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b LRI, Université de Paris-Sud, 91405 Orsay, France

c LIRMM, Univ. Montpellier 2, 161 rue Ada, 34392 Montpellier Cedex 5, France
d LaBRI, Univ. Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France

Abstract

In this paper, we study homomorphisms of 2-edge-colored graphs, that is graphs
with edges colored with two colors. We consider various graph classes (outerplanar
graphs, partial 2-trees, partial 3-trees, planar graphs) and the problem is to find,
for each class, the smallest number of vertices of a 2-edge-colored graph H such
that each graph of the considered class admits a homomorphism to H.

1 Introduction

Our general aim is to study homomorphisms of (n,m)-mixed graphs, that is
graphs with both arcs and edges respectively colored with n and m colors.
This notion was introduced by Nešetřil and Raspaud [5] as a generalization
of the notion of homomorphisms of edge-colored graphs (see e.g. [1]) and the
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notion of oriented coloring (see e.g. [8]). In this paper, we focus on (0, 2)-mixed
graphs, that is 2-edge-colored graphs.

An (n,m)-mixed graph is a set of vertices V (G) linked by arcs A(G) and
edges E(G), such that the underlying graph is simple (no multiple edges or
loops), the arcs are colored with n colors and the edges are colored with m
colors. In other words, there is a partition A(G) = A1(G) ∪ . . . ∪ An(G) of
the set of arcs of G, were Ai(G) contains all arcs with color i and a partition
E(G) = E1(G)∪ . . .∪Em(G) of the edges of G, where Ej(G) contains all edges
with color j. We denote the class of (n,m)-mixed graphs by G(n,m). Observe
that G(0,1) is the class of simple graphs and G(1,0) is the class of oriented graphs.

Let G = {V (G);
⋃n

i=1 Ai(G),
⋃m

j=1 Ej(G)} and H = {V (H);
⋃n

i=1 Ai(H),⋃m
j=1 Ej(H)} be two (n, m)-mixed graphs. A homomorphism from G to H

is a mapping h : V (G) → V (H) such that (h(u), h(v)) ∈ Ai(H) whenever
(u, v) ∈ Ai(G) (for every i ∈ {1, . . . n}), and h(u)h(v) ∈ Ej(H) whenever
uv ∈ Ej(G) (for every j ∈ {1, . . . m}). The existence of a homomorphism
from G to H is denoted by G → H, and G �→ H means there is no such
homomorphism.

Given an (n,m)-mixed graph G, the problem is to find the smallest number
of vertices of a graph H such that G → H. This number is denoted by
χ(n,m)(G) and is called the chromatic number of the (n,m)-mixed graph G.
For a simple graph G, the (n,m)-mixed chromatic number is the maximum of
the chromatic numbers taken over all the possible (n,m)-mixed graphs having
G as underlying graph. Note that χ(0,1)(G) is the ordinary chromatic number
χ(G), and χ(1,0)(G) is the oriented chromatic number χo(G). Given a family
F of simple graphs, we denote by χ(n,m)(F) the maximum of χ(n,m)(G) taken
over all members in F .

Note that a complexity result of Edwards and McDiarmid [3] on the har-
monious chromatic number implies that to find the (0, 2)-mixed chromatic
number of a graph is in general an NP-complete problem.

Recall that an acyclic coloring of a simple graph G is a proper vertex-
coloring satisfying that every cycle of G received at least three colors. The
acyclic chromatic number of G, denoted by χa(G), is the smallest k such
that G admits an acyclic k-vertex coloring. The class of graphs with acyclic
chromatic number at most k is denoted by Ak.

Nešetřil and Raspaud [5] proved that the families of bounded acyclic chro-
matic number have bounded (n,m)-mixed chromatic number. More precisely:

Theorem 1.1 [5] χ(n,m)(Ak) ≤ k(2n + m)k−1.
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Combining this result with the well-know result of Borodin [2] (every planar
graph has an acyclic chromatic number at most 5), we get:

Corollary 1.2 [5] Let P be the class of (n,m)-mixed planar graphs.
Then χ(n,m)(P) ≤ 5(2n + m)4.

This last upper bound extends some previous known results on edge-
colored planar graph [1] and on oriented planar graphs [6].

Nešetřil and Raspaud [5] also provided the exact (n,m)-mixed chromatic
number of forests (F denotes the class of (n,m)-mixed forests):

Theorem 1.3 [5] χ(n,0)(F) = 2n + 1 and χ(n,m)(F) = 2(n +
⌊

m
2

⌋
+ 1) for

m �= 0.

Recently, Fabila et al. [4] studied the (n,m)-mixed chromatic number of
paths. They proved that it is exactly the same as for the forests; this proves
that the lower bound of Theorem 1.3 is reached with paths.

We can obtain new bounds on the (n, m)-mixed chromatic number of par-
tial k-trees, planar graphs, and outerplanar graphs thanks to the above results.

A k-tree is a simple graph obtained from the complete graph Kk by re-
peatedly adding a new vertex adjacent to each vertex of an existing clique of
size k. A partial k-tree is a subgraph of some k-tree. It is not difficult to see
that every partial k-tree has acyclic chromatic number at most k+1. We then
get the following from Theorem 1.1:

Corollary 1.4 Let Tk be the class of (n, m)-mixed partial k-trees.
Then χ(n,m)(T

k) ≤ (k + 1)(2n + m)k.

In addition, we can derive lower bounds for outerplanar graphs, planar
graphs and partial 3-trees from Theorem 1.3 and the result of Fabila et al. [4]:

Corollary 1.5 Let ε = 1 for m odd or m = 0, and ε = 2 for m > 0 even.

1. There exist outerplanar graphs G with χ(n,m)(G) ≥ (2n+m)2+ε(2n+m)+1.

2. There exist planar partial 3-trees G with χ(n,m)(G) ≥ (2n + m)3 + ε(2n +
m)2 + (2n + m) + ε.

In this extended abstract, we study the particular class of (0, 2)-mixed
graphs. More precisely, we give the complete classification for the (0, 2)-mixed
chromatic number of outerplanar graphs and partial 2-trees with given girth
(this improves Corollary 1.4 for k = 2). We also provide the exact (0, 2)-mixed
chromatic number of partial 3-trees. Finally, we obtain upper bounds for the
(0, 2)-mixed chromatic number of the class of planar graphs with given girth.
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(a) T9 = C3 × C3 (b) T8 (c) T5 = C5

T9,2

u2

u1

T9,1

(d) T20

Fig. 1. The four target graphs T9, T8, T5, and T20.

2 The target graphs

When studying homomorphisms to get bounds on the chromatic number of a
graph class C, one often tries to find an universal target graph for C, that is a
target graph H such that all the graphs of C admits a homomorphism to H.
To prove that a target graph is universal for a graph class, we need “useful”
properties. In this section, we construct four (0, 2)-mixed target graphs which
will be used in the sequel to get upper bounds for (0, 2)-mixed chromatic
number. Their useful properties are given below.

Consider the three graphs depicted in Figures 1(a), 1(b), and 1(c). These
graphs are all self complementary (i.e. isomorphic to their complement). Thus,
let T9 (resp. T8, T5) be the complete (0, 2)-mixed graphs on 9 (resp. 8, 5)
vertices where the edges of each color induce an isomorphic copy of the graphs
depicted in Figure 1(a) (resp. 1(b), 1(c)).

Proposition 2.1 For every pair of distinct vertices u and v of T9 (resp. T5)
and every (0, 2)-mixed k-path Pk = u0, u1, . . . , uk, k ≥ 2 (resp. k ≥ 3), there
exists a homomorphism h from Pk to T9 (resp. T5) such that h(u0) = u and
h(uk) = v.

Proposition 2.2 For each v ∈ V (T8) and each (0, 2)-mixed path of length k,
the number of vertices in T8 reachable from v by such a k-path is at least 3
(resp. 7, 8) if k = 1 (resp. k = 2, k ≥ 3).

For a (0, 2)-mixed graph, the edges can get two distinct colors: we will say
that the edges with the first color are of type 1 whereas the others are of type
2.

Let T20 be the complete (0, 2)-mixed graph defined as follows (the construc-
tion is illustrated by Fig. 1(d)). Take two disjoint copies of T9, namely T9,1,
T9,2, and two new vertices u1 and u2. We put edges of type 1 (resp. of type
2) linking ui to all vertices of T9,i (resp. T9,3−i) for 1 ≤ i ≤ 2. We also add an
edge of type 1 (resp. type 2) between u ∈ V (T9,1) and v ∈ V (T9,2) whenever
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uv ∈ E(T9) is of type 2 (resp. type 1). This construction is known as the
Tromp construction and was already used to bound the oriented chromatic
number (i.e. the (1, 0)-mixed chromatic number) [7].

Proposition 2.3 For every triangle u, v, w of T20 and every triple (a, b, c) ∈
{1, 2}3, there exists a vertex t adjacent to u, v and, w such that tu (resp. tv,
tw) is of type a (resp. b, c).

3 Results

Let Og be the class of (0, 2)-mixed outerplanar graphs with girth at least
g. Outerplanar graphs form a strict subclass of partial 2-trees (also known
as series-parallel graphs); therefore, Corollaries 1.4 and 1.5 implies that 9 ≤
χ(0,2)(O3) ≤ 12. We improve this result and characterize the (0, 2)-mixed
chromatic number of outerplanar graphs for all girth:

Theorem 3.1 χ(0,2)(O3) = 9 and χ(0,2)(Og) = 5 for g ≥ 4.

These bounds are obtained by showing that every (0, 2)-mixed outerplanar
graph with girth 3 (resp. girth at least 4) admits a homomorphism to T9

(resp. T5). To get the second result, we construct, for every girth g ≥ 3,
an outerplanar graph G with girth g and χ(0,2)(G) = 5, which proves that
χ(0,2)(O) ≥ 5.

In the same vein, we find the (0, 2)-mixed chromatic number of partial
2-trees for all girths (T2

g denotes the class of partial 2-trees with girth at least
g):

Theorem 3.2 χ(0,2)(T
2
3) = 9, χ(0,2)(T

2
g) = 8 for 4 ≤ g ≤ 5, and

χ(0,2)(T
2
g) = 5 for g ≥ 6.

We get the upper bounds by showing that (0, 2)-mixed partial 2-trees with
girth 3 (resp. 4, 6) admits a homomorphism to T9 (resp. T8, T5). Each
lower bound is obtained by constructing a (0, 2)-mixed partial 2-tree with the
required girth which needs the specified number of colors.

Theorem 1.5 shows that χ(0,2)(T
3) ≥ 20. We prove that this bound is tight:

Theorem 3.3 χ(0,2)(T
3) = 20.

We get this result by showing that every (0, 2)-mixed partial 3-trees admits
a homomorphism to T20.

Finally, we bound the (0, 2)-mixed chromatic number of sparse graphs.
The maximum average degree of a simple graph G, denoted by mad(G), is
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defined as mad(G) = max
{

2|E(H)|
|V (H)| , H ⊆ G

}
, where H ⊆ G means H is a

subgraph of G.

Theorem 3.4 Let G be a simple graph. If mad(G) < 8
3

(resp. 7
3
), then

χ(0,2)(G) ≤ 8 (resp. χ(0,2)(G) = 5).

Our proof technique is based on the well-know method of reducible configu-
rations and discharging procedure. We consider a minimal counterexample H
to Theorem 3.4. We prove that H does not contain a set S of configurations.
Then, we prove, using a discharging procedure, that every graph containing
none of the configurations of S has a maximum average degree greater than
required by the theorem, that contradicts that H is a counterexample.

Let Pg be the class of (0, 2)-mixed planar graphs with girth at least g.

Since every planar graph G with girth g verifies mad(G) < 2g
g−2

, we get the
following corollary for planar graphs with given girth:

Corollary 3.5 χ(0,2)(P8) ≤ 8 and χ(0,2)(P14) = 5.
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[5] Nešetřil, J. and A. Raspaud, Colored homomorphisms of colored mixed graphs,
J. Comb. Theory Ser. B 80 (2000), pp. 147–155.
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