph is. Signed coloring of sparse planar
raphs has been considerably studied in the last decade (see e.g. [1,4,11,12,14,15]).
A way to get results on sparse planar graphs is to consider graphs (not necessarily planar) with bounded maximum

verage degree since there exists a well-known relation that links the maximum average degree and the girth of a planar
raph (details are given in the next subsection).
In this paper, we consider homomorphisms of signed graphs with bounded maximum average degree.
We will first give some classical definitions, define signed graphs and homomorphisms in the remainder of this section

nd the list of target graphs we will use. Section 2 introduces the results we obtained and puts them in the perspective
ith the known results. Sections 3 to 5 are dedicated to the proofs of our results. We use the well-known proof technique
f discharging that was introduced in [16] to study the Four Color Conjecture (now a theorem). It is especially well-suited
or studying sparse graphs, and leads to many results, as shown in two recent surveys [3,7].

.1. Definitions and notation

In this paper, we consider only simple graphs. The degree of a vertex v is its number of neighbors and is denoted by
(v). We call a vertex of degree k a k-vertex, a vertex of degree at least k a k+-vertex and a vertex of degree at most k a
−-vertex. We denote by N(v) (resp. N−(v), N+(v)) the set of vertices that are adjacent (resp. adjacent with a negative edge,
djacent with a positive edge) to a vertex v. Let W be a set of vertices, N(W ) =

⋃
v∈W N(v) (we also define N−(W ) and

+(W ) similarly). The order of a graph G is the cardinality of its vertex set. The girth of a graph is the length of a shortest
ycle. The maximum average degree mad(G) of a graph G is the maximum of the average degree of all the subgraphs of G.
here exists a well-known relation that links the maximum average degree and the girth of a planar graph:

laim 1 (folklore). Every planar graph G of girth at least g has mad(G) <
2g
g−2 .

Let us denote by Pg (resp. Md) the class of planar graphs of girth at least g (resp. the class of graphs with maximum
verage degree less than d). Therefore, P3 corresponds to the class of planar graphs (since 3 is the smallest size of a cycle).

.2. Signed graphs

A signed graph G = (V , E, s) is a simple graph (V , E) with two kinds of edges: positive and negative edges. The signature
: E(G) → {−1, +1} assigns to each edge its sign (we do not allow parallel edges nor loops). Given a signed graph
= (V , E, s), the underlying graph of G is the simple graph (V , E). Switching a vertex v of a signed graph corresponds

o reversing the signs of all the edges that are incident to v. Two signed graphs G and G′ are switching equivalent if it is
ossible to turn G into G′ after some number of switches. The balance of a closed walk of a signed graph is the parity of
ts number of negative edges; a closed walk is said to be balanced (resp. unbalanced) if it has an even (resp. odd) number
f negative edges.
We can note that a switch does not alter the parity of any closed walk since a switch reverses the sign of an even

umber of edges of a closed walk. Therefore, Zaslavsky [17] showed the following:

heorem 2 (Zaslavsky [17]). Two signed graphs are switching equivalent if and only if they have the same underlying graph
nd the same set of balanced cycles.

.3. Homomorphisms of signed graphs

Given two signed graphs G and H , the mapping ϕ : V (G) → V (H) is a homomorphism if ϕ preserves adjacencies and
he balance of closed walks: an edge uv of G maps to an edge ϕ(u)ϕ(v) of H and a closed walk v1v2 . . . vk of G maps to a
losed walk ϕ(v1)ϕ(v2) . . . ϕ(vk) of H of the same balance. This can be seen as coloring the graph G by using the vertices
f H as colors. We write G → H when there exists an homomorphism from G to H . This notion of homomorphism was
ntroduced by Guenin [9] in 2005 and arises naturally from the fact that the balance of closed walks is central in the field
f signed graphs.
Let us introduce the following notion of sign-preserving homomorphisms which is central in studying homomorphisms

f signed graphs (see Lemma 4 in the next section to understand why) and allows us to give an alternate definition
o homomorphisms of signed graphs. Given two signed graphs G and H , the mapping ϕ : V (G) → V (H) is a sign-
reserving homomorphism (sp-homomorphism) if ϕ preserves adjacencies and the signs of edges: if vertices 1 and 2 in H
re connected with a positive (resp. negative) edge, then every pair of adjacent vertices in G colored with 1 and 2 must be
onnected with a positive (resp. negative) edge. We write G

sp
−→ H when there exists an sp-homomorphism from G to H .

ote that an sp-homomorphism is clearly a homomorphism (adjacencies and balances of closed walk are kept). A reader
amiliar with the notion of homomorphisms of 2-edge-colored graphs will recognize that it coincides with the notion of
ign-preserving homomorphisms of signed graphs.
We can then alternatively define homomorphisms of signed graph as follows: G → H if and only if there exists a

igned graph G′ switching equivalent to G such that G′
sp
−→ H . See [13] for a proof of that equivalence.
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Fig. 1. The graph SP9 , non-edges are negative edges.

The chromatic number χs(G) (resp. sign-preserving chromatic number χsp(G)) of a signed graph G is the order of a smallest
graph H such that G → H (resp. G

sp
−→ H). The (sign-preserving) chromatic number χs/sp(C) of a class of signed graphs C is

the maximum of the (sign-preserving) chromatic numbers of the graphs in the class. If G admits a (sp-)homomorphism
ϕ to H , we say that G is H-(sp-)colorable and that ϕ is an H-(sp-)coloring of G.

1.4. Target graphs

We present in this subsection the target graphs that will be used to prove our results.
Let G = (V , E, s) be a signed graph. The graph G is said to be antiautomorphic if it is isomorphic to (V , E, −s). The graph

G is said to be Kn-transitive if for every pair of cliques {u1, u2, . . . , un} and {v1, v2, . . . , vn} in G such that s(uiuj) = s(vivj)
or all i ̸= j, there exists an automorphism that maps ui to vi for all i. For n = 1, 2, or 3, we say that the graph is
ertex-transitive, edge-transitive, or triangle-transitive, respectively.
The graph G has Property Pk,n if for every sequence of k distinct vertices (v1, v2, . . . , vk) that induces a clique in G

nd for every sign vector (α1, α2, . . . , αk) ∈ {−1, +1}k there exist at least n distinct vertices {u1, u2, . . . , un} such that
(viuj) = αi for 1 ≤ i ≤ k and 1 ≤ j ≤ n.

Let q be a prime power with q ≡ 1 (mod 4). Let Fq be the finite field of order q. The signed Paley graph SPq has vertex
et V (SPq) = Fq. Two vertices u and v ∈ V (SPq), u ̸= v, are connected with a positive edge if u − v is a square in Fq and
ith a negative edge otherwise.
Notice that this definition is consistent since q ≡ 1 (mod 4) ensures that −1 is always a square in Fq and if u− v is a

quare then v − u is also a square.

emma 3 ([15]). The signed graph SPq is vertex-transitive, edge-transitive, antiautomorphic and has properties P1, q−1
2

and
P2, q−5

4
.

Fig. 1 gives as an example the signed graph SP9 which contains nine vertices and is complete (only positive edges are
displayed, non-edges are negative edges).

Given a signed graph G of signature sG, we create the antitwinned graph of G denoted by ρ(G) as follows:

• We take two copies G+1, G−1 of G (the vertex corresponding to v ∈ V (G) in Gi is denoted by vi)
• V (ρ(G)) = V (G+1) ∪ V (G−1)
• E(ρ(G)) = {uivj

: uv ∈ E(G), i, j ∈ {−1, +1}}
• sρ(G)(uivj) = i × j × sG(u, v)

By construction, for every vertex v of G, v−1 and v+1 are antitwins, the positive neighbors of v−1 being the negative
eighbors of v+1 and vice versa. We say that a signed graph is antitwinned if every vertex has a unique antitwin. If v is a
ertex in an antitwinned graph, we denote its antitwin with v.
Antitwinned signed graphs play a central role thanks to the following lemma:

emma 4 ([5]). Let G and H be signed graphs. The two following propositions are equivalent:

• The graph G admits a homomorphism to H.
• The graph G admits a sp-homomorphism to ρ(H).

In other words, if a signed graph G = (V , E, s) admits an sp-homomorphism to an antitwinned target graph on n
ertices, then it also admits a homomorphism to a target graph on n vertices. We therefore have the following inequalities:
2
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roposition 5 ([12]). For every signed graph G, we have χs(G) ≤ χsp(G) ≤ 2 · χs(G).

Graphs ρ(SPq) have the remarkable structural properties given below:

emma 6 ([15]). The graph ρ(SPq) is vertex-transitive, antiautomorphic and has properties P1,q−1, P2, q−3
2

and P3,max( q−9
4 ,0).

Given a signed graph G which is vertex-transitive, we denote by G− the graph obtained from G by removing any vertex.
iven a signed graph G, we denote by G+ the graph obtained from G by adding a vertex that is connected with a positive
dge to every other vertex.
In the literature, the graph ρ(SP+

q ) is also known as the Tromp–Paley graph TR(SPq). This construction improves the
roperties of ρ(SPq) at the cost of having only two more vertices (indeed, |V (ρ(SP+

q ))| = |V (ρ(SPq))| + 2).

emma 7 ([15]). The graph ρ(SP+
q ) is vertex-transitive, edge-transitive, antiautomorphic and has properties P1,q, P2, q−1

2
and

P3, q−5
4
.

2. State of the art and results

As mentioned in the introductory section, the (sign-preserving) chromatic number of signed graphs has been studied
extensively. Several papers are devoted to planar graphs, planar graphs with given girth, and graphs with bounded
maximum average degree.

In 2000, Nešetřil and Raspaud [14] considered the coloring of (m, n)-mixed-graphs (which is a super-class of signed
graphs) and they proved that χsp(P3) ≤ 80 by showing that any signed planar graph admits a sp-homomorphism to
an antitwinned signed graph on 80 vertices. This implies as a corollary that χs(P3) ≤ 40 by Lemma 4. The same year,
Montejano et al. [11] constructed a signed planar graph H such that χsp(H) = 20, that implies χsp(P3) ≥ 20 and thus
χs(P3) ≥ 10. The gap between the lower and upper bounds is huge and in 2020, Bensmail et al. [2] conjectured that
χsp(P3) = 20. Recently, Bensmail et al. [1] proved that if this conjecture is true, then the target graph is necessarily
ρ(SP+

9 ). Since this target graph is antitwinned, this would imply that χs(P3) = 10. This question remains widely open.
Colorings of sparse (planar) graphs have then been considered. In particular, the following results were obtained:

Girth 4: Ochem et al. [15] proved that signed planar graphs of girth 4 admit a sp-homomorphism to ρ(SP25), that is
χsp(P4) ≤ 50. They also proved that χsp(P4) ≥ 12. By Lemma 4, we thus have 6 ≤ χs(P4) ≤ 25 since ρ(SP25) is
antitwinned. Note that Bensmail et al. [1] conjectured that χsp(P4) = 12 and proved that if this conjecture is true,
then the target graph is necessarily ρ(SP+

5 ). Since this target graph is antitwinned, this would imply that χs(P4) = 6.

Girths 5, 6 and 8 : Montejano et al. [11] proved that signed graphs with maximum average degree less than 10
3 (resp. 3, 8

3 )
admit a sp-homomorphism to ρ(SP+

9 ) (resp. ρ(SP+

5 ), SP−

9 ), that is χsp(M 10
3
) ≤ 20, χsp(M3) ≤ 12 and χsp(M 8

3
) ≤ 8.

By Claim 1, we get that χsp(P5) ≤ 20, χsp(P6) ≤ 12 and χsp(P8) ≤ 8. Moreover, since ρ(SP+

9 ) and ρ(SP+

5 ) are
antitwinned, we get that χs(M 10

3
) ≤ 10, χs(M3) ≤ 6, χs(P5) ≤ 10, and χs(P6) ≤ 6 as a corollary by Lemma 4.

Note that since SP−

9 is not antitwinned, Lemma 4 does not apply and thus χs(M 8
3
) ≤ 6 and χs(P8) ≤ 6 are the best

known bounds.

Girth 9: Charpentier et al. [6] proved that signed graphs with maximum average degree less than 18
7 admit a homomor-

phism to the complete graph on 4 vertices in which every edge is positive except one. Thus, χs(M 18
7
) ≤ 4 and by

Claim 1, χs(P9) ≤ 4. Since an unbalanced cycle of even length has chromatic number 4 [8], these bounds are tight.
Note that by Lemma 4 these results imply χs(M 18

7
) ≤ 8 and χs(P9) ≤ 8 but we can already infer that from the

bounds on χsp(M 8
3
) and χsp(P8).

Girth g ≥ 13: Borodin et al. [4] proved that for any g ≥ 13, χsp(Pg ) = 5.

See Table 1 for a summary.
In the same vein, the first author [10] recently studied the chromatic number of signed triangular and hexagonal grids,

which are subclasses of planar graphs. He respectively proved that 4 (resp. 10) colors are enough for hexagonal (resp.
triangular) grids, supporting the conjecture that signed planar graphs have chromatic number at most 10.

In this paper, we try to find, given a target graph T , the highest possible value m such that every graph with maximum
verage degree less than m admits a homomorphism to T . We prove the following three theorems.

heorem 8. If a signed graph has maximum average degree smaller than 20
7 and girth at least 7, it admits a homomorphism

o SP5. That is χs(M 20
7
) ≤ 5.

As a corollary, this gives that χs(P7) ≤ 5 and χsp(P7) ≤ 10, which are new results that contribute to the
bove-mentioned collection of results.
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Table 1
Known results for (sp-)chromatic number of planar graphs with given girth and graphs with bounded maximum
average degree.
Graph families χs χsp Remarks Refs.

P3 10 ≤ χs ≤ 40 20 ≤ χsp ≤ 80 [11,14]
P4 6 ≤ χs ≤ 25 12 ≤ χsp ≤ 50 [15]
M 10

3
χs ≤ 10 χsp ≤ 20 P5 ⊂ M 10

3
[11]

M3 χs ≤ 6 χsp ≤ 12 P6 ⊂ M3 [11]
M 8

3
χs ≤ 6 χsp ≤ 8 P8 ⊂ M 8

3
[11]

M 18
7

χs = 4 χsp ≤ 8 P9 ⊂ M 18
7

[6]

P≥13 χs = 4 χsp = 5 [4]

Fig. 2. SP5 , the signed Paley graph on 5 vertices.

Theorem 9. If a signed graph has maximum average degree smaller than 17
5 , it admits a homomorphism to SP+

9 . That is
s(M 17

5
) ≤ 10

This improves the result of Montejano et al. [11] saying that χs(M 10
3
) ≤ 10 since M 10

3
⊂ M 17

5
. Note that this result

ontributes to the conjecture that every planar graph admits a homomorphism to SP+

9 .

roposition 10. Signed graphs with maximum average degree at least 4 have unbounded chromatic number.

roof. Consider a complete graph on n vertices v1, . . . , vn, subdivide each edge vivj by adding a new vertex uij, and for
ach pair i, j, the 2-path vi, uij, vj will have one positive and one negative edge. Note that the average degree of this graph
ends to 4 when n tends to infinity. Moreover, since each pair of vi, vj is linked by a 2-path formed by a negative and a
ositive edge, the n initial vertices must have n distinct colors. Therefore χsp(M4) is unbounded and thus χs(M4) is also

unbounded by Proposition 5. □

Knowing that, we can study how the chromatic number increases as we approach maximum average degree 4. The
following last result gives an upper bound of the chromatic number of signed graphs of maximum average degree 4 − ε

in function of ε.

Theorem 11. Let q > 9 be a prime power congruent to 1 modulo 4. If a signed graph has maximum average degree smaller
than 4 −

8
q+3 , it admits a homomorphism to SP+

q . That is χs(M4− 8
q+3

) ≤ q + 1.

. Proof of Theorem 8

In this section, we prove that any signed graph of maximum average degree less than 20
7 and girth 7 admits a ρ(SP5)-sp-

oloring. See Fig. 2 for a drawing of SP5. To do so, we suppose that this theorem is false and we consider in the remainder
f this section a minimal counter-example G w.r.t. its order: it is a smallest signed graph with mad(G) < 20

7 and girth 7
dmitting no ρ(SP5)-sp-coloring. .
We first introduce some notation in order to simplify the statements of configurations and rules.
We say that a 3-vertex v is:

• 3-worse if it has one 2-neighbor (note that by Configuration C3 a 3-vertex cannot have more than one 2-neighbor).
• 3-bad if it has two 3-worse-neighbors (note that by Configuration C3 a 3-vertex cannot have three 3-worse-neighbors

and by Configuration C2 a 3-bad cannot be 3-worse).
• 3-good otherwise.

We will say that 3-bad-vertices and 2-vertices are bad vertices.
47
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Fig. 3. Forbidden configurations. Square vertices can be of any degree. White vertices will be removed while proving the non-existence of the
configuration. Triangles are bad vertices: 2-vertices or 3-bad-vertices.

3.1. Forbidden configurations

We define several configurations C0, . . . , C5 as follows (see Fig. 3).

• C0 is a 0-vertex.
• C1 is a 1-vertex.
• C2 is two adjacent bad vertices.
• C3 is a 3-vertex u1 with two bad neighbors u2 and u3. If u2 is a 2-vertex and u3 is a 3-bad-vertex (or vice versa) then

u3 is adjacent to three 3-worse vertices (u1 and the other two neighbors of u2). In other words, a C3 is obtained by
replacing the triangles in Fig. 3 by one of the two possibilities described at the bottom of the figure.

• C4 is a 3-vertex with one bad neighbor adjacent to another 3-vertex with one bad neighbor.
• C5 is a 4-vertex with three 2-neighbors.

Note that every pair of vertices represented in Fig. 3 is distinct since otherwise G would not have girth at least 7.
We prove that Configurations C0 to C5 are forbidden in G. To this end, we first prove some general results. Remember

that ρ(SP5) is vertex-transitive, antiautomorphic and has Properties P1,4 and P2,1 by Lemma 6.
Consider a signed graph H , a vertex v of H of degree k, its k neighbors u1, u2, . . . , uk. Let H ′

= H − v and suppose
here exists a sp-homomorphism ϕ′

: H ′
sp
−→ ρ(SP5). With the aim of extending ϕ′ to an sp-homomorphism ϕ of the whole

raph H we can compute the number of colors forbidden for v by each of its neighbors ui. If we are able to prove that
t most 9 colors are forbidden for v, then this means that ϕ′ can be extended to an sp-homomorphism ϕ of the whole
raph H . Note that we may need to recolor some vertices already colored by ϕ′. We denote the signature of H by sH . We
rove the following claims to this end:

laim 12. 2-neighbors forbid one color.
48
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Fig. 4. Vertex v is adjacent to a 2-vertex.

Fig. 5. Vertex v is adjacent to a 3-worse-vertex.

laim 13. 3-worse-neighbors forbid at most two colors from 3+-vertices.

laim 14. 3-bad-neighbors forbid at most one color.

roof of Claim 12. Let ui be a 2-neighbor of v and let w be the other neighbor of ui (see Fig. 4). Note that v cannot be a
-vertex since otherwise the graph would contain Configuration C3. First uncolor vertex ui. Without loss of generality we
an suppose that ϕ′(w) = 0 since ρ(SP5) is vertex-transitive. If ϕ(v) /∈ {0, 0} it is possible to recolor ui by Property P2,1 of
(SP5). If sH (wui) = sH (uiv) and ϕ(v) = 0 or sH (wui) ̸= sH (uiv) and ϕ(v) = 0 then v and w give the same constraints on
i and we can recolor ui by Property P1,4 of ρ(SP5). Therefore, depending on the signature of the edges wui and uiv, the
-vertex ui forbids exactly one color from v, either ϕ′(w) or ϕ′(w). We say that a 2-neighbor forbids one color. □

roof of Claim 13. Let ui be a 3-worse-neighbor of v (see Fig. 5 for vertex naming). First uncolor vertices ui and w2.
ithout loss of generality we can suppose that ϕ′(w1) = 0 and that w1ui is a positive edge since ρ(SP5) is vertex-transitive

nd antiautomorphic. Therefore, ui may take its color in the set {1, 2, 3, 4} (i.e the positive neighbors of 0 in ρ(SP5)). By
laim 12, the 2-vertex w2 forbids one color f from ui.

• If f = 1, then it will always be possible to recolor ui as long as ϕ(v) ̸∈ {0, 2} (resp. ϕ(v) ̸∈ {0, 2}) if uiv is positive
(resp. negative).

• If f = 2, then it will always be possible to recolor ui as long as ϕ(v) ̸∈ {0, 4} (resp. ϕ(v) ̸∈ {0, 4}) if uiv is positive
(resp. negative).

• If f = 3, then it will always be possible to recolor ui as long as ϕ(v) ̸∈ {0, 1} (resp. ϕ(v) ̸∈ {0, 1}) if uiv is positive
(resp. negative).

• If f = 4, then it will always be possible to recolor ui as long as ϕ(v) ̸∈ {0, 3} (resp. ϕ(v) ̸∈ {0, 3}) if uiv is positive
(resp. negative).

• If f ̸∈ {1, 2, 3, 4}, then it will always be possible to recolor ui as long as ϕ(v) ̸= 0 (resp. ϕ(v) ̸= 0) if uiv is positive
(resp. negative).

Therefore, 3-worse-neighbors forbid at most two colors. □

roof of Claim 14. Let ui be a 3-bad-neighbor of v, a vertex which is not 3-worse (see Fig. 6 for vertex naming). Note
hat vertices w1 and w3 are 3-worse vertices. First uncolor vertices ui, w1, . . . , w4. By Claim 13, each of w1 and w3 forbids
t most 2 colors from ui. Let F be the set of forbidden colors for ui; thus |F | ≤ 4, and let A = V (ρ(SP5)) \ F .
If uiv is positive (resp. negative), color k is forbidden for v if and only if F = N+(k) (resp. N−(k)). Since no two distinct

ertices of ρ(SP5) have the same set of positive (resp. negative) neighbors, at most one color is forbidden.
Therefore, 3-bad-vertices can forbid at most one color from their neighbors. □

We now use Claim 12 to 14 to prove that Configurations C0 to C5 cannot appear in G. Recall that G is a smallest signed
raph with mad(G) < 20

7 that does not admit a sp-homomorphism to ρ(SP5).

emma 15. The graph G does not contain configurations C0 to C5.

roof of Lemma 15 (Configuration C0). Suppose that G contains C0, a vertex u of degree 0. By minimality of G, G − u
dmits a ρ(SP5)-sp-coloring ϕ. Vertex u can be mapped to any vertex of ρ(SP5) to extend ϕ to a ρ(SP5)-sp-coloring of G,
contradiction. □
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Fig. 6. Vertex v is adjacent to a 3-bad-vertex.

Proof of Lemma 15 (Configuration C1). Suppose that G contains C1, a vertex u of degree 1. By minimality of G, G−u admits
a ρ(SP5)-sp-coloring ϕ. By Property P1,4 of ρ(SP5), there are at least 4 vertices that u can be mapped to in order to extend
ϕ to a ρ(SP5)-sp-coloring of G, a contradiction. □

Proof of Lemma 15 (Configuration C2). Suppose that G contains C2. If u1 and u2 are both 3-bad and 3-worse, u1 forms
nother C2 with its 2-neighbor and we consider that one instead. By minimality of G, G − {u1, u2} admits a ρ(SP5)-sp-
oloring ϕ. Since u1 is a bad vertex, it forbids at most one color from u2 by Claims 12 and 14. If u2 is a 2-vertex, by
roperty P1,4 of ρ(SP5), it can be colored in at least 3 colors. If u2 is a 3-bad-vertex, its neighbors (a bad vertex and two
-worse-neighbors) forbid at most 4 colors from it by Claim 12, 13 and 14 so it can be colored in at least 6 colors. It is
lways possible to extend ϕ to a ρ(SP5)-sp-coloring of G, a contradiction. □

roof of Lemma 15 (Configuration C3). Suppose that G contains C3. By minimality of G, G − {u1, u2, u3} admits a ρ(SP5)-
p-coloring ϕ. By Claims 12 and 14, u2 and u3 each forbid at most 1 color from u1 and v1 forbids 6 colors from u1 by
roperty P1,4 of ρ(SP5). This means that there are at least 2 available colors for u1. It is always possible to extend ϕ to a
(SP5)-sp-coloring of G, a contradiction. □

roof of Lemma 15 (Configuration C4). Suppose that G contains C4. By minimality of G, G−{u1, u2, u3, u4} admits a ρ(SP5)-
p-coloring ϕ. By vertex-transitivity of ρ(SP5), we can assume w.l.o.g. that ϕ(v2) = 0, and since ρ(SP5) is antiautomorphic,
e can also assume that sG(v2u2) = +1. With respect to v2, there are only four available colors for u2 which are
= {1, 2, 3, 4}. By Claims 12 and 14, u1 forbids at most 1 color f from u2.
It is easy to see that |N+(A \ f )| = |N−(A \ f )| ≥ 8. Therefore, u2 forbids at most 2 colors from u3. Vertex u4 forbids at

ost one color from u3 by Claim 12, and v3 forbids 6 colors from u3 by Property P1,4 of ρ(SP5). Hence u3 can be colored
n at least one color. It is always possible to extend ϕ to a ρ(SP5)-sp-coloring of G, a contradiction. □

roof of Lemma 15 (Configuration C5). Suppose that G contains C5. By minimality of G, G − {u1, u2, u3, u4} admits a
(SP5)-sp-coloring ϕ. By Claim 12, u2, u3 and u4 each forbids at most 1 color from u1 and v1 forbids 6 colors from u2 by
roperty P1,4 of ρ(SP5). This means that there is at least 1 color available for u1. It is always possible to extend ϕ to a
(SP5)-sp-coloring of G, a contradiction. □

.2. Discharging

We start by the definition of the initial weighting ω defined by ω(v) = d(v) −
20
7 for each vertex v of degree d(v). By

construction, the sum of all the weights
∑

v∈V (G) ω(v) is negative since the maximum average degree of G (and therefore
its average degree) is strictly smaller than 20

7 .
We then introduce the following discharging rules:

(R1) Every 3+-vertex gives 3
7 to each of its 2-neighbors.

(R2) Every 3-good, 3-bad or 4+-vertex gives 1
7 to each of its 3-worse-neighbors.

(R3) Every 3-good or 4+-vertex gives 1
7 to each of its 3-bad-neighbors.

This section is devoted to obtaining a contradiction by proving that every vertex of G has non-negative final weight
fter the discharging procedure. We distinguish several cases for the vertices, depending on their degree. Remember that
cannot contain Configurations C0 to C5 by Lemmas 15. Note that since G cannot contain C0 and C1, the minimum degree
f G is 2.
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-vertices. Let v be a 2-vertex. Since G cannot contain C2, it does not have any 2-neighbors so it has two 3-worse or
+-neighbors and it receives 3

7 from each by R1. Therefore, the final weight of v is ω′(v) = 2 −
20
7 + 2 ·

3
7 = 0.

3-worse-vertices. Let v be a 3-worse-vertex. Since it is 3-worse, it has one 2-neighbor (but not more since G cannot contain
C3) to which it has to give 3

7 . Its other two neighbors are, 3-bad, 3-good or 4+-vertices (they cannot be 3-worse since G
annot contain C4) that each gives 1

7 to it by R2. Therefore, the final weight of v is ω′(v) = 3 −
20
7 −

3
7 + 2 ·

1
7 = 0.

3-bad-vertices. Let v be a 3-bad-vertex. Since it is 3-bad, it has two 3-worse-neighbors (but not more since G cannot
contain C3) to each of which it has to give 1

7 by R2. Its other neighbor is a 3-good or 4+-vertex (it cannot be a 2-
vertex or a 3-bad-vertex since G cannot contain C3 and C2) that gives 1

7 to it by R3. Therefore, the final weight of v is
ω′(v) = 3 −

20
7 − 2 ·

1
7 +

1
7 = 0.

3-good-vertices. Let v be a 3-good-vertex. Since it is 3-good, it cannot be 3-bad or 3-worse so it cannot have a 2-neighbor
or two 3-worse-neighbors. It also cannot have two 3-bad-neighbors since G cannot contain C3.

If it has one 3-worse-neighbor, it cannot have a 3-bad-neighbor because G cannot contain C4 so it only has to give 1
7

to the 3-worse-neighbor by R2. Therefore, the final weight of v is
ω′(v) = 3 −

20
7 −

1
7 = 0.

If it has one 3-bad-neighbor, it cannot have a 3-worse-neighbor since G cannot contain C4 so it only has to give 1
7 to

the 3-bad-neighbor by R3. Therefore, the final weight of v is
ω′(v) = 3 −

20
7 −

1
7 = 0.

4-vertices. Let v be a 4-vertex. Since G cannot contain C5, it has at most two 2-neighbors.
If it has two 2-neighbors and two 3-worse or 3-bad vertices it has final weight
ω′(v) = 4 −

20
7 − 2 ·

3
7 − 2 ·

1
7 = 0 by R1, R2 and R3.

If it has one 2-neighbor and three 3-worse or 3-bad vertices it has final weight
ω′(v) = 4 −

20
7 − 1 ·

3
7 − 3 ·

1
7 =

2
7 by R1, R2 and R3.

If it has zero 2-neighbors and four 3-worse or 3-bad vertices it has final weight
ω′(v) = 4 −

20
7 − 4 ·

1
7 =

4
7 by R2 and R3.

+-vertices. Let v be an n-vertex with n ≥ 5. In the worst case, v has n 2-neighbors to each of which he has to give 3
7 by

1. Therefore, v has final weight at least n −
20
7 − n ·

3
7 which is greater than or equal to 0 for n ≥ 5.

Every vertex has non-negative weight after discharging so G cannot have maximum average degree smaller than 20
7 .

his gives us a contradiction and concludes the proof.

. Proof of Theorem 9

In this section, we prove that any signed graph of maximum average degree less than 17
5 admits a ρ(SP+

9 )-sp-
oloring ϕ. To do so, we suppose that this theorem is false and we consider in the remainder of this section a minimal
ounter-example G w.r.t its order: it is a smallest signed graph with mad(G) < 17

5 admitting no ρ(SP+

9 )-sp-coloring.
We first introduce some notation in order to simplify the statements of configurations and rules.
We say that a vertex v is bad if:

• v has degree 4 and has one 2-neighbor.
• v has degree 6 and has four 2-neighbors.

If a 4+-vertex is not bad, we say that it is good.

.1. Forbidden configurations

We define several configurations C0, . . . , C8 as follows (see Fig. 7).

• C0 is a 0-vertex.
• C1 is a 1-vertex.
• C2 is a 2-vertex adjacent to another 2-vertex.
• C3 is a 2-vertex adjacent to two adjacent vertices.
• C4 is a 3-vertex.
• C5 is a vertex u adjacent to t 2-vertices, b bad vertices and no good vertices with t + 4 · b < 20 and b ≤ 2 or t ≤ 2

and b = 3.
• C6 is a vertex u adjacent to t 2-vertices, b bad vertices and one good vertex with t + 4 · b < 9.
• C7 is a vertex u adjacent to t 2-vertices, 0 bad vertices and two good vertices with t < 4.

In this section, we prove that Configurations C0 to C7 are forbidden. To this end, we first prove some generic results
e use to prove that the configurations are forbidden. Remember that ρ(SP+

9 ) is vertex-transitive, antiautomorphic and
as Properties P , P and P by Lemma 7.
1,9 2,4 3,1
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Fig. 7. Forbidden configurations C0 to C4 . Square vertices can be of any degree. White vertices will be removed to show that the configuration is
forbidden.

Fig. 8. The graph G′ .

We say that G is a minimal counter-example if it has the fewest number of 3+-vertices and the fewest number of
−-vertices among all the counter-examples that have the same amount of 3+-vertices. This will allow us to prove that
onfiguration C4 is forbidden.
Given a graph H and a homomorphism from H to ρ(SP+

9 ), we say that two vertices of H have the same identity if they
re colored with the same color or colors that are antitwins in ρ(SP+

9 ). Since SP+

9 has 10 vertices, there are 10 different
dentities in ρ(SP+

9 ). If a vertex v is adjacent to n colored vertices with pairwise different identities, these n colors form
clique in ρ(SP+

9 ). If 2 ≤ n ≤ 3 we can use Property P2,4 or P3,1 to color v.

emma 16. The graph G does not contain Configurations C0 to C7.

roof of Lemma 16 (Configuration C0). Suppose that G contains C0, a vertex u of degree 0. By minimality of G, G − u
dmits a ρ(SP+

9 )-coloring ϕ. Vertex u can be mapped to any vertex of ρ(SP+

9 ) to extend ϕ to a ρ(SP+

9 )-coloring of G, a
ontradiction. □

roof of Lemma 16 (Configuration C1). Suppose that G contains C1, a vertex u of degree 1. By minimality of G, G−u admits
ρ(SP+

9 )-coloring ϕ. By Property P1,9 of ρ(SP+

9 ), there are at least 9 vertices that u can be mapped to in order to extend
to a ρ(SP+

9 )-coloring of G, a contradiction. □

roof of Lemma 16 (Configuration C2). Suppose that G contains C2. By minimality of G, G − {u1, u2} admits a ρ(SP+

9 )-
oloring ϕ. By Property P1,9 of ρ(SP+

9 ), there are at least 9 vertices that u1 can be mapped to in order to extend ϕ to a
(SP+

9 )-coloring of G− u2. One of these vertices (in fact, 8 of them) does not have the same identity as ϕ(v2). We map u1
o this vertex. By Property P2,4 of ρ(SP+

9 ) we can then color u2 since ϕ(u1) and ϕ(v2) do not share the same identity. We
ave extended ϕ to a ρ(SP+

9 )-coloring of G, a contradiction. □

roof of Lemma 16 (Configuration C3). Suppose that G contains C3. By minimality of G, G − {u} admits a ρ(SP+

9 )-coloring
. Since v1 and v2 are adjacent, ϕ(v1) and ϕ(v2) are also adjacent in ρ(SP+

9 ). We can therefore use Property P2,4 of ρ(SP+

9 )
o extend ϕ to a ρ(SP+

9 )-coloring of G, a contradiction. □

roof of Lemma 16 (Configuration C4). Let us first prove that G cannot contain a 3-vertex adjacent to a 2-vertex. By
inimality of G, G − {u2} admits a ρ(SP+

9 )-coloring ϕ. By Property P2,4 of ρ(SP+

9 ), there are at least 4 vertices that u1 can
e remapped to (including the one it is already mapped to in ϕ). These vertices cannot be antitwins so at least three of
hem do not have the same identity as ϕ(v3). We map u1 to one of these three vertices. By Property P2,4 of ρ(SP+

9 ) we
an then color u2 since ϕ(u1) and ϕ(v3) do not share the same identity. We have extended ϕ to a ρ(SP+

9 )-coloring of G, a
ontradiction. Therefore G cannot contain a 3-vertex adjacent to a 2-vertex.
Suppose that G contains C4. We create a graph G′ by removing u from G and adding three 2-vertices u1, u2 and u3

ccording to Fig. 8 with sG′ (v1u2) = sG′ (v1u3) = sG(v1u), sG′ (v2u1) = sG′ (v2u3) = sG(v2u) and sG′ (v3u1) = sG′ (v3u2) =

(v u).
G 3
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We first prove that G′ is smaller than G and that mad(G′) < 17
5 in order to prove that G′ admits a ρ(SP+

9 )-coloring.
sing this coloring we then show that G can be colored with ρ(SP+

9 ), a contradiction.
Vertices v1, v2 and v3 are 3+-vertices in G since G cannot contain a 2-vertex adjacent to a 3-vertex. Hence, G′ has fewer

+-vertices than G so G′ is smaller than G.
In order tho prove that mad(G′) < 17

5 , we need to show that a subgraph of G′ of maximal average degree has average
egree smaller than 17

5 . We use the fact that every subgraph of G has average degree smaller than 17
5 .

Suppose that a subgraph of maximal average degree does not contain u1, u2 or u3. The same subgraph in G has the
ame average degree which is smaller than 17

5 .
Suppose that a subgraph of maximal average degree contains u1 but not u2 or u3. The same subgraph in G with u

nstead of u1 has the same average degree which is smaller than 17
5 .

Suppose that a subgraph of maximal average degree contains u1 and u2 but not u3. We call this subgraph H ′. We call H
he same subgraph in G with u instead of u1 and u2. The three vertices v1, v2 and v3 must be in this subgraph otherwise
e would have at least one vertex of degree 0 or 1 in H ′ which is not possible since the same subgraph without this
ertex would have a greater average degree. Note that we have: |V (H)| = |V (H ′)| − 1 and |E(H)| = |E(H ′)| − 1. The
verage degree of H ′ is 2|E(H ′)|

|V (H ′)| . Suppose that this average degree is greater than or equal to 17
5 :

2 · |E(H ′)|
|V (H ′)|

≥
17
5

2 · |E(H ′)| ≥
17
5

· |V (H ′)|

2 · |E(H ′)| − 2 ≥
17
5

· |V (H ′)| − 2 ≥
17
5

· |V (H ′)| − 1 ·
17
5

2 · (|E(H ′)| − 1) ≥
17
5

· (|V (H ′)| − 1)

2 · |E(H)| ≥
17
5

· |V (H)|

2 · |E(H)|
|V (H)|

≥
17
5

We have a contradiction.
We proceed in a similar manner for the case in which a subgraph of G′ with maximal average degree contains u1, u2

nd u3. Now V = V ′
− 2 and E = E ′

− 3 and we have a similar contradiction.
If ϕ(v1), ϕ(v2) and ϕ(v3) all have different identities, we can find a color for u to extend ϕ to G by using Property P3,1

f ρ(SP+

9 ).
If there are two vertices ϕ(vi) and ϕ(vj) that share the same identity, they can either be colored with the same color or

colors that are antitwins. If they have the same color, we must have s(viu) = s(vju) (because of the way we constructed
′) and vi and vj induce the same constraints on u. If they have colors that are antitwins, we must have s(viu) = −s(vju)
because of the way we constructed G′) and vi and vj induce the same constraints on u.

We can always extend ϕ to a ρ(SP+

9 )-coloring of G, a contradiction. □

We introduce the following propositions that were found using a case analysis on a computer.

roposition 17. Given a set C of c vertices in ρ(SP+

9 ) there are at most f vertices that are not positive neighbors (or
lternatively negative neighbors) to any of the vertices in C:

c 0 1 2 3–4 5–6 7–11 12–20
f 20 11 6 4 2 1 0

In other words, if there are c choices of colors available for a vertex when coloring a graph with ρ(SP+

9 ), these c choices
orbid at most f colors from a neighboring vertex.

roposition 18. Given a set C of 4 vertices in ρ(SP+

9 ) such that this set can be the result of Property P2,4 (note that it always
ives exactly 4 vertices), there are at most 2 vertices that are not positive neighbors (or alternatively negative neighbors) to
ny of the vertices in C.
After removing one of the 4 vertices of C, there are at most 3 vertices that are not positively adjacent (or alternatively

egatively adjacent) to any of the 3 remaining vertices in C.

roposition 19. If a vertex u is adjacent to three pairwise adjacent vertices v1, v2 and v3 such that v1 can be colored in 19
olors, v2 in 5 colors and v3 in 4 colors then these vertices forbid at most 17 colors from u.

roposition 20. If a vertex u is adjacent to two adjacent vertices v1 and v2 such that v1 can be colored in 7 colors and v2 in
colors then these vertices forbid at most 13 colors from u.
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roposition 21. If a vertex u is adjacent to adjacent vertices v1 and v2 such that v1 can be colored in 7 colors and v2 in the
same 7 colors then these vertices forbid at most 11 colors from u.

Proof of Lemma 16 (Configuration C5). Suppose that G contains Configuration C5. Let G′
= G−u. By minimality of G, there

exists a homomorphism ϕ from G′ to ρ(SP+

9 ). We want to show that we can extend ϕ into a homomorphism ϕ′ from G
to ρ(SP+

9 ). To do that, we will show that among the 20 colors that are available (i.e. the 20 vertices of ρ(SP+

9 )), at most
+ 4 · b are forbidden for u by its bad-neighbors and 2-neighbors if b ≤ 2 or at most t + 17 if b = 3.
We now need to prove that each 2-neighbor of u forbids at most 1 color from u, each bad-neighbor of u forbids at

ost 4 colors from u if b ≤ 2 and three bad neighbors forbid at most 17 colors from u.
2-neighbors: By Property P1,9 of ρ(SP+

9 ), a 2-neighbor v of u can be colored in 9 colors with respect to the color of its
eighbor that is not u. By Proposition 17, since v can be colored in at least 9 colors, v forbids at most 1 color from u. In
ther words, u can be colored in at least 19 colors such that there is at least one of the 9 colors available for v that is a
ositive neighbor (or alternatively a negative neighbor) in ρ(SP+

9 ) of that color.
bad-neighbors: Note that since Configuration C4 is forbidden, a 2-neighbor of u cannot be adjacent to a bad-neighbor

f u. We consider the following cases:

• u is adjacent to one bad-vertex v:

– v has degree 4: Let v1 be the 2-neighbor of v and v2 and v3 be its other two neighbors. Vertex v1 forbids 1 color
from v. If v2 and v3 share the same identity, they forbid 11 colors by Property P1,9 of ρ(SP+

9 ). Otherwise they
forbid at most 16 colors by Property P2,4 of ρ(SP+

9 ). Overall they forbid at most 16 colors from v. Therefore,
there are at least 3 colors available for v and by Proposition 17, v forbids at most 3 colors from u.

– v has degree 6: By Property P1,9 of ρ(SP+

9 ) and the fact that a 2-neighbor forbids 1 color, there are at least 5
colors available for v. By Proposition 17, v forbids at most 2 colors from u.

• u is adjacent to two bad-vertices v1 and v2: Note that since Configuration C4 is forbidden, v1 and v2 cannot be both
adjacent and adjacent to the same 2-vertex.

– v1 and v2 are neither adjacent nor adjacent to the same 2-vertex: For the same reasons as before we know that
v1 and v2 each forbids at most 3 colors.

– v1 and v2 are adjacent:

∗ v1 and v2 are 4-vertices: By Property P1,9 of ρ(SP+

9 ) and the fact that a 2-neighbor forbids 1 color, there
are at least 8 colors available for both v1 and v2. A case study by computer reveals that together v1 and
v2 forbid at most 2 colors from u.

∗ v1 and v2 are 6-vertices: By the fact that a 2-neighbor forbids 1 color, there are at least 16 colors available
for both v1 and v2. This gives us less constraints than the case in which v1 and v2 are 4-vertices. Therefore,
together v1 and v2 forbid at most 2 colors from u.

∗ v1 is a 4-vertex and v2 is a 6-vertex: By Property P1,9 of ρ(SP+

9 ) and the fact that a 2-neighbor forbids
1 color, there are at least 8 colors available for v1 and 16 for v2. A case study by computer reveals that
together v1 and v2 forbid at most 2 colors from u.

– v1 and v2 are adjacent to the same 2-vertex:

∗ v1 and v2 are 4-vertices: Let w be that 2-vertex, e1 = uv1, e2 = wv1, e3 = uv2 and e4 = wv2. Suppose that
cycle (u, v1, w, v2) is balanced. By Theorem 2 we can without loss of generality switch a set of vertices
such that s(e1) = s(e2) and s(e3) = s(e4). Therefore, v1 (resp. v2) create the same constraints on both u and
w and it suffices to give w the same color as u. By Property P2,4 of ρ(SP+

9 ) and Proposition 18, v1 and v2
each forbid at most 2 colors from u. We can thus assume that (u, v1, w, v2) is unbalanced. By Theorem 2
we can without loss of generality switch a set of vertices such that s(e2) = −s(e4). Notice that if we give
v1 and v2 different colors we can color w by Property P2,4 of ρ(SP+

9 ). Let S1 (resp. S2) be the set of possible
colors for v1 (resp. v2). By Property P2,4 of ρ(SP+

9 ) we know that |S1|, |S2| ≥ 4. We consider the following
cases:

· |S1 ∩ S2| = 0: By Proposition 18, v1 and v2 forbid at most 4 colors from u.
· |S1 ∩ S2| = 1: We remove the common color from S1 such that we can always apply Property P2,4 to
color w. By Proposition 18 v1 and v2 forbid at most 5 colors from u.

· |S1 ∩ S2| = 2: We remove one of the common colors from S1 and the other from S2. By Proposition 18,
v1 and v2 forbid at most 6 colors from u.

· |S1 ∩ S2| = 3: A case study by computer reveals that this case is not possible.
· |S1 ∩ S2| = 4: A case study by computer reveals that v1 and v2 forbid at most 6 colors from u.

∗ v1 and v2 are 6-vertices: Suppose that there is only one 2-vertex w adjacent to both v1 and v2. By Property
P1,9 of ρ(SP+

9 ) and the fact that 2-neighbors forbid at most one color we have at least 6 colors available

for v1 and v2. Let S1 and S2 be the set of available colors for v1 and v2. Notice that it is not possible for
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two of the colors in S1 (resp. S2) to be antitwins (they would need to be adjacent to a vertex in ρ(SP+

9 )
with the same kind of edge). Let us keep only 3 colors from S1 and S2 such that we do not have two colors
c1 ∈ S1 and c2 ∈ S2 such that c1 = c2 or c1 and c2 are antitwins. Choosing any color for v1 and v2 now
always allows us to color w by Property P2,4. By Proposition 17, v1 and v2 each forbid at most 4 colors
from u. If there are more than one 2-vertex that v1 and v2 are adjacent to we can still apply the same
reasoning (except there will be more colors available for v1 and v2).

∗ v1 is a 4-vertex and v2 is a 6-vertex: We follow the same reasoning as before and by Property P1,9 and P2,4
of ρ(SP+

9 ) and the fact that 2-neighbors forbid at most one color we have at least 4 colors available for v1
and 6 for v2. We can guarantee at least 3 distinct colors for v1 and v2 which means by Propositions 17
and 18 that they forbid at most 7 colors from u.

• u is adjacent to three bad-vertices v1, v2 and v3:
We have 20 cases to consider since v1, v2 and v3 can be of degree 4 or 6 and each pair can either be adjacent,

adjacent to the same 2-vertex (or vertices) or neither of those since Configuration C4 is forbidden. The following
pictures represent these 20 cases. Note that we do not need to consider cases in which a vi is not adjacent nor

adjacent to the same 2-vertex as another of the bad vertices. In such a case we can consider vi and the other two
bad vertices independently using the same reasoning we used when u is adjacent to only one or two bad vertices
to show that in total v1, v2 and v3 forbid at most 17 colors from u. In the picture, the number inside the vertex
corresponds to its degree and the number above the vertex corresponds to the number of available colors by

Property P1,9 or P2,4 of ρ(SP+

9 ) and the fact that 2-neighbors forbid at most one color. Dashed lines represent two
vertices that are adjacent to the same 2-vertex. The vertex on the left is v1, in the middle v2 and on the right v3.

We denote by S1, S2 and S3 the sets of colors available for v1, v2 and v3 respectively.

– Case 1: We can use Proposition 19 to show that the three vertices forbid at most 17 colors from u.
– Case 2: We can use Proposition 19 since having one less edge gives us fewer constraints.
– Case 3: Notice that it is more restrictive for two vertices u and v to be adjacent rather than to be adjacent to

the same 2-vertex. This comes from the fact that the 2-vertex can be colored using Property P2,4 as long as u
and v get different identities (which is already a requirement when u and v are adjacent). We can therefore
use Proposition 19. If there are more than one 2-vertices that u and v are both adjacent to, we can still use this
technique (and u and v have more available colors). In the following cases we can therefore assume that there
is at most one 2-vertex adjacent to a given pair of bad vertices.

– Case 4: Note that the colors in S2 all have different identities since they are all adjacent to the same vertex in
ρ(SP+

9 ). By removing at most 4 of the colors from S2, we can guarantee that any color chosen for v2 will not
have the same identity as one of the colors available for v3. By Proposition 20, v1 and v2 forbid at most 13
colors and by Proposition 18, v3 forbids at most 2 colors.

– Case 5: We use Proposition 19.
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– Case 6: By removing at most 4 colors from S1 and 2 colors from S2 and S3, we can guarantee that no colors in
these three sets have the same identity. By Proposition 17, the three vertices forbid at most 6 + 6 + 4 = 16.

– Case 7: We remove 3 colors from S3. By removing at most 9 colors from S2, we can guarantee that no color
in S2 has the same identity as a color in S3. By Proposition 20, v1 and v2 forbid at most 13 colors and by
Proposition 17, v3 forbids at most 4 colors.

– Case 8: We use Proposition 19.
– Case 9: Suppose that the 7 identities in S2 are all in S1 and S3. We remove 2 colors from v1 and v3 and 5 colors

from v2 such that S1 = S3 and no color in S1 has the same identity as a color in S2. Vertices v1 and v2 forbid
at most 11 colors by Proposition 21 and by Proposition 17, v3 forbids at most 6 colors. We can now assume
that there is at least one identity in S2 that is not in S1 (or alternatively S3). Therefore, by removing at most 2
vertices from S1, 4 from S2 and 3 from S3 we can guarantee that there are no colors in S2 that have the same
identity as a color in S1 or S3. By Proposition 20, v1 and v3 forbid at most 13 colors and by Proposition 17, v2
forbids at most 4 colors.

– Case 10: We proceed similarly to Case 7.
– Case 11: We remove 1 color from S1 and S3 and 6 from S2 such that there are no colors in S2 that have the same

identity as a color in S1 or S3. By Property P1,9 of ρ(SP+

9 ), v2 forbids at most 11 colors and by Proposition 18,
v1 and v3 each forbid at most 3 colors.

– Case 12: We use Proposition 19.
– Case 13: We proceed similarly to Case 4.
– Case 14: We proceed similarly to Case 4.
– Case 15: We use Proposition 19.
– Case 16: We use Proposition 19.
– Case 17: We use Proposition 19.
– Case 18: We proceed similarly to Case 5.
– Case 19: We proceed similarly to Case 5.
– Case 20: We proceed similarly to Case 5. □

Proof of Lemma 16 (Configurations C6 and C7). We proceed in the same way as Configuration C5 except there are at the
tart only 9 (resp. 4) colors available for u by Property P1,9 (resp. P2,4) of ρ(SP+

9 ). □

for degree ∈ {4, 5, ..., 11} do
for t, b, n ∈ N such that t + b + n = degree do

if n = 0 and e + 4 · b < 20 and b ≤ 2 then
continue (forbidden configuration C5)

else if n = 0 and t + 17 < 20 and b = 3 then
continue (forbidden configuration C5)

else if n = 1 and t + 4 · b < 9 and b ≤ 2 then
continue (forbidden configuration C6)

else if n = 2 and t < 4 and b = 0 then
continue (forbidden configuration C7)

else if v is bad then
if degree −

17
5 + (n) ∗

1
10 − e ∗

7
10 then

continue (final weight at least 0)
else

error (final weight smaller than 0)
end

else
if degree −

17
5 − t ∗

7
10 − b ∗

1
10 ≥ 0 then

continue (final weight at least 0)
else

error (final weight smaller than 0)
end

end
end

end
Algorithm: Algorithm used to check that each vertex of degree between 4 and 11 has final weight at least 0 after
discharging.

4.2. Discharging

We start with the definition of the initial weighting ω defined by ω(v) = d(v) −
17
5 for each vertex v of degree d(v).

y construction, the sum of all the weights is negative.
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We then introduce two discharging rules:

(R1) Every 4+-vertex gives 7
10 to each of its 2-neighbors.

(R2) Every 4+ good vertex gives 1
10 to each of its bad neighbors.

This section is devoted to obtaining a contradiction by proving that every vertex of G has non-negative final weights
after the discharging procedure. We distinguish several cases for the vertices, depending on their degree. First note that
since G cannot contain C0 and C1, the minimum degree of G is 2 and G does not contain 3-vertices by C4.

4.2.1. 2-vertices
Let v be a 2-vertex. Since C2 and C4 are forbidden, v only has 4+-neighbors. Thus, by R1, each of them gives 7

10 to v.
herefore, the final weight of v is ω′(v) = 2 −

17
5 + 2 ·

7
10 = 0.

4.2.2. Vertices of degree d, 4 ≤ d ≤ 11
We checked on a computer with the following algorithm that for every vertex v with b bad neighbors, t 2-

eighbors and n other neighbors then either v is in a forbidden configurations or v has final weight at least 0 after
ischarging.

.2.3. 12+-Vertices
Let v be a vertex of degree d at least 12. In the worst case, v has d 2-neighbors. Therefore, it has weight at least

−
17
5 − d ·

7
10 which is greater than or equal to 0 for d ≥ 12.

Every vertex has non-negative weight after discharging so G cannot have maximum average degree smaller than 17
5 .

his gives us a contradiction and concludes the proof.

. Proof of Theorem 11

In this section, for q ≥ 9, we prove that any signed graph of maximum average degree less than 4−
8

q+3 admit a ρ(SP+
q )-

p-coloring. To do so, we suppose that this theorem is false and we consider in the remainder of this section a minimal
ounter-example G w.r.t its order: it is a smallest signed graph with mad(G) < 4−

8
q+3 admitting no ρ(SP+

q )-sp-coloring.

.1. Forbidden configurations

We define several configurations C1, . . . , C9 as follows (see Fig. 9).

• C0 is a 0-vertex.
• C1 is a 1-vertex.
• C2 is two adjacent 2-vertices.
• C3 is a 2-vertex with a 3-neighbor.
• C4 is a 3-vertex.
• C5 is a d-vertex adjacent to d 2-neighbors with d < 2q + 2.
• C6 is a d-vertex adjacent to d − 1 2-neighbors with d < q + 1.
• C7 is a d-vertex adjacent to d − 2 2-neighbors with d <

q+3
2 .

• C8 is a d-vertex adjacent to d − 3 2-neighbors with d <
q+7
4 .

Lemma 22. The graph G does not contain Configurations C0 to C8.

Remember that ρ(SP+
q ) is vertex-transitive, antiautomorphic and has Properties P1,q, P2, q−1

2
and P3, q−5

4
by Lemma 7.

roof of Lemma 22 (Configurations C0 to C4). The target graph ρ(SP+
q ) is vertex-transitive, antiautomorphic and has

roperties P1,q, P2, q−1
2

and P3, q−5
4

by Lemma 7. Since q ≥ 9, it has at least Properties P1,9, P2,4 and P3,1 which are the
same properties as ρ(SP+

9 ) (see Lemma 6). Therefore, Configurations C0 to C4 are forbidden by Lemma 22. □

Since ρ(SP+
q ) has better properties than ρ(SP+

5 ) since q ≥ 9, we can use Claim 12 in the proofs of this section.

roof of Lemma 22 (Configuration C5). Suppose that G contains Configuration C5. By minimality of G, the graph obtained
from G by removing u and its 2-neighbors admits a ρ(SP+

q )-sp-coloring ϕ. Every 2-neighbor of u forbids at most 1
olor from u by Claim 12. Since there are 2q + 2 colors in G, we can find always find a color for u to extend ϕ to a
(SP+)-sp-coloring of G, a contradiction. □
q
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Fig. 9. Forbidden configurations. Square vertices can be of any degree. White vertices will be removed. Triangle vertices are 2, 5-worse or
-bad-vertices.

roof of Lemma 22 (Configurations C6). Suppose that G contains Configuration C6. By minimality of G, the graph obtained
from G by removing u and its 2-neighbors admits a ρ(SP+

q )-sp-coloring ϕ. By Property P1,q, we have q available colors for
u. Every 2-neighbor of u forbids at most 1 color from u by Claim 12. We can therefore always find a color for u to extend
ϕ to a ρ(SP+

q )-sp-coloring of G, a contradiction. □

Proof of Lemma 22 (Configurations C7). Suppose that G contains Configuration C7. By minimality of G, the graph obtained
from G by removing the 2-neighbors of u admits a ρ(SP+

q )-sp-coloring ϕ. By Property P2, q−1
2
, u can be recolored in q−1

2
distinct colors such that there is no conflict with ϕ(v1) and ϕ(v2). Every 2-neighbor of u forbids at most 1 color from u
y Claim 12. We can therefore always find a color for u to extend ϕ to a ρ(SP+

q )-sp-coloring of G, a contradiction. □

roof of Lemma 22 (Configurations C8). Suppose that G contains Configuration C8. By minimality of G, the graph obtained
rom G by removing the 2-neighbors of u admits a ρ(SP+

q )-coloring ϕ. By Property P3, q−5
4
, u can be recolored in q−5

4 colors
uch that there is no conflict with ϕ(v1), ϕ(v2) and ϕ(v3). Every 2-neighbor of u forbids at most 1 color from u by Claim 12.
e can therefore always find a color for u to extend ϕ to a ρ(SP+

q )-sp-coloring of G, a contradiction. □

.2. Discharging

Let ω be the initial weighting defined by ω(v) = d(v) − 4 +
8

q+3 for each vertex v of degree d(v). By construction, the
sum of all the weights is negative since mad(G) < 4 −

8
q+3 .

We introduce the following discharging rule:

(R) Every 4+-vertex gives q−1
q+3 to each of its neighbors of degree 2.

This section is devoted to obtaining a contradiction by proving that every vertex of G has non-negative final weights
after the discharging procedure. We distinguish several cases for the vertices, depending on their degree. First note that
since G cannot contain C0, C1 and C4, G contains no 0, 1 or 3-vertex.

2-vertices. Let v be a 2-vertex. Since C2 is forbidden, v only has 4+-neighbors. Thus, each of them gives q−1
q+3 to v. Therefore,

the final weight of v is 2 −

(
4 −

8
)

+ 2 ·
q−1

= 0.
q+3 q+3
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-vertices with 4 ≤ d <
q+7
4 . Let v be such a d-vertex. Since C8 is forbidden, v has at most d − 4 2-neighbors. Therefore,

n the worst case, v has final weight at least
d −

(
4 −

8
q+3

)
− (d − 4) ·

q−1
q+3 ≥ 4 −

(
4 −

8
q+3

)
> 0.

d-vertices with q+7
4 ≤ d <

q+3
2 . Let v be such a d-vertex. Since C7 is forbidden, v has at most d−3 2-neighbors. Therefore,

in the worst case, v has final weight at least
d −

(
4 −

8
q+3

)
− (d − 3) ·

q−1
q+3 ≥

q+7
4 −

(
4 −

8
q+3

)
−

( q+7
4 − 3

)
·

q−1
q+3 = 0.

d-Vertices with q+3
2 ≤ d < q+1. Let v be such a d-vertex. Since C6 is forbidden, v has at most d−2 2-neighbors. Therefore,

n the worst case, v has final weight at least
d −

(
4 −

8
q+3

)
− (d − 2) ·

q−1
q+3 ≥

q+3
2 −

(
4 −

8
q+3

)
−

( q+3
2 − 2

)
·

q−1
q+3 = 0.

d-Vertices with q + 1 ≤ d < 2q + 2. Let v be such a d-vertex. Since C5 is forbidden, v has at most d − 1 2-neighbors.
herefore, in the worst case, v has final weight at least
d −

(
4 −

8
q+3

)
− (d − 1) ·

q−1
q+3 ≥ q + 1 −

(
4 −

8
q+3

)
− (q + 1 − 1) ·

q−1
q+3 > 0.

d-Vertices with 2q + 2 ≤ d. Let v be such a d-vertex. Vertex v has at most d 2-neighbors. Therefore, in the worst case, v
has final weight at least

d −

(
4 −

8
q+3

)
− d ·

q−1
q+3 ≥ 2q + 2 −

(
4 −

8
q+3

)
− (2q + 2) ·

q−1
q+3 > 0.

Every vertex has non-negative weight after discharging so G cannot have maximum average degree smaller than
4 −

8
q+3 . This gives us a contradiction and concludes the proof.
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