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Abstract

A graph is 2-outerplanar if it has a planar embedding such that the subgraph obtained by
removing the vertices of the external face is outerplanar (i.e. with all its vertices on the
external face). An oriented k-coloring of an oriented graph G is a homomorphism from G
to an oriented graph H of order k. We prove that (1) every oriented triangle-free planar
graph has an oriented chromatic number at most 40, and (2) every oriented 2-outerplanar
graph has an oriented chromatic number at most 40, that improves the previous known
bounds of 47 and 67, respectively.
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1 Introduction

Oriented graphs are directed graphs without loops nor opposite arcs. For an ori-
ented graph G, we denote by V (G) its set of vertices and by A(G) its set of arcs.
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For two adjacent vertices u and v, we denote by −→uv the arc from u to v. The number
of vertices of G is the order of G.
Let G and H be two oriented graphs. A homomorphism from G to H is a

mapping ϕ : V (G) → V (H) that preserves the arcs:
−−−−−→
ϕ(x)ϕ(y) ∈ A(H) whenever

−→xy ∈ A(G).
An oriented k-coloring of G can be defined as a homomorphism from G to H,

where H is an oriented graph of order k. In other words, that corresponds to a
partition of the vertices of G into k stable sets S1,S2, . . . ,Sk such that all the arcs
between any pair of stable sets Si and S j have the same direction (either from Si

to S j, or from S j to Si). The existence of such a homomorphism from G to H
is denoted by G → H. The vertices of H are called colors, and we say that G is
H-colorable. The oriented chromatic number of an oriented graph G, denoted by
χo(G), is defined as the smallest order of an oriented graph H such that G → H.
Links between colorings and homomorphisms are presented in more details in the
monograph [7] by Hell and Nešetřil.
A graph is planar if it can be embedded on the plane without edge-crossing.

The girth of a graph is the length of a shortest cycle.
The notion of oriented coloring introduced by Courcelle [5] has been studied by

several authors in the last decade and the problem of bounding the oriented chro-
matic number has been investigated for various graph classes: outerplanar graphs
(with given minimum girth) [10,12], 2-outerplanar graphs [6], planar graphs (with
given minimum girth) [1,2,3,4,9,11], graphs with bounded maximum average de-
gree [3,4], and graphs with bounded treewidth [8,12,13].
Theorem 1.1 gives the current best known bounds on oriented chromatic num-

ber of planar graphs.

Theorem 1.1 [1,2,3,4,8,9,11] Let G be a planar graph.

(i) If G has girth at least 12, then χo(G)≤ 5 [3] (this bound is tight).

(ii) If G has girth at least 11, then χo(G)≤ 6 [8].

(iii) If G has girth at least 7, then χo(G)≤ 7 [1].

(iv) If G has girth at least 6, then χo(G)≤ 11 [4].

(v) If G has girth at least 5, then χo(G)≤ 16 [9].

(vi) If G has girth at least 4, then χo(G)≤ 47 [2].

(vii) If G has no girth restriction, then χo(G)≤ 80 [11].

A graph is 2-outerplanar if it has a planar embedding such that the subgraph
obtained by removing the vertices of the external face is outerplanar (i.e. with all
its vertices on the external face).
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In 2007, Esperet and Ochem [6] studied the oriented chromatic number of 2-
outerplanar graphs and they proved the following:

Theorem 1.2 [6] Let G be a 2-outerplanar graph. Then χo(G)≤ 67.

One way to bound the oriented chromatic number of a graph family F is to find
a universal target graph H such that, for every graph G ∈F , we have G→H. Such
a result can be obtained if the target graph H has “interesting” structural properties
that can be used to prove the existence of the homomorphism; thus an important
part of the task is to construct such a target graph. In this paper, we first describe the
construction of the graph T40 in Section 2, an oriented graph on 40 vertices which
has very useful properties for oriented coloring of planar graphs.
These structural properties of T40 allow us to prove that every oriented triangle-

free planar graph admits a homomorphism to T40; this gives the following theorem,
which improves Theorem 1.1(vi).

Theorem 1.3 Let G be a triangle-free planar graph. Then χo(G)≤ 40.

We also show that every oriented 2-outerplanar graph admits a homomorphism
to T40; this allows us to improves Theorem 1.2.

Theorem 1.4 Let G be a 2-outerplanar graph. Then χo(G)≤ 40.

In the remainder of this paper, we use the following notions. The set of vertices
(resp. arcs, faces) of a graph G is denoted by V (G) (resp. A(G), F(G)). For a
vertex v of a graph G, we denote by dG(v) its degree. A vertex of degree k (resp. at
least k, at most k) is called a k-vertex (resp. ≥k-vertex, ≤k-vertex). If a vertex u is
adjacent to a k-vertex v, then v is a k-neighbor of u. A path of length k (i.e. formed
by k edges) is called a k-path. The length of a face f of a graph G is denoted by
dG( f ). If dG( f ) = k (resp. dG( f )≤ k, dG( f )≥ k), then f is called a k-face (resp.
≤k-face, ≥k-face).
The paper is organised as follows. The next section is devoted to the target

graph T40. We prove Theorem 1.3 in Section 3. Due to lack of space, we do no give
the proof of Theorem 1.4 (the proof technique of this theorem is similar to that of
Theorem 1.3).

2 The Tromp graph T40

Tromp [14] proposed the following construction. Let G be an oriented graph and
G′ be an isomorphic copy of G. The Tromp graph Tr(G) has 2|V (G)|+2 vertices
and is defined as follows:
• V (Tr(G)) = V (G)∪V (G′)∪{∞,∞′}
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• ∀u ∈V (G) :−→u∞,
−→
∞u′,

−−→
u′∞′,

−→
∞′u ∈ A(Tr(G))

• ∀u,v ∈V (G),−→uv ∈ A(G) :−→uv,
−→
u′v′,

−→
vu′,

−→
v′u ∈ A(Tr(G))

In the remainder, we focus on the specific graph family obtained by applying
the Tromp’s construction to Paley tournaments. For a prime power p≡ 3 (mod 4),
the Paley tournament QRp is defined as the oriented graph whose vertices are the
integers modulo p and such that −→uv is an arc if and only if v− u is a non-zero
quadratic residue of p. For instance, the Paley tournament QR19 has vertex set
V (QR19) = {0,1, . . . ,18} and −→uv ∈ A(QR19) whenever v−u≡ r (mod 19) for r ∈
{1,4,5,6,7,9,11,16,17}. Let T40 = Tr(QR19) be the Tromp graph on 40 vertices
obtained from QR19.

3 Proof of Theorem 1.3

Let us define the partial order 
. Let n3(G) be the number of ≥3-vertices in G.
For any two graphs G1 and G2, we have G1 ≺ G2 if and only if at least one of the
following conditions hold:
• |V (G1)|< |V (G2)| and n3(G1)≤ n3(G2).
• n3(G1) < n3(G2).

Note that the partial order 
 is well-defined and is a partial linear extension of the
induced subgraph poset.
In the following, H is an hypothetical minimal counterexample to Theorem 1.3

according to ≺, i.e a triangle-fre planar graph (given with its embedding in the
plane) which does not admit a homomorphism to T40. A weak 7-vertex u in H is
a 7-vertex adjacent to four 2-vertices v1, . . . ,v4 and three ≥3-vertices w1,w2,w3 in
such a way that the sequence of neighbors of v appear as v1,w1,v2,w2,v3,w3,v4
(clockwise or counterclockwise).

Lemma 3.1 The graph H does not contain the following configurations:

(C1) a ≤1-vertex;

(C2) a k-vertex adjacent to k 2-vertices for 2≤ k ≤ 39;
(C3) a k-vertex adjacent to (k−1) 2-vertices for 2≤ k ≤ 19;
(C4) a k-vertex adjacent to (k−2) 2-vertices for 3≤ k ≤ 10;
(C5) a 3-vertex;

(C6) a k-vertex adjacent to (k−3) 2-vertices for 3≤ k ≤ 6;
(C7) two vertices u and v linked by three distinct 2-paths, two of which have inter-

nal vertex of degree 2;
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(C8) two vertices u and v linked by two distinct 2-paths, both paths having a 2-
vertex as internal vertex;

(C9) a 4-face wxyz such that x is 2-vertex, w and y are weak 7-vertices, and z is a
k-vertex adjacent to (k−3) 2-vertices for 3≤ k ≤ 8;

(C10) a 4-face wxyz such that x is 2-vertex, w and y are weak 7-vertices, and z is a
k-vertex adjacent to (k−4) 2-vertices for 4≤ k ≤ 7;

To complete the proof of Theorem 1.3, we use a discharging procedure. We
define the weight function ω by ω(x) = d(x)−4 for every x ∈V (H)∪F(H). Since
H is a planar graph, we have by Euler formula (|V (H)|− |A(H)|+ |F(H)|= 2):

∑
v∈V (H)

ω(v)+ ∑
f∈F(H)

ω( f ) = ∑
v∈V (H)

(d(v)−4)+ ∑
f∈F(H)

(d( f )−4) =−8< 0.

Let us define the discharging rules (R1), (R2), and (R3).

(R1) Each ≥4-vertex gives 1 to each its 2-neighbors.
(R2) Each ≥5-face ...axb... such that a and b are 2-vertices gives 1 (resp. 12) to x if

x is a weak 7-vertex (resp. is not a weak 7-vertex).
(R3) Each ≥5-face f = ...awxyb..., such that a,b,x are 2-vertices and w,y are weak

7-vertices, either receives 12 from the vertex z if wxyz is a 4-face, or receives
1 from the ≥5-face f ′ = ...cwxyd... if c,d are ≥4-vertices.

We redistribute weights accordingly to the previous three discharging rules.
Once the discharging is finished, a new weight function ω∗ is produced. However,
the total sum of weights is fixed by the discharging rules. Nevertheless, we can
show that ω∗(v) ≥ 0 for every x ∈ V (H)∪F(H) by means of Lemma 3.1. This
leads to the following obvious contradiction:

0≤ ∑
v∈V (H)

ω∗(v)+ ∑
f∈F(H)

ω∗( f ) = ∑
v∈V (H)

ω(v)+ ∑
f∈F(H)

ω( f ) < 0.

Therefore, no such counterexample H exists.
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