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neighborhood is at least min{ds(v), r}, where dg(v) is the degree
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1. Introduction

A k-coloring of the vertices of a graph G = (V,E)isamap ¢ : V — {1, 2, ..., k}. A k-coloring ¢
is a proper coloring, if and only if, for all edge xy € E, ¢(x) # ¢(y). In other words, no two adjacent
vertices have the same color. The chromatic number of G, denoted x(G), is the smallest integer k so
that G has a proper k-coloring. A generalization of k-coloring is k-list-coloring. A graph G is L-list
colorable if for a given list assignment L = {L(v) : v € V(G)} there is a proper coloring ¢ of G such
that for all v € V(G), ¢(v) € L(v). If G is L-list colorable for every list assignment L with |L(v)| > k
for all v € V(G), then G is said to be k-choosable or k-list-colorable. The list chromatic number of
a graph G, is the smallest integer k such that G is k-choosable. List coloring can be very different
from usual coloring as there exist graphs with a small chromatic number and an arbitrarily large
list chromatic number.

In 1969, Kramer and Kramer introduced the notion of 2-distance coloring [28,29]. This notion
generalizes the “proper” constraint (that does not allow two adjacent vertices to have the same
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(i) A proper T-coloring (ii) A non-optimal (iii) An optimal 2-
that is not 2-distance. 2-distance 7-coloring. distance
6-coloring.

Fig. 1. A graph G with x?(G) =6 and x(G) = 3.

color) in the following way: a 2-distance k-coloring is such that no pair of vertices at distance at
most 2 have the same color (similarly to proper k-list-coloring, one can also define 2-distance k-list-
coloring ). The 2-distance chromatic number of G, denoted x2(G), is the smallest integer k so that G
has a 2-distance k-coloring. An example of 2-distance colorings is given in Fig. 1.

For all v € V, we denote dg(v) the degree of v in G and by A(G) = max,cy d¢(v) the maximum
degree of a graph G. For brevity, when it is clear from the context, we will use A (resp. d(v))
instead of A(G) (resp. dg(v)). One can observe that, for any graph G, A + 1 < x%(G) < A% + 1.
The lower bound is trivial since, in a 2-distance coloring, every neighbor of a vertex v with degree
A, and v itself must have a different color. As for the upper bound, a greedy algorithm shows that
%x2(G) < A% + 1. Moreover, this bound is tight for some graphs, for example, Moore graphs of type
(A, 2), which are graphs where all vertices have degree A, are at distance at most two from each
other, and the total number of vertices is A% + 1. See Fig. 2.

A graph is planar if one can draw its vertices with points on the plane, and edges with curves
intersecting only at its endpoints. When G is a planar graph, Wegner conjectured in 1977 that x%(G)
becomes linear in A(G):

Conjecture 1 (Wegner [38]). Let G be a planar graph with maximum degree A. Then,

7, if A <3,
x*(G) <1 A+5, ifa<A<7,
|22|+1, ifAa=>8.

The upper bound for the case where A > 8 is tight (see Fig. 3(i)). Recently, the case A < 3 was
proved by Thomassen [37], and by Hartke et al. [22] independently. For A > 8, Havet et al. [23]
proved that the bound is %A(l + o(1)), where o(1) is as A — oo (this bound holds for 2-distance
list-colorings). Conjecture 1 holds for Ky-minor free graphs [31].

For large A (> 8), the coefficient before A becomes 1 when the graph becomes “sparser”. Here,
a “sparse” graph means that it has a “low” number of edges. One way to measure the sparsity
of a graph is through its maximum average degree. The average degree ad of a graph G = (V,E) is
defined by ad(G) = % The maximum average degree mad(G) is the maximum, over all subgraphs H
of G, of ad(H). Another way to measure the sparsity is through the girth, i.e. the length of a shortest
cycle. We denote by g(G) the girth of G. Intuitively, the higher the girth of a graph is, the sparser it

gets. These two measures can actually be linked directly in the case of planar graphs.

Proposition 2 (Folklore). For every planar graph G, (mad(G) — 2)(g(G) — 2) < 4.

As a consequence, any theorem with an upper bound on mad(G) can be translated to a theorem
with a lower bound on g(G) under the condition that G is planar.

In the case of sparse planar graphs, extensive researches have been done and many results
have taken the following form: every planar graph G of girth g > go and A(G) > A satisfies
%x2(G) < A + c(go, Ag), where c(gy, Ag) is a constant depending only on gy and Agy. Table 1 shows
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(i) The Moore graph of type (ii) The Moore graph of type (iii) The Moore graph of type
(2,2): (3,2): (7,2):
the odd cycle C5 the Petersen graph. the Hoffman-Singleton graph.

Fig. 2. Examples of Moore graphs for which x? = A% + 1.

L%J — 1 vertices [

|

1 vertices | 5] — 1 vertices [£] vertices

| 5] vertices | 5] vertices

(i) A graph with girth 3 and x? = [32] + 1 (ii) A graph with girth 4 and x? = [22] — 1.

Fig. 3. Graphs with 2 ~ 3A.

all known such results on the 2-distance chromatic number of planar graphs with fixed girth, up to
our own knowledge.

For example, the result from line “7” and column “A + 1” from Table 1 reads as follows: “every
planar graph G of girth at least 7 and of A at least 16 satisfies x*(G) < A + 1. The crossed out
cases in the first column correspond to the fact that, for gy < 6, there are planar graphs G with
x2(G) = A + 2 for arbitrarily large A [6,21]. The lack of results for g > 4 is due to the fact that
the graph in Fig. 3(ii) has girth 4, and x? = L%AJ — 1 for all A. Finally, many of these results are
corollaries of theorems on 2-distance list-colorings or 2-distance colorings of graphs with bounded
maximum average degree.

The “2-distance” condition in 2-distance colorings requires that vertices at distance at most two
have different colors. In other words, all neighbors of the same vertex must have different colors.
This condition was generalized recently and the notion of r-hued coloring was introduced [33].
Let r,k > 1 be two integers. An r-hued k-coloring of the vertices of G is a proper k-coloring of
the vertices, such that all vertices are r-hued. A vertex is r-hued if the number of colors in its
neighborhood Ng(v) = {x|xv € E} is at least min{dg(v), r}. The r-hued chromatic number of G,
denoted x,(G), is the smallest integer k so that G has an r-hued k-coloring.

It is indeed a generalization of 2-distance colorings which corresponds to the case r > A, as
all vertices in the same neighborhood will have different colors. More generally, its link to proper
coloring and 2-distance coloring resides in the following equation:

X(G) = x1(G) < x2(G) < - < xa(G) = xa11(G) = --- = x*(G) (1)

Examples of r-hued colorings are given in Fig. 4.
Similar to the 2-distance chromatic number, the r-hued chromatic number is linear in r when
it comes to planar graphs. In 2014, Song et al. proposed a generalization of Conjecture 1:



4 H. La, M. Montassier, A. Pinlou et al. / European Journal of Combinatorics 91 (2021) 103219

Table 1
The latest results with a coefficient 1 before A in the upper bound of x2.
2 x*G)
A+1 A42 A+3 A+ 4 A+5 A+6 A+7 A48
3 - A =31[2237]
4 -
5 - A>107 [3]> A>339[20] A>312[19] A>15[12]* A>12[10]> A #7,8[19] all A [18]
6 - A>17 [5]° A=9][10]° all A [11]
7  A>16 [24]° A =4 [16]
8 A>10[24]° A =5 ][9]
A>9d
9 A>8[4]° A=5[9]° A=3[17]
10 A>6[24]°
11 A =416]

12 A=5[24]° A=3]7]°

14 A>4[4]

22 A =324

2Corollaries of r-hued list-colorings of planar graphs.

bCorollaries of 2-distance list-colorings of planar graphs.

“Corollaries of 2-distance list-colorings of graphs with a bounded maximum average degree.
dThis is a corollary of our result (see Corollary 5).

€Corollaries of 2-distance colorings of graphs with a bounded maximum average degree.

(i) A 2-hued 5-coloring which is not a 2-distance  (ii) A 5-hued 6-coloring which is also a 2-distance
coloring coloring

Fig. 4. A graph G with A =5.

Conjecture 3 (Song et al. [34]). Let G be a planar graph. Then,

r+3, ifl1<r<2,
x(G)<{ r+5, if3<r<7,
1 Z1+1, ifr>8.

One can note that the case r = 1 corresponds to the Four Color Theorem [1,2]; additionally,
by taking r = A(G), Conjecture 3 implies Conjecture 1 except for the case r = 3. Moreover, the
only extremal known examples reaching the upper bounds of Conjecture 3 are the same as for
Conjecture 1 (see Fig. 3(i)).

The case of r = 2 has been proven by Chen et al. in [14]. Song and Lai [35] proved that, if r > 8,
then every planar graph verifies x,(G) < 2r + 16. Similar to 2-distance coloring, the coefficient
before r in this upper bound becomes 1 for graphs with a higher girth. Table 2 shows all known
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Table 2
The latest results with a coefficient 1 before r in the upper bound of ;.
g x(G)
r+1 r+2 r+3 r+4 r+5 r+6 r+4+7 ... r+10
3 - r=2[251 r=2[14] r=2[26]° r=31[32]
4 -
5 - r>15[12] all r [12]
6 - r>3[30]
7 r=2[26] r=3[27]°
8 r>66[36]
r>9°
9 r>8[13] r=31[27]
10 r>6[13]°
11
12 r>5/[13]
13
14 r=31[15]

2For G connected and different from Cs.

bCorollaries of results on r-hued list-colorings of graphs with a bounded maximum average degree.
€Corollaries of results on r-hued list-colorings of planar graphs.

dCorollaries of results on r-hued coloring of graphs with a bounded maximum average degree.
€This is our result (see Theorem 4).

results of the following form: let r and ro be integers such that r > rq, every planar graph G of girth
g(G) > gy satisfies x(G) < r 4+ c(go, o), Where c(go, 1o) is a constant depending only on gy and ro.

The result from the “9” line and “r 4+ 1” column reads “for r > 8, every planar graph G of girth
at least 9 satisfies x,(G) < r + 1”. Since an r-hued coloring is a 2-distance coloring when r > A,
some results for 2-distance colorings come from r-hued colorings. Similarly to 2-distance colorings,
many of these results also come from r-hued list-colorings, or r-hued colorings of graphs with a
bounded maximum average degree.

We are interested in the case x,(G) =r + 1 (as r + 1 is a trivial lower bound for x,(G) as soon
as the graph contains a vertex of degree at least r). In particular, we were looking for the smallest
integer r such that a planar graph of girth at least 8 can be r-hued colored with r+1 colors, with the
aim to find a sufficiently good lower bound to obtain a new result on 2-distance coloring which is a
long-standing active research area. Song et al. [36] showed that every graph G with mad(G) < 15—4 —€
and r > f(e) satisfies x,(G) <r+1for0 <e < 2—10 and f(e) = ;—S + 2. Therefore, as a corollary, one
can derive that, if G is a planar graph with girth at least 8 and r > 66, then x,(G) < r + 1. While
restricting the study on planar graphs we improve this corollary in Theorem 4.

Our main result is the following:

Theorem 4. If G is a planar graph with g(G) > 8, then x,(G) <r+ 1 forr > 9.

Hence for r = A, we get the following corollary:

Corollary 5. If G is a planar graph with g(G) > 8 and A(G) > 9, then x?(G) = A(G) + 1.

Corollary 5 is an improvement of the best known 2-distance coloring result for planar graphs of
girth at least 8 with A + 1 colors (see Table 1). Results for this class of graphs were first proved
by Borodin et al. in [8] who showed that these graphs can be list 2-distance colored with A + 1
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colors for A > 15. Later, the lower bound on A was improved to A > 10 by Ivanova in [24].
We generalized these results to r-hued coloring. By dropping the choosability restriction and by
exploiting heavily the planarity of the input graph, we are able to improve the lower bound on the
maximum degree to A > 9 for every planar graph of girth at least 8.

Notations and drawing conventions. In the following, we will only consider planar graphs. Each
considered planar graph will be embedded into the plane. We will denote F(G) the set of faces of a
plane graph G. We denote dg(f) the size of face f € F(G). For v € V(G), the 2-distance neighborhood of
v, denoted N((v), is the set of 2-distance neighbors of v, which are vertices at distance at most two
from v, not including v. We also denote df(v) = [N&(v)|. From now on, we will omit the subscript
¢ when there is no ambiguity.

Some more notations:

o Ad-vertex (dt-vertex, d~-vertex) is a vertex of degree d (at least d, at most d). A (d <> e)-vertex
is a vertex with degree between d and e included.

o A d-face (d*-face, d™-face) is a face of size d (at least d, at most d).

e A k-path (k™-path, k~-path) is a path of length k 4 1 (at least k 4 1, at most k 4+ 1) where the
k internal vertices are 2-vertices.

o A (ki,ka, ..., kq)-vertex is a d-vertex incident to d different paths, where the ith path is a
ki-path forall 1 <i <d.

As a drawing convention for the rest of the figures, black vertices will have a fixed degree, which
is represented, and white vertices may have a higher degree than what is drawn.

2. Proof of Theorem 4

Let us now consider the proof of our main result, namely, if G is a planar graph with g(G) > 8,
then x(G) <r+1forr > 9.

Let G be a counterexample to Theorem 4 with the fewest number of edges. The purpose of
the proof is to prove that G cannot exist. In the following we will study the structural properties
of G (Section 2.1). We will then apply a discharging procedure (Section 2.2). For a plane graph
G = (V,E,F), Euler’s formula |V| — |E| + |F| = 2 can be rewritten as

> (3de(v) - 8)+ Y (de(f) — 8) = —16. (2)

veV(G) feF(G)

We assign to each vertex v the charge u(v) = 3d(v) — 8 and to each face f the charge
u(f) = d(f) — 8. To prove the non-existence of G, we will redistribute the charges preserving their
sum and obtaining a non-negative total charge, which will contradict Eq. (2).

2.1. Structural properties of G

Without loss of generality, we can assume that G is connected. Moreover G has no vertex of
degree 1. Otherwise, we can simply remove the unique edge incident to such vertex v and color
the resulting graph with an r-hued coloring ¢, which is possible due to the minimality of [E(G)|.
Then, we add the edge back and check the degree of v’s unique neighbor x in G. If d(x) < r, we can
choose a color for v different from x’s and all of its neighbors’ to maintain the r-hued property of
the coloring. If d(x) > r, then x is already r-hued, so it suffices to choose a color for v different from

P(x).

Lemma 6. Let w be a vertex of G that is adjacent to k vertices u; (k < d(w)), each satisfying
d*(u;)) <r+i—1for1<i<k Then we have d*(w) >r + k+ 1.

Proof. Suppose by contradiction that w is adjacent to u; with di(u;) <r+i—1for 1 <i <k, but
di(w) < r + k. See Fig. 5. We remove the edges wu; for 1 < i < k. By minimality of G, let ¢y be a
r-hued coloring of H = (V, E \ {wuq, ..., wig}).



H. La, M. Montassier, A. Pinlou et al. / European Journal of Combinatorics 91 (2021) 103219 7

<r—dg(w)

<r+4+k-— Zle de(u;)
> ZL dG(Ui) —k+1

Fig. 5. The configuration of Lemma 6.

We uncolor the vertex w and the vertices u; for 1 < i < k. We extend then ¢ to G as follows:

1. We define ¢g(v) = ¢py(v) forall v € V \ {w, uq, ..., u}.

2. We define ¢c(w) to be a color different from all of those of the vertices of F,, = Uf:] Ng(u;i)\
{w} JNj;(w). Since G has girth at least 8, we have |F,| = Zfﬂ(dc(u,-) - 1)+ dj(w) =
ZL](dG(ui) - 1) +di(w) — Zf‘:] dg(u;) = di(w) — k. By hypothesis, we have df(w) <r +k
and thus |F,| < r. Thus, we have r + 1 colors and at most r are forbidden, so it remains at
least one color for w.

3. We then define ¢¢(uy) to be a color different from those that appear on F,, = Nj;(uy)UNy(w)U
{w}. Since d§(u;) < r+1i— 1, we have dj;(u;) < r +i—1—dg(w). Therefore, we have |F,, | =
di(ue)+dy(w)+1 < (r+k—1—dg(w))+dy(w)+1 = (r+k—1—dg(w))+(dg(w)—k)+1 =r.
So it remains at least one color for uy.

4. One by one (from k — 1 to 1), we define ¢¢(u;) to be a color different from those that appear
on Fy; = Njj(u;) U Ny(w) U {w, Uiy, Uita, . .., U}. Using similar argument as the previous
subcase, |F,;| < r and thus it remains at least one color for each u;.

Observe that we 2-distance colored the vertices w, uy, ..., u;. Hence the obtained coloring ¢¢
isr-hued. O

Lemma 7. Graph G has no 4" -paths.

Proof. Suppose G contains a 4-path stuvwx (see Fig. 6). Then d*(u) = d*(v) = 4 < r which
contradicts Lemma 6. O

Lemma 8. Both endvertices of a 3-path have degree r.

Proof. Suppose that G contains a 3-path stuvw (see Fig. 7). Since d*(u) = 4 < r, we have
d*(v) > r + 2 due to Lemma 6. Moreover, d*(v) = d(w) + 2, so d(w) > r. Suppose now that
d(w) > r. Let ¢ be an r-hued coloring of G = G — {u, v} (by minimality of G). Whatever color we
choose for v, vertex w is r-hued since |¢p(Ng(w))| > min(dg(w) — 1,r) > r = min(dg(w), r). It
suffices to choose ¢(v) different from ¢(w) (to have a proper coloring) and from ¢(t) (to make sure
that u is r-hued). Finally, we 2-distance color u (the obtained coloring is proper, and the vertices t
and v are also r-hued). O

Lemma 9. At least one of the endvertices of a 2-path has degree r or both of them have degree r — 1.

Proof. Consider a 2-path uxyw (see Fig. 8). Suppose by contradiction that d(w) # r and d(u) ¢
{r—1,r}.
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t U v w xT
L L O

O®w
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®

Fig. 6. A 4-path.

S t U v w
(@] @ @ @ O

Fig. 7. A 3-path.

U T Yy w
O ® ® ‘o)

Fig. 8. A 2-path.

(] U4;
2
V3 @ 2
Vo @r—3
V1 @ 2
2
Vo
V4ak—1 ’U4(j+1)

Fig. 9. A cycle consisting of consecutive 3-paths.

If d(u) < r—2, then d*(x) = d(u)+2 < r.So, by Lemma 6, d*(y) = d(w)+2 > r+2 meaning that
d(w) > r. By minimality of G, we color G — {x, y}. Observe that w is already r-hued. We 2-distance
color x (u and y become r-hued), and we color y with a color different from that of u, x, and w (x
becomes r-hued).

If d(u) > r+1, then we color G— {x, y}. Observe that u is r-hued. Either d(w) > r+1 (in that case
w is already r-hued) and we color y with a color different from that of w and u, or d(w) < r—1 and
we 2-distance color y. Finally we color x with a color different from the colors of u, y, and w. O

Lemma 10. Graph G has no cycles consisting of 3-paths.

Proof. Suppose that G contains a cycle consisting of k 3-paths (see Fig. 9). We remove all
vertices vg4i11, V4i+2, V4i+3 for 0 < i < k — 1. Consider a coloring of the resulting graph. We
color vy, v3, Us, ..., Usg_1. This is possible since each of them has at least two choices of color (as
d(vo) = d(vs) = --- = d(vgk-1)) = r due to Lemma 8) and by 2-choosability of even cycles. This
procedure ensures that every vertex with even index is r-hued. Finally, it is easy to color greedily
V2, Ug, .. ., Ugk_2 Since they each have at most four forbidden colors (ensuring that every vertex
with odd index is r-hued). O

Lemma 11. Let v be a vertex such that 3 < d(v) < L%J. Then v cannot be a (2, 17,17, ..., 17)-
vertex.
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w v
@

O L

(iii)

Fig. 11. Configurations of Lemma 12.

Proof. Suppose that G contains a vertex v with 3 < d(v) < L%J thatis a (2,1%,1%,...,1%)-
vertex. Let w be a neighbor of v that belongs to a 2-path. See Fig. 10. We have d*(w) = d(v) + 2
and d*(v) = 2d(v). Moreover, as d(v) < L%J, it follows that d*(w) < r since r > 3. Thus,
d*(v) > r + 2 by Lemma 6. Since d(v) is an integer and 2d(v) > r + 2, d(v) > f%} which
contradicts d(v) < |3]. O

Lemma 12. Graph G does not contain the configurations depicted by Fig. 11.

Proof. Recall that the endvertex of a 3-path always have degree r by Lemma 8. Also, at least one
endvertex of a 2-path has degree r unless they both have degree r — 1 by Lemma 9. Thus, x, y, and
v” always have degree r in what follows (r > 9).

(a) Consider the configuration depicted in Fig. 11(i) where d(w) <r — 2.
By minimality of G, let ¢ be an r-hued coloring of G' = G — {a, b, u, v}. Let us start coloring
a and u. Both vertices have r — 2 + 1 = r — 1 restrictions coming from x. Additionally, a
(resp. u) has one restriction from c (resp. w). As ¢(c) # ¢(w) (since d(y) = r), one can color a
and u with two distinct colors. Finally, b and v can always be 2-distance colored since b only
has four restrictions on its number of colors, and v always has at least one choice of color as
d(w) < r — 2. The obtained coloring is r-hued. That contradiction completes the proof.

(b) Consider the configuration depicted in Fig. 11(ii).
By minimality of G, let ¢ be an r-hued coloring of G = G — {a,b,c,u,v,w,d,b’,c’,v'}.
Observe first that, since d*(b) < r + 1,d*(v) < r + 1,d*(b’) < r + 1, vertices b, v, b’ can be
2-distance colored at the end. Vertices a, u, a’ have the same r — 2 restrictions coming from
x; they must be colored with the last three available colors, say a1, a3, @3. Similarly ¢ and
w (resp. ¢’ and v’) have the same r — 1 restrictions coming from y (resp. v”); they must be
colored with the last two available colors, say 8; and B, (resp. y; and y;). Now, if 81 does
not occur in {«1, @z, @3}, then one can sequentially color ¢ with 84, then w, v', u, ¢/, @, and a.
So by symmetry, we have {81, 82} C {a1, @2, a3} and {y1, y2} C {1, @2, a3}. If follows that
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Fig. 12. A (2, 1, 0)-vertex having a 7-neighbor.

{B1, B2} and {y1, y»} have at least one common element, say 81 = y;. Hence we color the
vertices as follows: ¢ with gy, w with 8,, v’ with y; = B4, ¢ with 3, (which may be equal
to B,), @’ with 81, a with 8, and u with the color of {1, 2, a3} \ {B1, B2}. That leads to an
r-hued coloring of G, a contradiction.

(c) Consider the configuration depicted in Fig. 11(iii).
By minimality of G, let ¢ be an r-hued coloring of G = G — {a, b, c}. Since d*(b) < r + 1,
d*(v) <r+1,d*(') <r+1,d*(w’) <r+1, b can be 2-distance colored and the vertices v,
u’, w’ can be 2-distance recolored at the end if necessary. Vertex a (resp. c) has r restrictions
coming from x and u (resp. y and w). If they can be colored differently, then we obtain an
r-hued coloring of G. So, they must have the same available color left, say «. Without loss of
generality, say ¢(u) = B and ¢(w) = y. Since ¢ is r-hued, «, B, y are all distinct. Moreover
at least one of u” and w” has a color distinct from «; by symmetry say ¢(u”) # «. We now
recolor u with «, we color a with 8, ¢ with «, we 2-distance color b and as well v/, v, w’ if
necessary. That leads to an r-hued coloring of G, a contradiction.

(d) Consider the configuration depicted in Fig. 11(iv) where d(w) < r — 4.
By minimality of G, let ¢ be an r-hued coloring of G’ = G—{d’, b/, ¢’}. Recall that d(w) < r—4;
so d*(v) < r + 1. The same holds for d*(b) and d*(b’), so vertices v, b, b’ can be 2-distance
recolored at the end. Vertex a’ (resp. ¢’) has r restrictions coming from x, a, u (resp. v”, v’, ¢”).
If @’ and ¢’ can be colored differently, then we can obtain an r-hued coloring of G. So, they
must have the same available color left, say «. Let 8 be the color of u and y the one of a.
Since ¢ is r-hued, «, B, y are all distinct. If ¢(c) # «, then we recolor a with «, @’ with y, and
¢’ with a. It follows that ¢(c) = «. Now observe that, as d(y) = d(v”) = r, we have ¢(w) # «
and ¢(v') # « (as « is the available color for ¢’). So we recolor u with «; we color a’ with g
and ¢’ with «. It remains to 2-distance recolor v if necessary and to 2-distance color b’. That
leads to an r-hued coloring of G, a contradiction. O

Lemma 13. Given a (2, 1, 0)-vertex v having a 7-neighbor, the endvertex of the 1-path (distinct from
v) is a 8*-vertex.

Proof. Suppose G contains a (2, 1, 0)-vertex v having three neighbors a, b, ¢ such that a belongs to
a 2-path, b belong to a 1-path vbd, and such that ¢ has degree 7 and d has degree at most 7. See
Fig. 12. Let ¢ be an r-hued coloring of G = G — {a, b, v}. Let us sequentially 2-distance color v, b,
and a. The obtained coloring is r-hued, a contradiction. O

2.2. Discharging rules

In this section, we define the discharging procedure that contradicts the structural properties of
G (see Lemmas 6-13) showing that G does not exist.
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Fig. 13. The sponsor assignment in a tree consisting of 3-paths.
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Definition 14 (Small, Medium, and Large 2-Vertex). A 2-vertex v is said to be

o large if it is adjacent to two 3" -vertices,
e medium if it is adjacent to exactly one 2-vertex,
e small if it is adjacent to two 2-vertices.

Definition 15 (Bridge Vertex). A large 2-vertex is called a bridge if it has a 3-neighbor and a
8T -neighbor.

Definition 16 (Sponsor). Consider the set of 3-paths in G. By Lemma 8, the endvertices of every
3-paths are r-vertices and by Lemma 10, the graph induced by the edges of all the 3-paths of G is a
forest F. For each tree of F, we choose an arbitrary root. Each small 2-vertex v is assigned a unique
sponsor which is the r-vertex corresponding to the grandson of v. See Fig. 13.

Definition 17 (Special and Non-Special Vertices). A (3 <> 5)-vertex is said to be special if it has at
least two r-neighbors and non-special otherwise.

We first assign to each vertex v the charge u(v) = 3d(v) — 8 and to each face f the charge
w(f) = d(f) — 8. By Eq. (2), the total sum of the charges is negative. We then apply the following
discharging rules (R1 to R9):

Vertices to vertices:

RO (see Fig. 14):

(i) Every 3" -vertex gives 1 to its large 2-neighbors, and 2 to its medium 2-neighbors.
(ii) Every sponsor gives 1 to its small 2-neighbors.
(iii) Every 8*-vertex gives 1 to its adjacent bridges.

R1 (see Fig. 15):

(i) Every 8" -vertex gives 2 to its 3-neighbors.
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5 1 bridgle
() (i) (ii)
Fig. 15. R1.
9 1
(i) (ii)
Fig. 16. R2.
2
(s—5)
Fig. 17. R3.

(ii) Every (5« 7)-vertex v gives 1 to its 3-neighbors.
(iii) Every bridge gives 1 to its 3-neighbor.

R2 (see Fig. 16):

(i) Every 8T -vertex gives 2 to its 4-neighbors.
(ii) Every (6<«>7)-vertex gives 1 to its 4-neighbors.

R3 (see Fig. 17): Every 8*-vertex gives 2 to its 5-neighbors.
R4 (see Fig. 18): Every special vertex gives 1 to its r-neighbors.

Vertices to faces:

R5 (see Fig. 19): Each 8-face f = wqvy...vg with d(vy) = d(v;) = r, 3 < d(vg) < 5 and
d(vy) = d(v3) = d(vs) = d(vg) = 2, receives charge % from v and v;.
R6 (see Fig. 22): Let f = xabcywvu be an 8-face where xabcy is a 3-path.

(i) If xuvw is a 2-path with d(w) > r — 1, then y gives % to f.

(ii) If xuv is a 1-path with d(v) > 4, then x gives % to f.

(iii) If xuv is a 1-path with d(v) = 3 and d(w) < 5, then v gives J to f.

(iv) If xuv is a 1-path with d(v) = 3 and d(w) > 6, y gives % to f.
(v) If d(u) > 6 and d(w) > 3, then x gives J to f.

(vi) If 4 < d(u) <5 and d(w) > 3, then u gives % to f.

(vii) If d(u) = 3 and d(v) > 3, then u gives % to f.

(viii) Ifuis a (1, 1, 0)-vertex, or a (1, 0, 0)-vertex, with d(v) = 2, and d(w) > 3, then u gives %

to f.
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special

Fig. 20. R7.

Faces to faces:

R7 (see Fig. 20): Let f = xabcywvu be an 8-face where xabcy is a 3-path, and u and w are (2, 1, 0)-
vertices (with the 1-path in common). Let v/, u”, and u”” (resp. w’, w”, and w”’) be, respectively,
the 1-distance, 2-distance and 3-distance neighbor of u (resp. w) along its incident 2-path. We
also suppose that u” # w”’. Let f’ be the 9" -face incident to u”'u”v'uvww’w”w" . Face f’ gives
1
5 tof.

Faces to vertices:

R8 (see Fig. 21): Each face f gives % to each of its incident small 2-vertices.'
R9 (see Fig. 19): Each 8*-face f incident to a path viv, ... v; as described in R5 gives 1 to v.

1 f gives % twice to a small 2-vertex if that vertex is only incident to f.
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(viil) wis a (1,1, 0)-vertex,
or a (1,0,0)-vertex.

Fig. 22. R6.

2.3. Verifying that charges on vertices and faces are non-negative

Let u* be the assigned charges after the discharging procedure. In what follows, we prove that:
Vx € V(G) U F(G), u*(x) > 0.
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2.3.1. Faces
Let f be a face of G. Recall that u(f) = d(f) — 8. We consider two cases according to the length

of f:

Case 1: d(f) > 9.
Note that f may give 5 1 (resp 3, 1) by R7 (resp. R8, R9). By R9 (resp. R8, R7), face f may
give 1 (resp. 1 2 2) at most (resp dE() d(f)) times. Observe that in Figs. 19-21 except the

r-vertices (u”, w”, x1, Xs, v1, v7) all other vertlces are pairwise distinct. Therefore, assuming
that R9 (resp. R8, R7) is applied i (resp. j, k) times, we must have d(f) > 6i + 4j + 8k.

Observe that: w*(f) > d(f)— —i—%—— > 6i+4j+8k—8 —1—%—5 > 5i+2j+2k—8>0
whenl>20rk>20r]>3or(1>1and1_l)or(j>landk_l)or(l_landk_l)
Now observe that for the remaining cases: uw*(f) > d(f) —8 —i— % —f>1-i- % -%>0
when (i, j, k) = (1,0, 0) or (i, j, k) = (0, 0, 1) or (i, j, k) = (0, 27, 0). It follows that u*(f) > 0.

Case 2: d(f)=38.

Suppose f is not incident to a 3-path. It follows that f is involved only in R5 and R9. Observe
that if R9 applies, then R5 applies. In all cases, we have either u*(f) > d(f)—8+42-5 —1=
8—8+1—1=0or u*(f) = u(f)=0.

Suppose that f is incident to a 3-path. By Lemma 10, f has only one such path on its
boundaries Face f gives once 5 by R8 (and R9 cannot be applied). We show now that f
receives - by R6 or R7. Let f = xabcywvu where xabcy is a 3-path.

e If f is also incident to a 2-path of the form xuvw, then f gets % by R6(i) (see Fig. 22(i)).
Note that the case where d(w) < r — 2 does not occur by Lemma 12(i).
1 1 1 1
f)=df)—8—-+-=8—-8——-+-=0.
w(f) = d(f) >t3 513
e If f is incident to a 1-path of the form xuv, then f gets 5 by R6(ii), (iii), or (iv) (see
Fig. 22(ii), (iii), (iv))).
1

1
*
w(f)=0 5 + 5= 0.

e If f isincident to a 1-path of the form uvw and d(u) > 3, then f gets % from R6(Vv) or (vi)
(see Fig. 22(v), (vi)). If d(u) = 3, then u is either a (1, 1, 0)-vertex, or a (1, 0, 0)-vertex,
or a (2, 1, 0)-vertex. By symmetry, the same reasoning holds for w. If one of them is a
(1, 1, 0)-vertex, or a (1, 0, 0)-vertex, then f gets % by R6(viii) (see Fig. 22(viii)). If both of
them are (2, 1, 0)-vertices, then we are in Conflguratlon R7 (see Fig. 20) with u” # w"
by Lemma 12(iii). In that case, f also receives 5. So, we have in all cases:

1
“Hr=o— 4Ll
w () = i)

e In the remaining case, f receives % by R6(v), (vi) or (vii) (see Fig. 22(v), (vi), (vii)).

1 1
*f)>0— =+ = =0.
wi(f) = 2+2

2.3.2. Vertices

Observation 18. Consider a special (3 <> 5)-vertex u adjacent to an r-vertex v. It follows that R4
applies, so u gives 1 to v. In return, if d(u) = 3 (resp. d(u) = 4, d(u) = 5), then v gives 2 to u by R1(i)
(resp. R2(i), R3). Additionally, u may give % (at most twice) along uv to incident faces by R6(vi), (vii)
or (viii) (see Fig. 23). To sum up, when R4 applies, u does not lose charge along uv, as in the worst case
2—-1-2. % = 0. Moreover, when R6 does not apply, u gains 2 — 1= 1.
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" (R6(vi-viii))
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2 (R1(i)/R2(i)/R3)

Fig. 23. The charge distribution when R4 applies. Dashed arrows indicate the possible application of R6.

Case 1:

Case 2:

Case 3:

d(v) > 8.

Suppose first that d(v) # r. Observe that v is involved in RO(i) and (iii), R1(i), R2(i), R3
and v gives at most 2 to each adjacent vertex by RO(i), R1(i), R2(i), R3 or a combination
of RO(i) and (iii) (in the case of a bridge). Hence,

w*(v) > 3d(v) — 8 — 2d(v) = d(v) — 8 > 0.

Suppose now that d(v) = r. Additionally, v also gives charges to faces by R5 and R6 and to
sponsored small 2-vertices by RO(ii). Using the same idea as before, we show that v gives
at most 2 along each incident edge.

When R5 is applied to v, w.l.o.g. v1 = v in Fig. 19, one sends % to f via the edge v, vg. The
edge vivg belongs to two faces, hence vyvg may be involved twice by R5. If vg has degree
at least 6, no additional charge transits via vqvg. If vg is a (3 <> 5)-vertex, then v, gives 2
to vg by R1(i), R2(i), and R3, but it receives 1 by R4 since vg would be special as vq, v;
are r-vertices. If vg has degree 2, then only 1 may transit by RO(i). In all cases, at most 2
transits from v; along vqvsg.

Consider now that R6 is applied to v. As previously, we show that the charge % is given to f
via a particular edge on which at most 2 transits. Rule R6 is applied to v in the cases R6(i),
R6(ii), R6(iv), and R6(v). Observe that no charge is given to 6™ -vertices. Hence charge %
transits (at most twice) along edge yw in R6(i) and R6(iv), along edge xu in R6(v). In case
R6(ii), charge % transits (at most twice) along edge xu and x = v gives 1 to u by RO(i).
Again at most 2 transits along each incident edge.

Finally, vertex v can sponsor at most one small 2-vertex by the definition of the sponsor
relation and RO(ii). It follows that:

©wrv) > 3d(v) — 8 — 2d(v) — 1
>dv)—9=r—9>0

dwv)=17.

Observe that v may send 1 by R1(ii), R2(ii), and RO(i) in the case of the 1-path, and may
send 2 by RO(i) in the case of the 2-path. As u(v) = 13, u*(v) > 0 except in the case
where v is incident to seven 2-paths, but in that case d*(v) = 14, contradicting Lemma 6
(that implies d*(v) > 17).

d(v) =6.

Vertex v may give 1 (resp. 2, 1, 1) by RO(i) in the case of the 1-path (resp. RO(i) in the case
of the 2-path, R1(ii), R2(ii)). As u(v) = 10, u*(v) > 0 except in the case where v gives
2 to each of five of its neighbors and gives at least 1 to its last neighbor, but in that case
d*(v) < 14, contradicting Lemma 6 (that implies d*(v) > 15).
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Case 5:
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d(v) =5.

Vertex v may give 1 (resp. 2, 1, 1, %) by RO(i) in the case of the 1-path (resp. RO(i) in the
case of the 2-path, R1(ii), R4 when it is a special vertex, and R6(vi)) and may receive 2
(resp. 1) by R3(i) (resp. R9). Recall u(v) = 7.

Suppose that R6(vi) is applied to v (v plays the role of u in Fig. 22(vi)). Let us use the
notations of Fig. 22(vi). Hence u gives % to f (let say via the edge ux). It may give 1 to x
by R4 (if u is special), and receives 2 from x by R3. Moreover R6(vi) may be applied to
the two faces incident to ux. When we sum the charges transiting along ux, u may give at
most 2 - % — 2+ 1 = 0. Hence in the following we consider that, if R6(vi) is applied to u,
no charge is transferred along ux.

By Lemma 11, v is not a (2,17, 1F, 1+, 17)-vertex. Hence v is incident to at most four
2-paths. If v is incident to four 2-paths, then v receives 1 from three incident faces by R9
and may give at most 2, 2, 2, 2, 1 along incident edges; so u*(v) >7+3—-4-2—1=1.
If v is incident to exactly three 2-paths, then v receives at least 1 by R9 and may give at
most 2, 2, 2, 1, 1 along incident edges; so u*(v) >7+4+1—3-2—2-1=0.If v is incident
to at most two 2-paths, then u*(v)>7—-2-2—-3-1=0.

dv) =4.

Vertex v may give 1 (resp. 2, 1, %) by RO(i) in the case of the 1-path (resp. RO(i) in the case
of the 2-path, R4, R6(vi)) and may receive 2 (resp. 1, 1) by R2(i) (resp. R2(ii), R9). Recall
u(v) = 4. Similar to 5-vertices, if R6(vi) is applied to v, then no charge is transferred along
the edge linking v and the r-vertex. By Lemma 11, v is not a (2, 1%, 1%, 1%)-vertex. Hence,
v is incident to at most three 2-paths.

If v is incident to three 2-paths, then v is not special, v receives 1 from two incident faces
by R9 and gives 2, 2, 2, 0 along incident edges; so u*(v)=4+4+2-1—-3-2=0.

Suppose now that v is incident to two 2-paths. If v is not incident to a 1-path, then we are
done as pu*(v) = 4—2-2 = 0 whether v is special or not due to Observation 18. So consider
that v is incident to exactly one 1-path by Lemma 11 and so is not special. The 3*-neighbor
of v has degree at least 6 (otherwise it contradicts Lemma 6, d*(v) < 11 while we must
have d*(v) > 12), then it gives at least 1 to v by R2 and so u*(v) >4+1-2-2—-1=0.
Finally assume that v is incident to at most one 2-path. If v gives at most one along each
incident edge, then we are done (as u*(v) > 4 —4 -1 > 0). So assume that v gives 2
to one of its neighbors. In that case, it means that RO(i) applied and v is thus incident to
exactly one 2-path. Since v is not a (2, 1T, 11, 1*)-vertex, it may be incident to at most
two 1-paths. If v is incident to a 2-path and two other 1-paths, then v is not special. Hence
we have u*(v) >4-2—-1-1>0.

d(v) = 3.

Vertex v may give 1 (resp. 2, % 1) by RO(i) in the case of the 1-path (resp. RO(i) in the case
of the 2-path, R6, R4) and may receive 2 (resp. 1, 1, 1) by R1(i) (resp. R1(ii), R1(iii), R9).
Recall u(v) = 1. By Lemma 11, v is not a (2, 17, 17)-vertex. Let us examine all possible
configurations for v.

- Suppose that v is a (2, 2, 0)-vertex. Let vy, vy, and u be the two 2-neighbors and 37 -
neighbor of v respectively. Since v is not special, R4 does not apply. Vertex v does
not fall into any configuration of R6, so R6 does not apply. Vertex v gives 2 to each
of its 2-neighbors by RO(i). By Lemma 9, the other endvertices of the two 2-paths
are r-vertices; so v falls into the configuration in R9 and receives 1 from an incident
face. Moreover, v and v, satisfy d*(v;) =5 < r (i = 1, 2). By Lemma 6, d*(v) > 12
and d*(v) = d(u) + 4, so d(u) > 8. By R1(i), v receives 2 from u. In total, we have

WW)>1-2-24+1+2=0.

- Suppose that v is a (2, 1, 0)-vertex. Let vy, v, and u be the two 2-neighbors (where
vy belongs to the 2-path and v, belongs to the 1-path) and 3*-neighbor of v
respectively. As previously, v is not special. Vertex vy has d*(vi) = 5 < r. By
Lemma 6, d*(v) > 11, and d*(v) = d(u) + 4, so d(u) > 7. It follows that R6 does
not apply (in particular R6(iii)).
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If d(u) > 8, then v receives 2 from u by R1(i). Hence, by RO(i) and R1(i), we have:
ww)>1-2-1+2=0.

If d(u) = 7, then v receives 1 from u by R1(ii). Moreover, the neighbor of v, (different
from v) has degree at least 8 by Lemma 13. Hence v receives 1 from v, by R1(iii). It
follows that:

prw)>1-2-1+1+1=0.

- Suppose that v is a (2, 0, 0)-vertex. Let X1, x, be the 0-path neighbors of v and v; be
the 2-path neighbor of v.
Suppose first that v is not concerned by R6(vii) (i.e. v only gives charge to vertices).
Vertex vy satisfies d*(vi) = 5 < r. By Lemma 6, d*(v) > r + 2. Since d*(v) =
d(xq) + d(xy) + 2, we have d(x;) + d(x;) > r > 9. W.lo.g. x; has degree at least
5. Note that, if v is non-special, then R4 does not apply and v receives at least 1 from
x1 by R1(i) or R1(ii); if v is special, then d(x;) = d(x;) = r, v gives 1 to x; and x;
by R4 and receives 2 from x; and x, by R1(i). In both case, we can consider that v
receives at least 1 from x;. So

prw)>1-2+1=0.

Suppose now that R6(vii) is applied to v. Observe that R6(vii) is applied once. If v
is non-special, then v receives 2 from its r-neighbor by R1(i); if it is special, by the
same arguments as in the previous paragraph, we can consider that v receives 1 from
both x; and x, (by R1(i) and R4). So

1
u*(v)zl—2—5+2>0.

- Suppose that v is a (1, 1, 1)-vertex. Note that only RO(i), R1(iii), and R6(iii) may

concern v. Vertex v gives 1 to each 2-neighbor by RO(i) and % to at most one
incident face by R6(iii) and Lemma 12(ii). Let vxw be a 1-path incident to v. We
have d*(v) = 6 < r. It follows that d*(x) > 11 by Lemma 6 and as d*(x) = d(w) + 3,

we have d(w) > 8, meaning that R1(iii) applies. Thus,
1
u*(v)z]—3-1—5+3-1>0.

- Suppose that v is a (1, 1, 0)-vertex. Let vv;w; and vv,w, be the two 1-paths incident
to v and let u be the 3*-neighbor of v. Note that v is not special, and it may be
concerned by RO(i), R1, R6(iii), and R6(viii).

Suppose first that v is not concerned by R6 (i.e. v only gives charge to vertices). By
RO(i), v gives 1 to each of its 2-neighbors.
If d(u) > 5, then we have by R1(i) and R1(ii):

ww)y=1-2-1+1=0.

If d(u) < 4, then d*(v) = 8 < r. By Lemma 6, d*(vq) > 11. As d*(v1) = d(w) + 3,
we have d(w;) > 8 meaning that v receives 1 from v; by R1(iii) (and from v, by
symmetry). Hence,

pw)>1-2-1+2-1>0.

Suppose that R6(iii) or R6(viii) is applied to v.

Assume we are in configuration R6(viii). Vertex v gives 1 to each of its 2-neighbors
and % to at most three incident faces (by a combination of R6(iii) and R6(viii)), and
receives 2 from u by R1(i). If it gives charge to three faces, then w; and w, are also
endvertices of a 3-path, meaning that they are of degree r > 8. By R1(iii), v receives
1 from each bridge v; and v,. Thus,

1
u*(v)zl—2-1—3~5+2+2-1>0.
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Now, if v only gives charge to at most two faces, then we have:
1
u*(v)21—2~1—2~5+2:0.

Assume we are in configuration R6(iii) (only, otherwise we are in the previous case).
Let us reuse the notation of Fig. 22. Observe that either w has degree 2 and u and
w are two bridges (since x and y are r-vertices), or w is a (3 <> 5)-vertex and the
endvertices of the 1-paths incident to v (different from v) are 8*-vertices by Lemma 6
implying that the 2-neighbors of v are bridges. Hence if R6(iii) is applied at most
twice, we have by RO(i) and R1(iii):

1
,u*(v)zl—2~1—2~§+2~1=0.

Now, if R6(iii) is applied three times, then we obtain the configuration depicted by
Fig. 11(iv) which is forbidden by Lemma 12.

- Suppose that v is a (1, 0, 0)-vertex. Let u, vy, and v; be its 2-neighbor and the two 37 -
neighbors of v, respectively. First note that each time R4 applies, by Observation 18,
in the worst case, the total number of charges transferred via vv; and v, is 0. So,

rw)=1-1=0

Suppose now that R6(iii), (vii) or (viii) is applied to v (which is not special).
If R6(vii) or R6(viii) is applied to v, then (at least) one of the 3"-neighbors of v is an
r-vertex. So v gains 2 by R1(i). It follows that

1
,u*(v)zl—l—3-5+2>0.

Suppose now only R6(iii) is applied to v. Observe that R6(iii) may be applied at most
twice. Vertex v receives 1 from the bridge by R1(iii). Hence,

1
M*(u)31—1—2.5+1=0.

- Suppose that v is a (0, 0, 0)-vertex. If R4 is applied (i.e. v is special), then v does not
need any charge by Observation 18. Suppose that v is not special. Vertex v may give
charge to faces only by R6(vii) and in that case it receives 2 from its r-neighbor by
R1(i). It follows that:

1
,u*(v)zl—3~5+2>0.

Case 7: d(v) = 2.
We have u(v) = —2. Vertex v receives 2 by RO(i) unless v is a small 2-vertex. When v
is small, it receives 1 from its sponsor by RO(ii) and twice % from incident faces by RS8.
Now if v is a bridge, then it also gives 1 to a 3-vertex by R1(iii), but it also receives 1 from
RO(iii). In all cases, u*(v) = 0.

To sum up, we have proven that we started out with a negative total number of charge, and
after the discharging procedure that preserves this sum, we end up with a non-negative one, a
contradiction. That completes the proof of Theorem 4.
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