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Abstract

A strong oriented k-coloring of an oriented graph G is a homomorphism ϕ from G
to H having k vertices labelled by the k elements of an abelian additive group M ,
such that for any pairs of arcs −→uv and −→zt of G, we have ϕ(v)−ϕ(u) 6= −(ϕ(t)−ϕ(z)).
The strong oriented chromatic number χs(G) is the smallest k such that G admits
a strong oriented k-coloring. In this paper, we consider the following problem: Let
i ≥ 4 be an integer. Let G be an oriented planar graph without cycles of lengths 4
to i. What is the strong oriented chromatic number of G?

1 Introduction

Oriented graphs are directed graphs without loops nor opposite arcs. Let G
be an oriented graph. We denote by V (G) its set of vertices and by A(G)
its set of arcs. An oriented k-coloring of an oriented graph G is a mapping
ϕ from V (G) to a set of k colors such that (1) ϕ(u) 6= ϕ(v) whenever −→uv
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is an arc in G, and (2) ϕ(u) 6= ϕ(x) whenever −→uv and −→wx are two arcs in
G with ϕ(v) = ϕ(w). The oriented chromatic number of an oriented graph,
denoted by χo(G), is defined as the smallest k such that G admits an oriented
k-coloring.

Let G and H be two oriented graphs. A homomorphism from G to H is

a mapping ϕ : V (G) → V (H) such that: −→xy ∈ A(G) ⇒ −−−−−−→
ϕ(x)ϕ(y) ∈ A(H)

An oriented k-coloring of G can be equivalently defined as a homomorphism
from G to H, where H is an oriented graph of order k. Then, the oriented
chromatic number χo(G) of G can be defined as the smallest order of an
oriented graph H such that G admits a homomorphism to H.

The problem of bounding the oriented chromatic number has already been
investigated for various graph classes: graphs with bounded maximum average
degree [1], graphs with bounded degree [2], graphs with bounded treewidth
[7,8], graphs subdivisions [9].

Raspaud and Nešetřil [5] introduced the strong oriented chromatic number
χs(G). A strong oriented k-coloring of an oriented graph G is a homomorphism
ϕ from G to H with k vertices labelled by the k elements of an abelian additive
group M of order k, such that for any pair of arcs −→uv and

−→
zt of A(G), ϕ(v)−

ϕ(u) 6= −(ϕ(t) − ϕ(z)). The strong oriented chromatic number χs(G) is the
smallest k such that G admits a strong oriented k-coloring.

Therefore, any strong oriented coloring of G is an oriented coloring of G;
hence, χo(G) ≤ χs(G).

Let M be an additive group and let S ⊂ M be a set of group elements.
The Cayley digraph associated with (M, S), denoted by C(M,S), is then defined
as follows: V (C(M,S)) = M and A(C(M,S)) = {(g, g + s) ; g ∈ M, s ∈ S}. If
the set S is a group generator of M , then C(M,S) is connected. Assuming
that M is abelian and S ∩−S = ∅, then C(M,S) is oriented (neither loops nor
opposite arcs), and for any pair (g1, g1 + s1) and (g2, g2 + s2) of arcs of C(M,S),
g1 + s1 − g1 6= −(g2 + s2 − g2). Thus, finding a strong oriented k-coloring of
an oriented graph G may be viewed as finding a homomorphism from G to
an oriented Cayley graph C(M,S) of order k, for some abelian group M with
S ⊂ M and S ∩ −S = ∅.

In the following we will consider the Paley tournament QRp (where p ≡ 3
(mod 4) is a prime power) that is the Cayley graph C(M,S) with M = Fp =
Z/pZ and S = {x2 ; x ∈ Fp \ {0}}.

Strong oriented coloring of planar graphs was recently studied. Sámal [6]
proved that every oriented planar graph admits a strong oriented coloring with
at most 672 colors. Marshall [3] improved this result and proved the following:
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Theorem 1.1 [3] Let G be an oriented planar graph. Then χs(G) ≤ 271.

Borodin et al. [1] studied the relationship between the oriented chromatic
number and the maximum average degree of a graph, where the maximum av-
erage degree, denoted by Mad(G) is: Mad(G) = max{2|E(H)|/|V (H)|, H ⊆
G}. Since they considered homomorphisms to oriented Cayley graphs, they
proved that if Mad(G) < 7/3 (resp. 8/3, 3, 10/3) then χs(G) ≤ 5 (resp. 7,
11, 19). The girth of a graph G is the length of a shortest cycle of G. Since
every planar graph G with girth g satisfies Mad(G) < 2g

g−2
, it follows that if

G is planar with girth at least 14 (resp. 8, 6, 5), then χs(G) ≤ 5 (resp. 7, 11,
19).

In this paper, we consider the following problem:

Problem 1.2 Let i ≥ 4. Let G be a planar graph without cycles of lengths 4
to i. What is the smallest value k such that χs(G) ≤ k for each such G?

We proved [4] that if G is a planar graph without cycles of lengths 4 to i
with i ≥ 5, then Mad(G) < 3 + 3

i−2
and that, for any ε > 0, there exists a

planar graph G without cycles of lengths 4 to i with 3 + 3
i−2

− ε < Mad(G).
Consequently, we obtain the following corollary by the above result of Borodin
et al. [1]:

Corollary 1.3 Let G be a planar graph without cycles of lengths 4 to 14,
χs(G) ≤ 19.

A first improvement over Corollary 1.3 is given by the authors [4].

Theorem 1.4 [4] Every oriented planar graph without cycles of lengths 4 to
11 has a homomorphism to the Cayley graph QR7.

In this paper, we continue this study and prove that:

Theorem 1.5 (i) Every oriented planar graph without cycles of length 4 has
a homomorphism to the Cayley graph QR43.

(ii) Every oriented planar graph without cycles of lengths 4 and 5 has a ho-
momorphism to the Cayley graph QR19.

(iii) Every oriented planar graph without cycles of lengths 4 to 9 has a homo-
morphism to the Cayley graph QR11.

In the following, we present a sketch of the proof of Theorem 1.5.(i) based
on the method of reducible configurations and discharging procedure. Theorems
1.5.(ii) and 1.5.(iii) are based on the same method of proof.
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A k-vertex (resp. ≥k-vertex, ≤k-vertex) is a vertex of degree k (resp. ≥ k,
≤ k). The size of a face f , denoted by d(f), is the number of edges on its
boundary walk, where each cut-edge is counted twice. A k-face (resp. ≥k-face,
≤k-face) is a face of size k (resp. ≥ k, ≤ k). We say that an edge e is incident
to a face f if e belongs to the boundary walk of f .

2 The strong oriented chromatic number of planar graphs
without cycles of length 4 is at most 43

Let us define the partial order �. Let n3(G) be the number of ≥3-vertices in
G. For any two graphs G1 and G2, we have G1 ≺ G2 if and only if at least one
of the following conditions holds: either (1) G1 is a proper subgraph of G2, or
(2) n3(G1) < n3(G2). Note that this partial order is well-defined, since if G1

is a proper subgraph of G2, then n3(G1) ≤ n3(G2). So � is a partial linear
extension of the subgraph poset.

Let H be a minimal counterexample to Theorem i according to ≺.

2.1 Structural properties of H

Let us begin with some definitions: A light 4-vertex is a 4-vertex incident to
two 3-faces. A light 3-face is a 3-face incident to two light 4-vertices.

Claim 2.1 The counterexample H does not contain:

(C1) A k-vertex with k ∈ [1, 3].

(C2) A 2-vertex incident to a 3-face.

(C3) A k-vertex adjacent to k 2-vertices with k ≤ 42.

(C4) A k-vertex adjacent to k − 1 2-vertices with 2 ≤ k ≤ 21.

(C5) A k-vertex adjacent to k − 2 2-vertices with 3 ≤ k ≤ 11.

(C6) A k-vertex adjacent to k − 3 2-vertices with 4 ≤ k ≤ 5.

(C7) A 3-face incident to three 4-vertices.

(C8) A 3-face incident to two 4-vertices and to a 5-vertex which is adjacent to
a 2-vertex.

2.2 Discharging procedure

Lemma 2.2 Let H be a connected plane graph with n vertices, m edges and
r faces. Then we have the following:∑

v∈V (H)

(3d(v)− 10) +
∑

f∈F (H)

(2d(f)− 10) = −20(1)
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We define the weight function ω by ω(x) = 3 · d(x)− 10 if x ∈ V (H) and
ω(x) = 2·d(x)−10 if x ∈ F (H). It follows from identity (1) that the total sum
of weights is equal to −20. In what follows, we define discharging rules (R1)
to (R3) and redistribute weights accordingly. Once the discharging is finished,
a new weight function ω∗ is produced. However, the total sum of weights is
kept fixed by the discharging rules. Nevertheless, we can show that ω∗(x) ≥ 0
for all x ∈ V (H) ∪ F (H). This leads to the following obvious contradiction:

0 ≤
∑

x∈V (H)∪F (H)

ω∗(x) ≤
∑

x∈V (H)∪F (H)

ω(x) = −20 < 0

Thus no such counterexample exists.

The discharging rules are defined as follows:

(R1) Each ≥6-vertex gives 2 to each adjacent 2-vertex and to each incident
3-face.

(R2) Each 5-vertex gives 2 to each adjacent 2-vertex, 3
2

to each incident non
light 3-face and 2 to each incident light 3-face.

(R3) Let v be a 4-vertex.
(R3.1) If v is light, then it gives 1 to each incident 3-face
(R3.2) If v is not light, then it gives 2 to each incident 3-face.

Now, let us compute the new charges produced after the discharging pro-
cedure. Let v be a k-vertex, with k /∈ {1, 3} by (C1).

If k = 2, then ω(v) = −4. Since v is adjacent to ≥5-vertices by (C1), (C4)
and (C6), it receives 2 from each adjacent vertices by (R1) and (R2). So,
ω∗(v) = 0.

If k = 4, then ω(v) = 2. If v is light, by (R3.1) it gives twice 1 and so,
ω∗(v) = 0. If v is not light, then v is incident to at most one 3-face. So,
ω∗(v) ≥ 0 by (R3.2).

If k = 5, then ω(v) = 5. By (C6), v is adjacent to at most one 2-vertex.
Moreover, it can be incident to at most two 3-faces. If v is adjacent to a 2-
vertex, then it is not incident to a light 3-face by (C8) and so, ω∗(v) ≥ 5− 2 ·
3
2
−2 ≥ 0 by (R2). If v is not adjacent to a 2-vertex, then ω∗(v) ≥ 5−2 ·2 ≥ 1.

Observe that (R1) is equivalent for v to give 2 per edge incident to a 2-
vertex and 1 per edge incident to a 3-face. It follows that the worst case of
discharging for v appears when v is adjacent to the biggest number of 2-vertices
according to (C3)-(C6). If k = 6, then ω(v) = 8. By (C5), v is adjacent to at
most three 2-vertices. So, ω∗(v) ≥ 8− 3 · 2− 2 ≥ 0. If k = 7, then ω(v) = 11.
By (C5), v is adjacent to at most four 2-vertices. So, ω∗(v) ≥ 11−4 ·2−2 ≥ 1.
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If k = 8, then ω(v) = 14. By (C5), v is adjacent to at most five 2-vertices. So,
ω∗(v) ≥ 14 − 5 · 2 − 2 ≥ 2. If k = 9, then ω(v) = 17. By (C5), v is adjacent
to at most six 2-vertices. So, ω∗(v) ≥ 17 − 6 · 2 − 2 ≥ 3. If k ≥ 10, then
ω(v) = 3 · k − 10 and trivially ω∗(v) ≥ 3 · k − 10− 2 · k ≥ k − 10 ≥ 0.

Let f be a 3-face; ω(f) = −4. By (C1) and (C2), f is incident to ≥4-
vertices. By (C7), f is incident to at most two 4-vertices. Let x, y, z be the
vertices incident to f . Without loss of generality, we consider that 4 ≤ d(x) ≤
d(y) ≤ d(z). If d(z) = 6, then by (R1)-(R3), f receives at least 2 + 2 · 1 = 4
and so ω∗(f) ≥ 0. Consider 4 ≤ d(x) ≤ d(y) ≤ d(z) ≤ 5. If d(y) = 5, then
ω∗(f) ≥ 2 · 3

2
+ 1 ≥ 0. Now, it remains one case: d(x) = d(y) = 4, d(z) = 5. If

x (resp. y) is not light, then x (resp. y) gives 2 and ω∗(f) ≥ 2 + 1 + 3
2
≥ 1

2
.

Consider that x and y are light; hence f is light and receives 1 from x, 1 from
y by (R3) and 2 from z by (R2) and ω∗(f) = −4 + 2 · 1 + 2 = 0.

That shows that ω∗(x) ≥ 0 for all x ∈ V (H) ∪ F (H). The contradiction
with (1) completes the proof.
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[2] A. V. Kostochka, É. Sopena, and X. Zhu. Acyclic and oriented chromatic
numbers of graphs. J. Graph Theory, 24, 331–340, 1997.

[3] T. H. Marshall. Antisymmetric flows on planar graphs. J. Graph Theory, 52(3),
200–210, 2006.

[4] M. Montassier, P. Ochem, and A. Pinlou. Strong oriented chromatic number of
planar graphs without short cycles. Technical Report RR-1380-06, LaBRI, 2006.
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