

Available online at www.sciencedirect.com

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 29 (2007) 195-199

www.elsevier.com/locate/endm

Oriented vertex and arc colorings of partial 2-trees

Pascal Ochem¹ Alexandre Pinlou²

LaBRI, Université Bordeaux 1 351 Cours de la Libération 33405 Talence Cedex, France

1 Introduction

We consider finite simple *oriented graphs*, that is digraphs with no opposite arcs. For an oriented graph G, we denote by V(G) its *set of vertices* and by A(G) its *set of arcs*. The number of vertices of G is the *order* of G. The *girth* of a graph G is the size of a smallest cycle in G. We denote by \mathcal{T}_g the class of partial 2-trees (also known as series-parallel graphs) with girth at least g.

The notion of oriented vertex-coloring was introduced by Courcelle [2] as follows: an *oriented k-vertex-coloring* of an oriented graph *G* is a mapping φ from V(G) to a set of *k* colors such that (*i*) $\varphi(u) \neq \varphi(v)$ whenever $uv \in A(G)$ and (*ii*) $\varphi(v) \neq \varphi(x)$ whenever $uv, xy \in A(G)$ and $\varphi(u) = \varphi(y)$. The *oriented chromatic number* of *G*, denoted by $\chi_o(G)$, is defined as the smallest *k* such that *G* admits an oriented *k*-vertex-coloring. The oriented chromatic number $\chi_o(\mathfrak{F})$ of a class of oriented graphs \mathfrak{F} is defined as the maximum of $\chi_o(G)$ taken over all graphs *G* in \mathfrak{F} .

Let *G* and *H* be two oriented graphs. A *homomorphism* from *G* to *H* is a mapping φ from *V*(*G*) to *V*(*H*) that preserves the arcs: $\varphi(u)\varphi(v) \in A(H)$ whenever

¹ Email:Pascal.Ochem@labri.fr

² Email: Alexandre.Pinlou@labri.fr

 $uv \in A(G)$. An oriented k-vertex-coloring of an oriented graph G can be equivalently defined as a homomorphism φ from G to H, where H is an oriented graph of order k. The oriented chromatic number of G can then be viewed as the smallest order of an oriented graph H such that G admits a homomorphism to H. Links between colorings and homomorphisms are presented in more details in the monograph [3] by Hell and Nešetřil.

Oriented vertex-colorings have been studied by several authors in the last decade and the problem of bounding the oriented chromatic number has been investigated for various graph classes (see *e.g.* [1,8,9]).

Concerning partial 2-trees, Sopena proved [9] that their oriented chromatic number is at most 7 (this bound was shown to be tight). Pinlou and Sopena [8] obtained tight bounds for the oriented chromatic number of outerplanar graphs with given girth (outerplanar graphs form a strict subclass of partial 2-trees). Moreover, they proved that $\chi_o(\mathcal{T}_g) = 7$ for every $g, 3 \le g \le 4$. In this paper, we complete the characterization of the oriented chromatic numbers of partial 2-trees with given girth:

Theorem 1.1

(1) $\chi_o(\mathfrak{T}_g) = 6$ for every girth $g, 5 \le g \le 6$; (2) $\chi_o(\mathfrak{T}_g) = 5$ for every girth $g, g \ge 7$;

One can define oriented arc-colorings of oriented graphs in a natural way by saying that, as in the undirected case, an *oriented arc-coloring* of an oriented graph *G* is an oriented vertex-coloring of its line digraph LD(G) (recall that LD(G) is given by V(LD(G)) = A(G) and $ab \in A(LD(G))$ whenever a = uv and b = vw). Therefore, an oriented arc-coloring φ of *G* must satisfy (*i*) $\varphi(uv) \neq \varphi(vw)$ whenever *uv* and *vw* are two consecutive arcs in *G*, and (*ii*) $\varphi(vw) \neq \varphi(xy)$ whenever $uv, vw, xy, yz \in A(G)$ with $\varphi(uv) = \varphi(yz)$. The *oriented chromatic index* of *G*, denoted by $\chi'_o(G)$, is defined as the smallest order of an oriented graph *H* such that LD(G) admits a homomorphism to *H*. The oriented chromatic index $\chi'_o(\mathcal{F})$ of a class of oriented graphs \mathcal{F} is defined as the maximum of $\chi'_o(G)$ taken over all graphs *G* in \mathcal{F} .

The oriented chromatic index of oriented graphs was recently studied and several upper and lower bounds are known (see [6,7,8]).

Upper bounds for the oriented chromatic index can be easily derivated from oriented chromatic number:

Claim 1.2 [6] For every oriented graph G, $\chi'_o(G) \leq \chi_o(G)$.

Our second result gives estimates of the oriented chromatic indexes of partial 2-trees with girth 4, 5 and 6, and a characterization for all other girths:

Theorem 1.3

(1) χ'_o(T₃) = 7;
(2) 6 ≤ χ'_o(T₄) ≤ 7;
(3) 5 ≤ χ'_o(T_g) ≤ 6 for every girth g, 5 ≤ g ≤ 6;
(4) χ'_o(T_g) = 5 for every girth g, 7 ≤ g ≤ 17;
(5) χ'_o(T_g) = 4 for every girth g, g > 18;

In the rest of the paper, we will use the following notation. A vertex of degree k will be called a *k*-vertex. We denote by $\delta(G)$ the minimum degree of the graph G.

A *k*-path in a graph G is a path $P = [u, v_1, v_2, ..., v_{k-1}, w]$ of length k (*i.e.* a path with k arcs); the vertices u and w are the *endpoints* of P. Note that a 1-path is an arc. A (k, d)-path is a k-path such that all internal vertices v_i have degree d.

A 2-vertex contraction is the contraction of an edge incident to a 2-vertex.

2 Sketches of proof

The proofs of Theorems 1.1 and 1.3 use some structural properties on partial 2-trees with given girth and on graph classes closed under 2-vertex contraction. These properties are given in the two following lemmas.

Lemma 2.1 Let \mathcal{C} be a graph class closed under 2-vertex contraction such that every non-empty graph $G \in \mathcal{C}$ with girth at least g contains either a 1-vertex or a (k,2)-path, for some $k \ge 2$. Then, for every $n \ge 0$, every non-empty graph $G' \in \mathcal{C}$ with girth at least $g + n \left| \frac{g-1}{k-1} \right|$ contains either a 1-vertex or a (k+n,2)-path.

For a graph *G* with girth at least *g* and a vertex $v \in V(G)$, we denote: $D_g^G(v) = |\{u \in V(G), d(u) \ge 3 \text{ such that there exists a unique path of 2-vertices linking$ *u*and*v*or*u*and*v* $are the endpoints of at least a <math>(\lceil \frac{g}{2} \rceil, 2)$ -path}|.

Lemma 2.2 Let G be a partial 2-tree with girth g such that $\delta(G) \ge 2$. Then, either there exists a $\left(\left\lceil \frac{g}{2} \right\rceil + 1, 2\right)$ -path, or there exists a ≥ 3 -vertex v such that $D_g^G(v) \le 2$.

Note that this lemma generalizes Lemma 2 p. 305 of Lih et al. [4] which characterizes partial 2-trees with girth 3.

Upper bounds

Thanks to the above lemmas, the upper bounds of Theorems 1.1 and 1.3 are obtained by showing that the considered partial 2-trees admit a homomorphism to one of the tournaments T_4 , T_5 , T_6 , and T_7 depicted on Fig. 1.

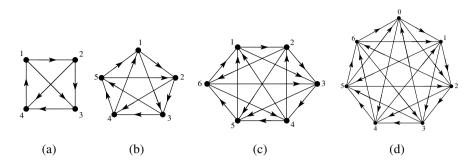


Fig. 1. The four target tournaments.

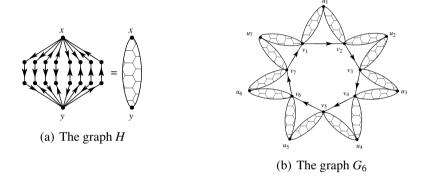


Fig. 2. An oriented partial 2-tree with girth 6 and oriented chromatic number 6.

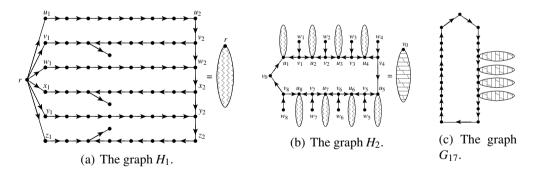


Fig. 3. An oriented partial 2-tree with girth 17 and oriented chromatic index 5.

Lower bounds

Finally, to get the lower bounds of Theorems 1.1 and 1.3, we construct partial 2-trees with the required girth which need the specified number of colors. More fully :

• The graph G_6 depicted in Fig. 2(b) is a partial 2-tree with girth 6 such that

 $\chi_o(G_6) = 6$. Therefore, $\chi_o(\mathfrak{T}_g) \ge 6$ for every $g \le 6$.

- Nešetřil *et al.* [5] constructed for every $g \ge 3$, an oriented outerplanar graph with girth g which has oriented chromatic number 5. Therefore, $\chi_o(\mathcal{T}_g) \ge 5$ for every $g \ge 7$.
- The first three assumptions of Theorem 1.3 directly follow from Claim 1.2, Theorem 1.1(1) and some results of Pinlou and Sopena [8], namely χ_o(T₃) = 7, χ'_o(O₄) = 6, and χ'_o(O₆) = 5.
- The graph G_{17} depicted in Fig. 3(c) is a partial 2-tree with girth 17 such that $\chi'_o(G_{17}) = 5$. Therefore, $\chi'_o(\mathfrak{T}_g) \ge 5$ for every $g \le 17$.
- It not difficult to check that, for every g ≥ 3, the partial 2-tree G obtained from two vertex-disjoint circuits, the first one of size g and the second one of size k ≥ g with k ≠ 0 (mod 3) has girth g and χ'_o(G) = 4. Therefore χ'_o(𝔅) ≥ 4 for every g ≥ 18.

References

- O. V. Borodin, A. V. Kostochka, J. Nešetřil, A. Raspaud and É. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999), pp. 77–89.
- [2] B. Courcelle, *The monadic second order-logic of graphs* VI : *on several representations of graphs by relational structures*, Discrete Appl. Math. **54** (1994), pp. 117–149.
- [3] P. Hell and J. Nešetřil, "Graphs and homomorphisms," Oxford Lecture Series in Mathematics and its Applications 28, Oxford University Press, 2004.
- [4] K. W. Lih, W. F. Wang and X. Zhu, *Coloring the square of K*₄-*minor free graph*, Discrete Math. 269 (2003), pp. 303–309.
- [5] J. Nešetřil, A. Raspaud and É. Sopena, *Colorings and girth of oriented planar graphs*, Discrete Math. **165-166** (1997), pp. 519–530.
- [6] P. Ochem, A. Pinlou and É. Sopena, On the oriented chromatic index of oriented graphs, Research Report RR-1390-06, LaBRI, Université Bordeaux 1 (2006).
- [7] A. Pinlou, On oriented arc-coloring of subcubic graphs, Elect. J. Comb. 13 (2006).
- [8] A. Pinlou and É. Sopena, Oriented vertex and arc colorings of outerplanar graphs, Inform. Process. Lett. 100 (2006), pp. 97–104.
- [9] É. Sopena, *The chromatic number of oriented graphs*, J. Graph Theory **25** (1997), pp. 191–205.