Strong oriented chromatic number of planar graphs without cycles of specific lengths

Mickaël Montassier ${ }^{\text {a,1 }}$ Pascal Ochem ${ }^{\text {b,1 }}$ Alexandre Pinlou ${ }^{\text {c,1,2 }}$
${ }^{\text {a }}$ LaBRI, Univ. Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France
${ }^{\text {b }}$ LRI, Univ. Paris-Sud, 91405 Orsay, France
${ }^{\text {c }}$ LIRMM, Univ. Montpellier 2, 161 rue Ada, 34392 Montpellier Cedex 5, France

Abstract

A strong oriented k-coloring of an oriented graph G is a homomorphism φ from G to H having k vertices labelled by the k elements of an abelian additive group M, such that for any pairs of arcs $\overrightarrow{u v}$ and $\overrightarrow{z t}$ of G, we have $\varphi(v)-\varphi(u) \neq-(\varphi(t)-\varphi(z))$. The s trong oriented chromatic number $\chi_{s}(G)$ is the smallest k such that G admits a strong oriented k-coloring. In this paper, we consider the following problem: Let $i \geq 4$ be an integer. Let G be an oriented planar graph without cycles of lengths 4 to i. What is the strong oriented chromatic number of G ?

1 Introduction

Oriented graphs are directed graphs without loops nor opposite arcs. Let G be an oriented graph. We denote by $V(G)$ its set of vertices and by $A(G)$ its set of arcs. An oriented k-coloring of an oriented graph G is a mapping φ from $V(G)$ to a set of k colors such that (1) $\varphi(u) \neq \varphi(v)$ whenever $\overrightarrow{u v}$

[^0]is an arc in G, and (2) $\varphi(u) \neq \varphi(x)$ whenever $\overrightarrow{u v}$ and $\overrightarrow{w x}$ are two arcs in G with $\varphi(v)=\varphi(w)$. The oriented chromatic number of an oriented graph, denoted by $\chi_{o}(G)$, is defined as the smallest k such that G admits an oriented k-coloring.

Let G and H be two oriented graphs. A homomorphism from G to H is a mapping $\varphi: V(G) \rightarrow V(H)$ such that: $\overrightarrow{x y} \in A(G) \Rightarrow \overrightarrow{\varphi(x) \varphi(y)} \in A(H)$

An oriented k-coloring of G can be equivalently defined as a homomorphism from G to H, where H is an oriented graph of order k. Then, the oriented chromatic number $\chi_{o}(G)$ of G can be defined as the smallest order of an oriented graph H such that G admits a homomorphism to H.

The problem of bounding the oriented chromatic number has already been investigated for various graph classes: graphs with bounded maximum average degree [1], graphs with bounded degree [2], graphs with bounded treewidth [7,8], graphs subdivisions [9].

Raspaud and Nešetřil [5] introduced the strong oriented chromatic number $\chi_{s}(G)$. A strong oriented k-coloring of an oriented graph G is a homomorphism φ from G to H with k vertices labelled by the k elements of an abelian additive group M of order k, such that for any pair of arcs $\overrightarrow{u v}$ and $\overrightarrow{z t}$ of $A(G), \varphi(v)-$ $\varphi(u) \neq-(\varphi(t)-\varphi(z))$. The strong oriented chromatic number $\chi_{s}(G)$ is the smallest k such that G admits a strong oriented k-coloring.

Therefore, any strong oriented coloring of G is an oriented coloring of G; hence, $\chi_{o}(G) \leq \chi_{s}(G)$.

Let M be an additive group and let $S \subset M$ be a set of group elements. The Cayley digraph associated with (M, S), denoted by $C_{(M, S)}$, is then defined as follows: $V\left(C_{(M, S)}\right)=M$ and $A\left(C_{(M, S)}\right)=\{(g, g+s) ; g \in M, s \in S\}$. If the set S is a group generator of M, then $C_{(M, S)}$ is connected. Assuming that M is abelian and $S \cap-S=\emptyset$, then $C_{(M, S)}$ is oriented (neither loops nor opposite arcs), and for any pair $\left(g_{1}, g_{1}+s_{1}\right)$ and $\left(g_{2}, g_{2}+s_{2}\right)$ of arcs of $C_{(M, S)}$, $g_{1}+s_{1}-g_{1} \neq-\left(g_{2}+s_{2}-g_{2}\right)$. Thus, finding a strong oriented k-coloring of an oriented graph G may be viewed as finding a homomorphism from G to an oriented Cayley graph $C_{(M, S)}$ of order k, for some abelian group M with $S \subset M$ and $S \cap-S=\emptyset$.

In the following we will consider the Paley tournament $Q R_{p}$ (where $p \equiv 3$ $(\bmod 4)$ is a prime power $)$ that is the Cayley graph $C_{(M, S)}$ with $M=\mathbb{F}_{p}=$ $\mathbb{Z} / p \mathbb{Z}$ and $S=\left\{x^{2} ; x \in \mathbb{F}_{p} \backslash\{0\}\right\}$.

Strong oriented coloring of planar graphs was recently studied. Sámal [6] proved that every oriented planar graph admits a strong oriented coloring with at most 672 colors. Marshall [3] improved this result and proved the following:

Theorem 1.1 [3] Let G be an oriented planar graph. Then $\chi_{s}(G) \leq 271$.
Borodin et al. [1] studied the relationship between the oriented chromatic number and the maximum average degree of a graph, where the maximum average degree, denoted by $\operatorname{Mad}(G)$ is: $\operatorname{Mad}(G)=\max \{2|E(H)| /|V(H)|, H \subseteq$ $G\}$. Since they considered homomorphisms to oriented Cayley graphs, they proved that if $\operatorname{Mad}(G)<7 / 3($ resp. $8 / 3,3,10 / 3)$ then $\chi_{s}(G) \leq 5$ (resp. 7, $11,19)$. The girth of a graph G is the length of a shortest cycle of G. Since every planar graph G with girth g satisfies $\operatorname{Mad}(G)<\frac{2 g}{g-2}$, it follows that if G is planar with girth at least 14 (resp. 8, 6, 5), then $\chi_{s}(G) \leq 5$ (resp. 7, 11, 19).

In this paper, we consider the following problem:
Problem 1.2 Let $i \geq 4$. Let G be a planar graph without cycles of lengths 4 to i. What is the smallest value k such that $\chi_{s}(G) \leq k$ for each such G ?

We proved [4] that if G is a planar graph without cycles of lengths 4 to i with $i \geq 5$, then $\operatorname{Mad}(G)<3+\frac{3}{i-2}$ and that, for any $\epsilon>0$, there exists a planar graph G without cycles of lengths 4 to i with $3+\frac{3}{i-2}-\epsilon<\operatorname{Mad}(G)$. Consequently, we obtain the following corollary by the above result of Borodin et al. [1]:

Corollary 1.3 Let G be a planar graph without cycles of lengths 4 to 14, $\chi_{s}(G) \leq 19$.

A first improvement over Corollary 1.3 is given by the authors [4].
Theorem 1.4 [4] Every oriented planar graph without cycles of lengths 4 to 11 has a homomorphism to the Cayley graph $Q R_{7}$.

In this paper, we continue this study and prove that:
Theorem 1.5 (i) Every oriented planar graph without cycles of length 4 has a homomorphism to the Cayley graph $Q R_{43}$.
(ii) Every oriented planar graph without cycles of lengths 4 and 5 has a homomorphism to the Cayley graph $Q R_{19}$.
(iii) Every oriented planar graph without cycles of lengths 4 to 9 has a homomorphism to the Cayley graph $Q R_{11}$.

In the following, we present a sketch of the proof of Theorem 1.5.(i) based on the method of reducible configurations and discharging procedure. Theorems 1.5.(ii) and 1.5.(iii) are based on the same method of proof.

A k-vertex (resp. $\geq_{k \text {-vertex, }} \leq k$-vertex) is a vertex of degree k (resp. $\geq k$, $\leq k$). The size of a face f, denoted by $d(f)$, is the number of edges on its boundary walk, where each cut-edge is counted twice. A k-face (resp. $\geq k$-face, $\leq k$-face) is a face of size k (resp. $\geq k, \leq k$). We say that an edge e is incident to a face f if e belongs to the boundary walk of f.

2 The strong oriented chromatic number of planar graphs without cycles of length 4 is at most 43

Let us define the partial order \preceq. Let $n_{3}(G)$ be the number of ≥ 3-vertices in G. For any two graphs G_{1} and G_{2}, we have $G_{1} \prec G_{2}$ if and only if at least one of the following conditions holds: either (1) G_{1} is a proper subgraph of G_{2}, or (2) $n_{3}\left(G_{1}\right)<n_{3}\left(G_{2}\right)$. Note that this partial order is well-defined, since if G_{1} is a proper subgraph of G_{2}, then $n_{3}\left(G_{1}\right) \leq n_{3}\left(G_{2}\right)$. So \preceq is a partial linear extension of the subgraph poset.

Let H be a minimal counterexample to Theorem i according to \prec.

2.1 Structural properties of H

Let us begin with some definitions: A light 4 -vertex is a 4 -vertex incident to two 3 -faces. A light 3 -face is a 3 -face incident to two light 4 -vertices.
Claim 2.1 The counterexample H does not contain:
(C1) A k-vertex with $k \in[1,3]$.
(C2) A 2-vertex incident to a 3-face.
(C3) A k-vertex adjacent to k 2-vertices with $k \leq 42$.
(C4) A k-vertex adjacent to $k-1$ 2-vertices with $2 \leq k \leq 21$.
(C5) A k-vertex adjacent to $k-2$ 2-vertices with $3 \leq k \leq 11$.
(C6) A k-vertex adjacent to $k-3$ 2-vertices with $4 \leq k \leq 5$.
(C7) A 3-face incident to three 4-vertices.
(C8) A 3-face incident to two 4-vertices and to a 5-vertex which is adjacent to a 2-vertex.

2.2 Discharging procedure

Lemma 2.2 Let H be a connected plane graph with n vertices, m edges and r faces. Then we have the following:

$$
\begin{equation*}
\sum_{v \in V(H)}(3 d(v)-10)+\sum_{f \in F(H)}(2 d(f)-10)=-20 \tag{1}
\end{equation*}
$$

We define the weight function ω by $\omega(x)=3 \cdot d(x)-10$ if $x \in V(H)$ and $\omega(x)=2 \cdot d(x)-10$ if $x \in F(H)$. It follows from identity (1) that the total sum of weights is equal to -20 . In what follows, we define discharging rules (R1) to (R3) and redistribute weights accordingly. Once the discharging is finished, a new weight function ω^{*} is produced. However, the total sum of weights is kept fixed by the discharging rules. Nevertheless, we can show that $\omega^{*}(x) \geq 0$ for all $x \in V(H) \cup F(H)$. This leads to the following obvious contradiction:

$$
0 \leq \sum_{x \in V(H) \cup F(H)} \omega^{*}(x) \leq \sum_{x \in V(H) \cup F(H)} \omega(x)=-20<0
$$

Thus no such counterexample exists.
The discharging rules are defined as follows:
(R1) Each \geq_{6}-vertex gives 2 to each adjacent 2 -vertex and to each incident 3 -face.
(R2) Each 5 -vertex gives 2 to each adjacent 2-vertex, $\frac{3}{2}$ to each incident non light 3 -face and 2 to each incident light 3 -face.
(R3) Let v be a 4 -vertex.
(R3.1) If v is light, then it gives 1 to each incident 3 -face
(R3.2) If v is not light, then it gives 2 to each incident 3 -face.
Now, let us compute the new charges produced after the discharging procedure. Let v be a k-vertex, with $k \notin\{1,3\}$ by (C1).

If $k=2$, then $\omega(v)=-4$. Since v is adjacent to ≥ 5-vertices by (C1), (C4) and (C6), it receives 2 from each adjacent vertices by (R1) and (R2). So, $\omega^{*}(v)=0$.

If $k=4$, then $\omega(v)=2$. If v is light, by (R3.1) it gives twice 1 and so, $\omega^{*}(v)=0$. If v is not light, then v is incident to at most one 3 -face. So, $\omega^{*}(v) \geq 0$ by (R3.2).

If $k=5$, then $\omega(v)=5$. By (C6), v is adjacent to at most one 2 -vertex. Moreover, it can be incident to at most two 3 -faces. If v is adjacent to a 2 vertex, then it is not incident to a light 3 -face by (C8) and so, $\omega^{*}(v) \geq 5-2$. $\frac{3}{2}-2 \geq 0$ by (R2). If v is not adjacent to a 2 -vertex, then $\omega^{*}(v) \geq 5-2 \cdot 2 \geq 1$.

Observe that (R1) is equivalent for v to give 2 per edge incident to a 2 vertex and 1 per edge incident to a 3 -face. It follows that the worst case of discharging for v appears when v is adjacent to the biggest number of 2 -vertices according to (C3)-(C6). If $k=6$, then $\omega(v)=8$. By (C5), v is adjacent to at most three 2 -vertices. So, $\omega^{*}(v) \geq 8-3 \cdot 2-2 \geq 0$. If $k=7$, then $\omega(v)=11$. By (C5), v is adjacent to at most four 2 -vertices. So, $\omega^{*}(v) \geq 11-4 \cdot 2-2 \geq 1$.

If $k=8$, then $\omega(v)=14$. By (C5), v is adjacent to at most five 2 -vertices. So, $\omega^{*}(v) \geq 14-5 \cdot 2-2 \geq 2$. If $k=9$, then $\omega(v)=17$. By (C5), v is adjacent to at most six 2 -vertices. So, $\omega^{*}(v) \geq 17-6 \cdot 2-2 \geq 3$. If $k \geq 10$, then $\omega(v)=3 \cdot k-10$ and trivially $\omega^{*}(v) \geq 3 \cdot k-10-2 \cdot k \geq k-10 \geq 0$.

Let f be a 3 -face; $\omega(f)=-4$. By (C 1) and (C 2), f is incident to ≥ 4 vertices. By (C7), f is incident to at most two 4 -vertices. Let x, y, z be the vertices incident to f. Without loss of generality, we consider that $4 \leq d(x) \leq$ $d(y) \leq d(z)$. If $d(z)=6$, then by (R1)-(R3), f receives at least $2+2 \cdot 1=4$ and so $\omega^{*}(f) \geq 0$. Consider $4 \leq d(x) \leq d(y) \leq d(z) \leq 5$. If $d(y)=5$, then $\omega^{*}(f) \geq 2 \cdot \frac{3}{2}+1 \geq 0$. Now, it remains one case: $d(x)=d(y)=4, d(z)=5$. If x (resp. y) is not light, then x (resp. y) gives 2 and $\omega^{*}(f) \geq 2+1+\frac{3}{2} \geq \frac{1}{2}$. Consider that x and y are light; hence f is light and receives 1 from $x, 1$ from y by (R3) and 2 from z by (R2) and $\omega^{*}(f)=-4+2 \cdot 1+2=0$.

That shows that $\omega^{*}(x) \geq 0$ for all $x \in V(H) \cup F(H)$. The contradiction with (1) completes the proof.

References

[1] O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud, and É. Sopena. On the maximum average degree and the oriented chromatic number of a graph. Discrete Math., 206, 77-89, 1999.
[2] A. V. Kostochka, É. Sopena, and X. Zhu. Acyclic and oriented chromatic numbers of graphs. J. Graph Theory, 24, 331-340, 1997.
[3] T. H. Marshall. Antisymmetric flows on planar graphs. J. Graph Theory, 52(3), 200-210, 2006.
[4] M. Montassier, P. Ochem, and A. Pinlou. Strong oriented chromatic number of planar graphs without short cycles. Technical Report RR-1380-06, LaBRI, 2006.
[5] J. Nešetřil and A. Raspaud. Antisymmetric flows and strong colorings of oriented planar graphs. Ann. Inst. Fourier, 49(3), 1037-1056, 1999.
[6] R. Sámal. Antisymmetric flows and strong oriented coloring of planar graphs. Discrete Math., 273(1-3), 203-209, 2003.
[7] É. Sopena. The chromatic number of oriented graphs. J. Graph Theory, 25, 191-205, 1997.
[8] É. Sopena. Oriented graph coloring. Discrete Math., 229(1-3), 359-369, 2001.
[9] D. R. Wood. Acyclic, star and oriented colourings of graph subdivisions. Discrete Math. Theoret. Comput. Sci., 7(1), 37-50, 2005.

[^0]: ${ }^{1}$ Emails: montassi@labri.fr, ochem@lri.fr, pinlou@lirmm.fr
 ${ }^{2}$ Département Mathématiques et Informatique Appliqués, Univ. Paul-Valéry, Montpellier 3, Route de Mende, 34199 Montpellier Cedex 5, France

