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1 Introduction

We consider finite simple oriented graphs, that is digraphs with no opposite arcs.
For an oriented graph G, we denote by V (G) its set of vertices and by A(G) its set
of arcs. The number of vertices of G is the order of G. The girth of a graph G is
the size of a smallest cycle in G. We denote by Tg the class of partial 2-trees (also
known as series-parallel graphs) with girth at least g.

The notion of oriented vertex-coloring was introduced by Courcelle [2] as fol-
lows: an oriented k-vertex-coloring of an oriented graph G is a mapping ϕ from
V (G) to a set of k colors such that (i) ϕ(u) �= ϕ(v) whenever uv ∈ A(G) and (ii)
ϕ(v) �= ϕ(x) whenever uv,xy ∈ A(G) and ϕ(u) = ϕ(y). The oriented chromatic
number of G, denoted by χo(G), is defined as the smallest k such that G admits
an oriented k-vertex-coloring. The oriented chromatic number χo(F) of a class of
oriented graphs F is defined as the maximum of χo(G) taken over all graphs G in F.

Let G and H be two oriented graphs. A homomorphism from G to H is a map-
ping ϕ from V (G) to V (H) that preserves the arcs: ϕ(u)ϕ(v) ∈ A(H) whenever
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uv ∈ A(G). An oriented k-vertex-coloring of an oriented graph G can be equiva-
lently defined as a homomorphism ϕ from G to H, where H is an oriented graph of
order k. The oriented chromatic number of G can then be viewed as the smallest
order of an oriented graph H such that G admits a homomorphism to H. Links
between colorings and homomorphisms are presented in more details in the mono-
graph [3] by Hell and Nešetřil.

Oriented vertex-colorings have been studied by several authors in the last decade
and the problem of bounding the oriented chromatic number has been investigated
for various graph classes (see e.g. [1,8,9]).

Concerning partial 2-trees, Sopena proved [9] that their oriented chromatic
number is at most 7 (this bound was shown to be tight). Pinlou and Sopena [8] ob-
tained tight bounds for the oriented chromatic number of outerplanar graphs with
given girth (outerplanar graphs form a strict subclass of partial 2-trees). Moreover,
they proved that χo(Tg) = 7 for every g, 3 ≤ g ≤ 4. In this paper, we complete
the characterization of the oriented chromatic numbers of partial 2-trees with given
girth:

Theorem 1.1

(1) χo(Tg) = 6 for every girth g, 5 ≤ g ≤ 6;

(2) χo(Tg) = 5 for every girth g, g ≥ 7;

One can define oriented arc-colorings of oriented graphs in a natural way by
saying that, as in the undirected case, an oriented arc-coloring of an oriented graph
G is an oriented vertex-coloring of its line digraph LD(G) (recall that LD(G) is
given by V (LD(G)) = A(G) and ab ∈ A(LD(G)) whenever a = uv and b = vw).
Therefore, an oriented arc-coloring ϕ of G must satisfy (i) ϕ(uv) �= ϕ(vw) when-
ever uv and vw are two consecutive arcs in G, and (ii) ϕ(vw) �= ϕ(xy) whenever
uv,vw,xy,yz ∈ A(G) with ϕ(uv) = ϕ(yz). The oriented chromatic index of G, de-
noted by χ′

o(G), is defined as the smallest order of an oriented graph H such that
LD(G) admits a homomorphism to H. The oriented chromatic index χ′

o(F) of
a class of oriented graphs F is defined as the maximum of χ′

o(G) taken over all
graphs G in F.

The oriented chromatic index of oriented graphs was recently studied and sev-
eral upper and lower bounds are known (see [6,7,8]).

Upper bounds for the oriented chromatic index can be easily derivated from
oriented chromatic number:

Claim 1.2 [6] For every oriented graph G, χ′
o(G) ≤ χo(G).

Our second result gives estimates of the oriented chromatic indexes of partial
2-trees with girth 4, 5 and 6, and a characterization for all other girths:
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Theorem 1.3

(1) χ′
o(T3) = 7;

(2) 6 ≤ χ′
o(T4) ≤ 7;

(3) 5 ≤ χ′
o(Tg) ≤ 6 for every girth g, 5 ≤ g ≤ 6;

(4) χ′
o(Tg) = 5 for every girth g, 7 ≤ g ≤ 17;

(5) χ′
o(Tg) = 4 for every girth g, g ≥ 18;

In the rest of the paper, we will use the following notation. A vertex of degree k
will be called a k-vertex. We denote by δ(G) the minimum degree of the graph G.

A k-path in a graph G is a path P = [u,v1,v2, . . . ,vk−1,w] of length k (i.e. a path
with k arcs) ; the vertices u and w are the endpoints of P. Note that a 1-path is an
arc. A (k,d)-path is a k-path such that all internal vertices vi have degree d.

A 2-vertex contraction is the contraction of an edge incident to a 2-vertex.

2 Sketches of proof

The proofs of Theorems 1.1 and 1.3 use some structural properties on partial 2-trees
with given girth and on graph classes closed under 2-vertex contraction. These
properties are given in the two following lemmas.

Lemma 2.1 Let C be a graph class closed under 2-vertex contraction such that
every non-empty graph G ∈ C with girth at least g contains either a 1-vertex or a
(k,2)-path, for some k ≥ 2. Then, for every n ≥ 0, every non-empty graph G′ ∈ C

with girth at least g+n
⌊

g−1
k−1

⌋
contains either a 1-vertex or a (k +n,2)-path.

For a graph G with girth at least g and a vertex v ∈V (G), we denote:
DG

g (v) = |{u ∈ V (G), d(u) ≥ 3 such that there exists a unique path of 2-vertices
linking u and v or u and v are the endpoints of at least a (

⌈g
2

⌉
,2)-path}|.

Lemma 2.2 Let G be a partial 2-tree with girth g such that δ(G)≥ 2. Then, either
there exists a (

⌈g
2

⌉
+1,2)-path, or there exists a ≥3-vertex v such that DG

g (v) ≤ 2.

Note that this lemma generalizes Lemma 2 p. 305 of Lih et al. [4] which char-
acterizes partial 2-trees with girth 3.

Upper bounds
Thanks to the above lemmas, the upper bounds of Theorems 1.1 and 1.3 are

obtained by showing that the considered partial 2-trees admit a homomorphism to
one of the tournaments T4, T5, T6, and T7 depicted on Fig. 1.
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Fig. 1. The four target tournaments.
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Fig. 2. An oriented partial 2-tree with girth 6 and oriented chromatic number 6.
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Fig. 3. An oriented partial 2-tree with girth 17 and oriented chromatic index 5.

Lower bounds
Finally, to get the lower bounds of Theorems 1.1 and 1.3, we construct partial

2-trees with the required girth which need the specified number of colors. More
fully :

• The graph G6 depicted in Fig. 2(b) is a partial 2-tree with girth 6 such that
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χo(G6) = 6. Therefore, χo(Tg) ≥ 6 for every g ≤ 6.
• Nešetřil et al. [5] constructed for every g ≥ 3, an oriented outerplanar graph with

girth g which has oriented chromatic number 5. Therefore, χo(Tg) ≥ 5 for every
g ≥ 7.

• The first three assumptions of Theorem 1.3 directly follow from Claim 1.2, The-
orem 1.1(1) and some results of Pinlou and Sopena [8], namely χo(T3) = 7,
χ′

o(O4) = 6, and χ′
o(O6) = 5.

• The graph G17 depicted in Fig. 3(c) is a partial 2-tree with girth 17 such that
χ′

o(G17) = 5. Therefore, χ′
o(Tg) ≥ 5 for every g ≤ 17.

• It not difficult to check that, for every g ≥ 3, the partial 2-tree G obtained from
two vertex-disjoint circuits, the first one of size g and the second one of size
k ≥ g with k �≡ 0 (mod 3) has girth g and χ′

o(G) = 4. Therefore χ′
o(Tg) ≥ 4 for

every g ≥ 18.
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