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A homomorphism from an oriented graph G to an oriented graph H is an arc-preserving
mapping f from V (G) to V (H), that is f (x) f (y) is an arc in H whenever xy is an arc in G .
The oriented chromatic number of G is the minimum order of an oriented graph H such
that G has a homomorphism to H . In this paper, we determine the oriented chromatic
number of the class of partial 2-trees for every girth g � 3. We also give an upper bound
for the oriented chromatic number of planar graphs with girth at least 11.
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1. Introduction

We consider finite simple oriented graphs, that is di-
graphs without opposite arcs nor loops. For an oriented
graph G , we denote by V (G) its set of vertices and by
A(G) its set of arcs. The number of vertices of G is the
order of G . The girth of a graph G is the size of a smallest
cycle in G . We denote by Og , Tg , and Pg , the class of out-
erplanar graphs with girth at least g , the class of partial
2-trees with girth at least g , and the class of planar graphs
with girth at least g , respectively.

The notion of oriented coloring was introduced by
Courcelle [5] as follows: an oriented k-coloring of an ori-
ented graph G is a mapping f from V (G) to a set of k
colors such that

(i) f (u) �= f (v) whenever uv ∈ A(G) and
(ii) f (v) �= f (x) whenever uv, xy ∈ A(G) and f (u) =

f (y).

* Corresponding author at: Département Mathématiques et Informa-
tique Appliqués, Université Paul-Valéry, Montpellier 3, Route de Mende,
34199 Montpellier Cedex 5, France

E-mail addresses: pascal.ochem@lri.fr (P. Ochem),
alexandre.pinlou@lirmm.fr (A. Pinlou).
0020-0190/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2008.04.007
In other words, an oriented k-coloring of G is a parti-
tion of the vertices of G into k stable sets S1, S2, . . . , Sk
such that all the arcs between any pair of stable sets Si
and S j have the same direction (either from Si to S j , or
from S j to Si ). The oriented chromatic number of G , denoted
by χo(G), is defined as the smallest k such that G ad-
mits an oriented k-coloring. The oriented chromatic num-
ber χo(F) of a class of oriented graphs F is defined as the
maximum of χo(G) taken over all graphs G in F.

Let G and H be two oriented graphs. A homomorphism
from G to H is a mapping f from V (G) to V (H) that
preserves the arcs: f (u) f (v) ∈ A(H) whenever uv ∈ A(G).
An oriented k-coloring of an oriented graph G can be
equivalently defined as a homomorphism f from G to H ,
where H is an oriented graph of order k; such a homo-
morphism is called a H-coloring of G or simply an oriented
coloring of G .

The existence of such a homomorphism from G to H is
denoted by G → H . The vertices of H are called colors, and
we say that G is H-colorable. The oriented chromatic num-
ber of G can then be equivalently defined as the smallest
order of an oriented graph H such that G → H . Links
between colorings and homomorphisms are presented in
more details in the monograph [6] by Hell and Nešetřil.

Oriented colorings have been studied by several authors
in the last decade and the problem of bounding the ori-
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ented chromatic number has been investigated for various
graph classes (see, e.g., [3,4,12–14]).

A very challenging question is to determine the ori-
ented chromatic number of planar graphs. Raspaud and
Sopena [13] proved in 1994 that their oriented chromatic
number is at most 80. Recently, Marshall [8] proved that
there exist planar graphs with an oriented chromatic num-
ber at least 17. The gap between the lower and the upper
bound is very large, but it seems very hard to reduce.

Some authors then studied the oriented chromatic
number of planar graphs with given girth to get some
hints on the behavior of this invariant. The following
bounds have been obtained:

Theorem 1. (See [1–4,9–11].)

(1) 11 � χo(P4) � 47 [2,10],
(2) 5 � χo(P5) � 16 [9,11],
(3) 5 � χo(P6) � 11 [4,9],
(4) 5 � χo(Pg) � 7 for every girth 7 � g � 11 [1,9],
(5) χo(Pg) = 5 for every girth g � 12 [3,9].

We can remark that the oriented chromatic number of
planar graphs with girth at least 12 have been character-
ized. However, for girths 4 to 11, only estimates are known.

Sopena [14], and Pinlou and Sopena [12] considered
the oriented chromatic number of the class of outerpla-
nar graphs (which is a graph class strictly included in the
class of planar graphs). They obtained exact bounds for ev-
ery girth:

Theorem 2. (See [12,14].)

(1) χo(O3) = 7 [14],
(2) χo(O4) = 6 [12],
(3) χo(Og) = 5 for every g � 5 [12].

It is then natural to study the behavior of the ori-
ented chromatic number of the class of partial 2-trees (also
known as series-parallel graphs or K4-minor free graphs)
since Og ⊂ Tg ⊂ Pg .

Sopena [14] proved that χo(T3) = 7, and Pinlou and
Sopena [12] showed that χo(T4) = 7. In this paper, we
complete the characterization of the oriented chromatic
numbers of partial 2-trees with given girth:

Theorem 3.

(1) χo(Tg) = 6 for every girth g, 5 � g � 6;
(2) χo(Tg) = 5 for every girth g � 7.

This paper is organized as follows. We give in the next
section some preliminary results which are used in Sec-
tion 3 to prove Theorem 3. In Section 4, we show that the
proof techniques we use in this paper allow us to improve
the upper bound of the oriented chromatic number of pla-
nar graphs with girth at least 11.
Fig. 1. The two target tournaments.

2. Notation and preliminary results

In the remainder, we will use the following notation.
For a graph G and a vertex v , we denote by dG(v) the
degree of v . A vertex of degree k (resp., at least k) will
be called a k-vertex (resp., �k-vertex). We denote by δ(G)

(resp., �(G)) the minimum (resp., maximum) degree of the
graph G . If uv is an arc, u is a predecessor of v and v is a
successor of u. A vertex will be called a source if it has no
predecessors and a sink if it has no successors.

A k-path in a graph G is a path P = [u, v1, v2, . . . ,

vk−1, w] of length k (i.e., a path with k arcs). The ver-
tices u and w are the endpoints of P . Note that a 1-path
is an arc. A (k,d)-path is a k-path such that all internal
vertices vi have degree d.

The upper bounds of Theorem 3 will be obtained by
proving that the considered partial 2-trees admit a T -col-
oring, for some tournament T . We will use the tourna-
ments T5 and T6 depicted on Fig. 1, whose properties,
given below, have already been used in the literature to
bound oriented chromatic number and oriented chromatic
index of graphs.

The tournament T5 is a circular tournament and thus is
vertex-transitive.

Proposition 4. (See [4].) For every pair of (not necessarily dis-
tinct) vertices u, v ∈ V (T5), there exists an oriented 4-path
connecting u with v for any of the 16 possible orientations of
such an oriented 4-path.

Proposition 5. (See [12].) For every pair of (not necessarily
distinct) vertices u, v ∈ V (T6), there exists an oriented 3-path
connecting u with v for any of the 8 possible orientations of such
an oriented 3-path.

Our proof techniques to get upper bounds for the ori-
ented chromatic number are based on the well-known
method of reducible configurations. We suppose that there
exists a hypothetical minimal counterexample H to the
considered theorem and we prove that H does not contain
some configurations. Then, thanks to structural properties
of partial 2-trees with given girth, we show that H nec-
essarily contains one of the forbidden configurations, oth-
erwise H would not be a partial 2-tree. This contradiction
allow us to conclude.

In the remainder of this section, we state a structural
property of partial 2-trees due to Lih et al. [7] and gener-
alize it to partial 2-trees with given girth.
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For a given undirected graph G and a vertex v ∈ V (G),
we denote:

DG(v) = ∣∣{u ∈ V (G), d(u) � 3, such that

either uv ∈ A(G)

or ∃w ∈ V (G), dG(w) = 2, uw, w v ∈ E(G)
}∣∣.

Lih, Wang and Zhu [7] proved the following structural
lemma for partial 2-trees:

Lemma 6. (See [7].) Let G be a partial 2-tree such that δ(G) � 2.
Then, one the following holds:

(1) there exists a (3,2)-path (i.e., two adjacent 2-vertices);
(2) there exists a �3-vertex v such that DG(v) � 2.

We generalize the previous lemma to partial 2-trees
with given girth. For a given undirected graph G with girth
at least g and a vertex v ∈ V (G), we denote:

SG
g (v) = {

u ∈ V (G), d(u) � 3, such that either

∃ a unique (k,2)-path linking u and v , k � 1,

or ∃ at least one (�g/2	,2)-path linking u and v
}

We then denote DG
g (v) = |SG

g (v)|. Note that DG
3 (v) =

DG(v) for every v ∈ V (G).

Lemma 7. Let G be a partial 2-tree with girth g such that
δ(G) � 2. Then, one the following holds:

(1) there exists a (�g/2	 + 1,2)-path;
(2) there exists a �3-vertex v such that DG

g (v) � 2.

Proof. Let H ∈ Tg with δ(H) � 2 such that it contains
no (�g/2	 + 1,2)-path. Note that in this case H is not
a cycle and thus contains �3-vertices. Then, consider the
graph H ′ obtained from H by removing all the 2-vertices
and adding an arc between every pair of the remaining
vertices which were linked by at least one (k,2)-path in H ,
for some k. Since H contains �3-vertices, H ′ is not re-
duced to a unique vertex.

Let v be any vertex of H ′ and let NH ′ (v) be the set
of v ’s neighbors in H ′ . By construction, there exists, for
every w ∈ NH ′(v), at least one (k,2)-path linking v and
w in H for some k � 1. In addition, if there exists more
than one (k,2)-path linking v and w in H , then at most
one of these paths is a (�g/2�,2)-path and the others are
(�g/2	,2)-paths since H has girth g . This shows that for
every v ∈ H ′ , we have dH ′ (v) = D H

g (v).
Since the class of partial 2-trees is closed under edge-

contraction, H ′ is clearly a partial 2-tree. Since partial
2-trees are 2-degenerate, H ′ contains a vertex v of degree
at most 2, and therefore D H

g (v) � 2 (note that dH (v) � 3
since this vertex remains in H ′). That completes the
proof. �

Corollary 8. Every partial 2-tree with girth g � 3 contains ei-
ther a 1-vertex or a (�g/2	,2)-path.
Proof. Let H ∈ Tg with δ(H) � 2 having no (�g/2	 + 1,2)-
path. By Lemma 7, H contains a �3-vertex v such that
D H

g (v) � 2. Therefore, by definition of D H
g , this means that

v has degree at least 3 in H , but degree at most 2 in
H ′ (H ′ is the graph obtained from H by removing all
the 2-vertices and adding an arc between every pair of
the remaining vertices which were linked by at least one
(k,2)-path in H , for some k). That implies that H contains
a vertex w such that v and w are the endpoints of at
least two (k,2)-paths, and at least one of them must be
a (�g/2	,2)-path. �

3. The oriented chromatic number of partial 2-trees

In this section, we prove Theorem 3.

Proof of Theorem 3(1). We first prove that χo(Tg) � 6 for
every girth g , 5 � g � 6. Note that it is sufficient to con-
sider the case g = 5; we therefore prove that every partial
2-tree with girth at least 5 admits a homomorphism to
the tournament T6 depicted in Fig. 1(b). Let H be a mini-
mal (with respect to the number of vertices) partial 2-tree
with girth at least 5 having no homomorphism to T6. We
show that H contains neither a 1-vertex nor a (3,2)-path.

(1) Suppose that H contains a 1-vertex u. Then, due to
the minimality of H , the partial 2-tree H ′ = H \ u has
girth at least 5, and thus admits a T6-coloring f . Since
every vertex of T6 has at least two successors and at
least two predecessors, f can be easily extended to H .

(2) Suppose now that H contains a (3,2)-path
[u, v1, v2, w]. Then, due to the minimality of H , the
partial 2-tree H ′ = H \{v1, v2} admits a T6-coloring f .
By Proposition 5, f can be extended to H .

By Corollary 8, H contains either a 1-vertex, or a (3,2)-
path. This leads us to a contradiction: H does not exist.

To complete this proof, we have to construct a partial
2-tree with girth 6 and oriented chromatic number 6. Let
us consider the graph Q depicted in Fig. 2(a) obtained
from two vertices x and y linked by the eight possible ori-
ented 3-paths. Then, consider G6 obtained from a circuit
[v1, v2, v3, v4, v5, v6, v7, v1] of length seven and fourteen
copies of the graph Q arranged as depicted on Fig. 2(b).
We can easily see that G6 is a partial 2-tree with girth 6.

Suppose first that χo(G6) � 4. Therefore, there ex-
ists a homomorphism f : G6 → T , where T is a tourna-
ment on 4 vertices. Since G6 contains a circuit of length
7 �≡ 0 (mod 3), T must contain a circuit of length 4.
There exist four nonisomorphic tournaments on four ver-
tices, but only one contains a circuit of length 4: the tour-
nament T4 depicted in Fig. 3. However, we can check that
Q �→ T4 since there does not exist a pair of colors u and v
in V (T4) which color the vertices x and y (i.e., such that
u and v are the endpoints of the eight possible oriented
3-paths in T4). Thus, G6 �→ T4.

Hence, χo(G6) � 5. Suppose that χo(G6) = 5. There ex-
ist twelve nonisomorphic tournaments on 5 vertices. We
will prove that none of these tournaments allows us to
color G6. We can first omit those containing a source or a
sink. The six remaining tournaments are depicted in Fig. 4.
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Fig. 2. Construction of an oriented partial 2-tree with girth 6 and oriented
chromatic number 6.

Fig. 3. The tournament T4.

A case study shows that every T -coloring f of Q ,
where T is one of the five tournaments in Figs. 4(a), 4(b),
4(c), 4(d), 4(e), implies that f (x) = f (y). Hence, this would
mean that f (v1) = f (u1) = f (v2) in G6, which is for-
bidden. It is then clear that if χo(G6) = 5, then G6 → T
where T is the tournament depicted in Fig. 4(f). A case
study shows that every T -coloring f of Q is such that
f (x) ∈ {1,2,5} and f (y) ∈ {1,2,5}. However, the circuit
[v1, v2, v3, v4, v5, v6, v7, v1] in G6 needs four colors, that
is a contradiction. Thus, the graph G6 has oriented chro-
matic number 6.

Proof of Theorem 3(2). We first prove that χo(Tg) � 6 for
every girth g � 7. Note that it is sufficient to consider the
case g = 7; we therefore prove that every partial 2-tree
with girth at least 7 admits a T5-coloring, where T5 is
the tournament depicted in Fig. 1(a). Let H be a minimal
(with respect to the number of vertices) partial 2-tree with
girth at least 7 having no homomorphism to T5. The proof
techniques are the same than those in the proof of Theo-
Fig. 4. The six nonisomorphic tournaments on five vertices without source
nor sink.

rem 3(1). By minimality and Proposition 4, we prove that
H contains neither a 1-vertex nor a (4,2)-path. We thus
get a contradiction thanks to Corollary 8.

To complete this proof, we have to construct, for all
girths g � 7, a partial 2-tree with girth g and oriented
chromatic number 5. Nešetřil et al. [9] constructed for ev-
ery g , g � 3, an oriented outerplanar graph with girth at
least g which has oriented chromatic number 5. The class
of outerplanar graphs is strictly included in the class of
partial 2-trees: that completes the proof. �

4. Concluding remarks

In this paper, we characterized the oriented chromatic
number of partial 2-trees for every girth g � 3. Note that
our results improve the previously known lower bounds
for the oriented chromatic number of planar graphs with
girths 5 and 6 (see Theorems 1(2) and 1(3)): χo(Pg) � 6
for every g ∈ [5,6]. Moreover, we show in the remain-
der that our proof techniques can be used to improve the
upper bound of the oriented chromatic number of planar
graphs with girth at least 11.
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Remind that Theorem 1 gives χo(P11) � 7. It is well
known that a planar graph with minimum degree 2 and
girth at least g = 5k + 1 necessarily contains a (k + 1,2)-
path [9]. Thus, a planar graph with girth at least 11 con-
tains a (3,2)-path (i.e., two adjacent 2-vertices). This al-
lows us to prove the following new upper bound:

Theorem 9. χo(P11) � 6.

The proof techniques are the same than those in the
proof of Theorem 3(1). Actually, we can prove that every
planar graph with girth at least 11 admits a homomor-
phism to the tournament T6 depicted in Fig. 1(b). To get
this result, we consider a minimal (with respect to the
number of vertices) planar graph with girth at least 11
having no homomorphism to T6. We can prove that this
graph contains neither a 1-vertex, nor a (3,2)-path thanks
to Proposition 5. This contradicts the above-mentioned re-
mark: such a planar graph does not exist.
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