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Abstract A graph is planar if it can be embedded on the plane without edge-cross-
ings. A graph is 2-outerplanar if it has a planar embedding such that the subgraph
obtained by removing the vertices of the external face is outerplanar (i.e. with all
its vertices on the external face). An oriented k-coloring of an oriented graph G is
a homomorphism from G to an oriented graph H of order k. We prove that every
oriented triangle-free planar graph has an oriented chromatic number at most 40, that
improves the previous known bound of 47 [Borodin, O. V. and Ivanova, A. O., An ori-
ented colouring of planar graphs with girth at least 4, Sib. Electron. Math. Reports,
vol. 2, 239–249, 2005]. We also prove that every oriented 2-outerplanar graph has an
oriented chromatic number at most 40, that improves the previous known bound of
67 [Esperet, L. and Ochem, P. Oriented colouring of 2-outerplanar graphs, Inform.
Process. Lett., vol. 101(5), 215–219, 2007].
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1 Introduction

Oriented graphs are directed graphs with neither loops nor opposite arcs. For an ori-
ented graph G, we denote by V (G) its set of vertices and by A(G) its set of arcs. For
two adjacent vertices u and v, we denote by −→uv the arc from u to v or simply u ∼ v

whenever its orientation is not relevant (therefore, u ∼ v = −→uv or u ∼ v = −→
vu). The

number of vertices of G is the order of G.
Let G and H be two oriented graphs. A homomorphism from G to H is a mapping

ϕ : V (G) → V (H) that preserves the arcs:
−−−−−→
ϕ(x)ϕ(y) ∈ A(H) whenever −→xy ∈ A(G).

An oriented k-coloring of G can be defined as a homomorphism from G to H ,
where H is an oriented graph of order k. In other words, that corresponds to a partition
of the vertices of G into k stable sets S1, S2, . . . , Sk such that all the arcs between
any pair of stable sets Si and S j have the same direction (either from Si to S j , or
from S j to Si ). The existence of such a homomorphism from G to H is denoted by
G → H . The vertices of H are called colors, and we say that G is H -colorable. The
oriented chromatic number of an oriented graph G, denoted by χo(G), is defined as
the smallest order of an oriented graph H such that G → H . For a graph family F ,
the oriented chromatic number χo(F) of F is defined as the maximum of the oriented
chromatic numbers taken over all members of F (i.e. χo(F) = k iff every G ∈ F has
χo(G) ≤ k, and there exists H ∈ F such that χo(H) = k).

Links between colorings and homomorphisms are presented in more details in the
monograph [8] by Hell and Nešetřil.

A graph is planar if it can be embedded on the plane without edge-crossings. The
girth of a graph is the length of a shortest cycle.

The notion of oriented coloring introduced by Courcelle [6] has been studied by
several authors in the last decade and the problem of bounding the oriented chromatic
number has been investigated for various graph classes: outerplanar graphs (with given
minimum girth) [15,17], 2-outerplanar graphs [7], planar graphs (with given minimum
girth) [2–5,12,14,16], graphs with bounded maximum average degree [4,5], graphs
with bounded degree [9], graphs with bounded treewidth [13,17,18], and graph sub-
divisions [20].

For planar graphs in particular, bounding their oriented chromatic number is a very
hard question. In 1994, Courcelle [6] proved that every planar graph admits an ori-
ented 363-coloring by means of monadic second order logic. This bound was very
quickly improved by Raspaud and Sopena [16] who have proved that every planar
graph admits an oriented 80-coloring using Borodin’s theorem stating that every pla-
nar graph is acyclically 5-colorable [1]. Since then, no new improvement has been
found. However, everyone agrees to say that this bound is far from the optimal one.
Nevertheless, nobody has dared to make any conjecture. In the mean time, Sopena [19]
proved that there exist planar graphs with oriented chromatic number 16 in 2002; five
years later, Marshall [10] improved this lower bound to 17 and very recently to 18 [11].
Thus, the oriented chromatic number of planar graphs lies between 18 and 80 and any
improvement of these bounds seems, at least up to now, to be particularly challenging.

Therefore, several authors decided to bound the oriented chromatic number of
sparse planar graphs, say planar graphs with given minimum girth.
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Theorem 1 gives the current best known lower and upper bounds on oriented chro-
matic number of planar graphs due to Borodin, Ivanova, Kostochka, Marshall, Nešetřil,
Ochem, Pinlou, Raspaud, and Sopena [2–5,11–14,16]:

Theorem 1 (Borodin, Ivanova, Kostochka, Marshall, Nesětřil, Ochem, Pinlou,
Raspaud, Sopena [2–5,11–14,16])

Let Pg be the family of all planar graphs with girth at least g.

1. χo(P12) = 5 [4].
2. χo(P11) ≤ 6 [13].
3. χo(P7) ≤ 7 [2].
4. χo(P6) ≤ 11 [5].
5. 6 ≤ χo(P5) ≤ 16 [14].
6. 11 ≤ χo(P4) ≤ 47 [3,12].
7. 18 ≤ χo(P3) ≤ 80 [11,16].

One way to upper bound the oriented chromatic number of a graph family F is to
find a universal target graph H such that, for every graph G ∈ F , we have G → H .
Such a result can be obtained if the target graph H has “interesting” structural proper-
ties that can be used to prove the existence of the homomorphism; thus an important
part of the task is to construct such a target graph.

In this paper, we first describe the construction of the graph T40 in Section 2, an
oriented graph on 40 vertices which has very useful properties for oriented coloring of
planar graphs. These structural properties of T40 allow us to prove that every oriented
triangle-free planar graph admits a homomorphism to T40; this gives the following
theorem, which improves the previous known upper bound of 47 due to Borodin and
Ivanova [3] (see Theorem 1(6)).

Theorem 2 Let P4 be the family of triangle-free planar graphs. Then χo(P4) ≤ 40.

A graph is 2-outerplanar if it has a planar embedding such that the subgraph
obtained by removing the vertices of the external face is outerplanar (i.e. with all
its vertices on the external face).

In 2007, Esperet and Ochem [7] studied the structural properties of 2-outerplanar
graphs. By means of these properties, they proved the following:

Theorem 3 (Esperet, Ochem [7]) Let G be a 2-outerplanar graph. Thenχo(G) ≤ 67.

Concerning the lower bound, we know that there exists a 2-outerplanar graph with
oriented chromatic number 15. This graph is obtained as follows: let G1 be the graph
with one vertex and no arcs; Gi is obtained from two copies of Gi−1 plus a new vertex
v by adding all the arcs from the vertices of the first copy towards v and all the arcs
from v towards the vertices of the second copy. The graph G4 is a 2-outerplanar graph
and has oriented chromatic number 15.

The oriented graph T40, that we have constructed to bound the oriented chromatic
number of triangle-free planar graphs, has also suitable properties to bound the ori-
ented chromatic number of 2-outerplanar graphs, leading us to an improvement of
Theorem 3:
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Theorem 4 Let G be a 2-outerplanar graph. Then χo(G) ≤ 40.

In the remainder of this paper, we use the following notions. For a vertex v of a
graph G, we denote by d−

G (v) its indegree, by d+
G (v) its outdegree, and by dG(v) its

degree (subscripts are omitted when the considered graph is clearly identified from the
context). We denote by N+

G (v) the set of outgoing neighbors of v, by N−
G (v) the set of

incoming neighbors of v and by NG(v) = N+
G (v) ∪ N−

G (v) the set of neighbors of v.
A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. ≥k-vertex,
≤k-vertex). If a vertex u is adjacent to a k-vertex (resp. ≥k-vertex, ≤k-vertex) v, then v
is a k-neighbor (resp. ≥k-neighbor, ≤k-neighbor) of u. A path of length k (i.e. formed
by k edges) is called a k-path. The length of a face f of a graph G is denoted by
dG( f ). If dG( f ) = k (resp. dG( f ) ≤ k, dG( f ) ≥ k), then f is called a k-face (resp.
≤k-face, ≥k-face). If two graphs G and H are isomorphic, we denote this by G ∼= H .
Given a planar graph G with its embedding in the plane and a vertex v of G, we say
that a sequence (u1, u2, . . . , uk) of neighbors of v are consecutive if u1, u2, . . . , uk

appear around v consecutively (clockwise or counterclockwise) in G.
The paper is organised as follows. The next section is devoted to the target graph

T40 and some of its properties. We prove Theorem 2 in Sect. 3 and Theorem 4 in
Sect. 4.

2 The Tromp graph T40

In this section, we describe the construction of the target graph T40 used to prove
Theorems 2 and 4 and give some useful properties.

Tromp (Unpublished manuscript) proposed the following construction. Let G be
an oriented graph and G ′ be an isomorphic copy of G. The Tromp graph T r(G) has
2|V (G)| + 2 vertices and is defined as follows:

– V (T r(G)) = V (G) ∪ V (G ′) ∪ {∞,∞′}
– ∀u ∈ V (G) : −→u∞,

−−→∞u′,
−−→
u′∞′,

−−→∞′u ∈ A(T r(G))

– ∀u, v ∈ V (G),−→uv ∈ A(G) : −→uv,−→u′v′,
−→
vu′,

−→
v′u ∈ A(T r(G))

Figure 1 illustrates the construction of T r(G). We can observe that, for every
u ∈ V (G) ∪ {∞}, there is no arc between u and u′. Such pairs of vertices will
be called twin vertices, and we denote by t (u) the twin vertex of u. Remark that
t (t (u)) = u. This notion can be extended to sets in a standard way: for a given
W ⊆ V (G),W = {v1, v2, . . . , vk}, then t (W ) = {t (v1), t (v2), . . . , t (vk)}.

By construction, the graph T r(G) satisfies the following property:

∀u ∈ T r(G) : N+(u) = N−(t (u)) and N−(u) = N+(t (u))

In the remainder, we focus on the specific graph family obtained by applying the
Tromp’s construction to Paley tournaments. For a prime power p ≡ 3 (mod 4),
the Paley tournament Q Rp is defined as the oriented graph whose vertices are the
integers modulo p and such that −→uv is an arc if and only if v − u is a non-zero
quadratic residue of p. For instance, the Paley tournament Q R19 has vertex set
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Fig. 1 The Tromp graph T r(G)

V (Q R19) = {0, 1, . . . , 18} and −→uv ∈ A(Q R19) whenever v − u ≡ r (mod 19) for
r ∈ {1, 4, 5, 6, 7, 9, 11, 16, 17}. Note that the upper bounds of Theorems 1(3), 1(4),
and 1(6) have been obtained by proving that all the graphs of the considered families
admit a homomorphism to the Paley tournaments Q R7, Q R11, and Q R47 respectively.
Moreover, the upper bound of Theorem 1(5) has been obtained by proving that all the
graphs of the considered family admit a homomorphism to the Tromp graph T r(Q R7).

Let T40 = T r(Q R19) be the Tromp graph on 40 vertices obtained from Q R19. In the
remainder of this paper, the vertex set of T40 is V (T40) = {0, 1, . . . , 18,∞, 0′, 1′, . . . ,
18′,∞′} where {0, 1, . . . , 18} is the vertex set of the first copy of Q R19 and {0′, 1′,
. . . , 18′} is the vertex set of the second copy of Q R19; thus, for every u ∈ {0, 1, . . . ,
18,∞}, we have t (u) = u′. In addition, for every u ∈ V (T40), we have by construc-
tion |N+

T40
(u)| = |N−

T40
(u)| = 19. The graph T40 has remarkable symmetry and some

useful properties given below.

Proposition 1 (Marshall [10]) For any Q Rp, the graph T r(Q Rp) is such that:

∀u ∈ V (T r(Q Rp)) : N+(u) ∼= Q Rp and N−(u) ∼= Q Rp

Proposition 2 (Marshall [10]) For any Q Rp, if {a1, a2, a3} and {b1, b2, b3} span tri-
angles t1 and t2 respectively in T r(Q Rp) and the mapψ taking ai to bi (1 ≤ i ≤ 3) is
an isomorphism t1 → t2, then ψ can be extended to an automorphism of T r(Q Rp).

It is then clear that T r(Q Rp) is vertex-transitive and arc-transitive.
For an oriented graph G and a vertex v, pushing v means reversing the orientation

of every arc incident with v.

Proposition 3 (Push Property) Let G be an oriented graph such that G → T r(Q Rp).
Then, for any vertex v of G, the graph G ′ obtained from G by pushing v admits a
homomorphism to T r(Q Rp).

Proof Let ϕ be a T r(Q Rp)-coloring of G. For every w ∈ V (T r(Q Rp)), we have
N+

T r(Q Rp)
(w) = N−

T r(Q Rp)
(t (w)) and N−

T r(Q Rp)
(w) = N+

T r(Q Rp)
(t (w)). Therefore,

the mapping ϕ′ : V (G ′) → V (T r(Q Rp)) defined by ϕ′(u) = ϕ(u) for all u ∈
V (G ′) \ {v} and ϕ′(v) = t (ϕ(v)) is clearly a T r(Q Rp)-coloring of G ′.
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An orientation n-vector is a sequence α = (α1, α2, . . . , αn) ∈ {0, 1}n of n ele-
ments. Let S = (v1, v2, . . . , vn) be a sequence of n (not necessarily distinct) vertices
of T40. The vertex u is said to be an α-successor of S if for any i, 1 ≤ i ≤ n, we
have −→uvi ∈ A(T40) whenever αi = 1 and −→

vi u ∈ A(T40) otherwise. For instance, the
vertex 3′ of T40 is a (1, 1, 0, 1, 1, 0)-successor of (1, 2, 6′, 1,∞′, 2′) since the arcs−→
3′1,

−→
3′2,

−→
6′3′,

−−→
3′∞′, and

−→
2′3′ belong to A(T40).

If, for a sequence S = (v1, v2, . . . , vn) of n vertices of T40 and an orientation n-
vector α = (α1, α2, . . . , αn), there exist i 
= j such that vi = v j and αi 
= α j , then
there does not exist any α-successor of S; indeed, T40 does not contain opposite arcs.
In addition, if there exist i 
= j such that vi = t (v j ) and αi = α j , then there does
not exist any α-successor of S; indeed, for any pair of vertices x and y of T40 with
x = t (y), we have N+

T40
(x) ∩ N+

T40
(y) = ∅ and N−

T40
(x) ∩ N−

T40
(y) = ∅. A sequence

S = (v1, v2, . . . , vn) of n vertices of T40 is said to be compatible with an orientation
n-vector α = (α1, α2, . . . , αn) if and only if for any i 
= j , we have αi 
= α j whenever
vi = t (v j ), and αi = α j whenever vi = v j . Note that if the n vertices of S induce an
n-clique subgraph of T40 (i.e. v1, v2, . . . , vn are pairwise distinct and induce a com-
plete graph), then S is compatible with any orientation n-vector since a vertex u and
its twin t (u) cannot belong together to the same clique.

In the remainder, we say that T40 has Property Pn,k if, for every sequence S of
n vertices of T40 that form an n-clique and any orientation n-vector α, there exist k
α-successors of S.

Proposition 4 If, for a fixed α = (α1, α2, . . . , αn), every n-clique S of T40 admits k
α-successors, then there exist k α′-successors of S for every α′ = {0, 1}n, that is T40
has property Pn,k .

Proof Assume that every n-clique admits k α-successors. Let S = (u1, u2, . . . , un)

be a n-clique of T40 and α′ = (α′
1, α

′
2, . . . , α

′
n) be an orientation n-vector. Then let

S′ = (v1, v2, . . . , vn) defined such that vi = ui if α′
i = αi and vi = t (ui ) otherwise.

Due to the structure of T40 (i.e. if x ∼ y belongs to A(T40), then t (x) ∼ y, x ∼ t (y)
and t (x) ∼ t (y) belongs to A(T40)), S′ is an n-clique of T40. By hypothesis, S′ admits

kα-successors w1, w2, . . . , wk . Since
−−−→
yt (x) ∈ A(T40) if −→xy ∈ A(T40), we have wi ’s

are kα′-successor of S.

Proposition 5 The graph T40 has Properties P1,19, P2,9, P3,4, and P4,1.

Proof By Proposition 1, we have |N+(u)| = |N−(u)| = 19 for every vertex u of T40;
therefore T40 has Property P1,19.

It is obvious that Q R19 has properties P1,9 (for every vertex u of Q R19, we have
|N+(u)| = |N−(u)| = 9). Borodin et al. [5] proved that Q R19 has properties P2,4 and
P3,1. We will show in the remainder of this proof that if Q R19 has property Pn−1,k ,
then T40 has property Pn,k ; that will complete the proof.

Suppose that Q R19 has property Pn−1,k and let α = (α1, α2, . . . , αn) be a given
orientation n-vector. Let S = (u1, u2, . . . , un−1, w) be a induced n-clique of T40. If
αn = 0, we define S′ = (v1, v2, . . . , vn−1, w) such that vi = ui if −→uiw and vi = t (ui )

if −→
wui . Hence, S′ is an n-clique of T40 such that

⋃
i vi ⊆ N−(w). By Proposition 1,

N−(w) = K19 ∼= Q R19, and therefore the (n − 1)-clique S′′ = (v1, v2, . . . , vn−1)
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belongs to K19. Then by Property Pn−1,k of Q R19, there exist k (α′
1, α

′
2, . . . , α

′
n−1)-

successors x1, x2, . . . , xk of S′′ in K19, with α′
i = αi (resp. α′

i = 1 − αi ) if ui =
vi (resp. ui = t (vi )). The xi ’s are clearly in-neighbors of w and hence, they are
(α′

1, α
′
2, . . . , α

′
n−1, αn)-successors S′, and thus there exist k α-successors of S. Pro-

portion 4 allows us to conclude.
The case αn = 1 would be treated similarly: we would have chosen S′ =

(v1, v2, . . . , vn−1, w) is such a way that
⋃

i vi ⊆ N+(w).

3 Proof of Theorem 2

In this section, we prove Theorem 2, that is, every oriented triangle-free planar graph
G admits a homomorphism to T40.

Recall that Borodin and Ivanova [3] proved that every oriented triangle-free planar
graph G admits a homomorphism to Q R47. This proof was only published in Russian.
Our proof is highly inspired by this paper. Indeed, our list of forbidden configurations
is designed to fit with Borodin and Ivanova’s discharging procedure [3] up to a slight
modification in Rule (R3).

Let us define the partial order �. Let n3(G) be the number of ≥3-vertices in G.
For any two graphs G1 and G2, we have G1 ≺ G2 if and only if at least one of the
following conditions hold:

– |V (G1)| < |V (G2)| and n3(G1) ≤ n3(G2).
– n3(G1) < n3(G2).

Note that the partial order � is well-defined and is a partial linear extension of the
induced subgraph poset.

Let H be a hypothetical minimal counterexample to Theorem 2 according to ≺.
We first prove that H does not contain a set of ten configurations listed in Lemma 1.
Then, using a discharging procedure, we show that each oriented triangle-free planar
graph contains at least one of these configurations of Lemma 1, contradicting the fact
that H is a triangle-free planar graph.

3.1 Structural Properties of H

In the following, H is a triangle-free planar graph given with its embedding in the
plane. A weak 7-vertex u in H is a 7-vertex adjacent to four 2-vertices v1, . . . , v4 and
three ≥3-verticesw1, w2, w3 in such a way that the sequence of neighbors of v appear
as v1, w1, v2, w2, v3, w3, v4 (clockwise or counterclockwise).

Lemma 1 The graph H does not contain the following configurations:

(C1) a ≤1-vertex;
(C2) a k-vertex adjacent to k 2-vertices for 2 ≤ k ≤ 39;
(C3) a k-vertex adjacent to (k − 1) 2-vertices for 2 ≤ k ≤ 19;
(C4) a k-vertex adjacent to (k − 2) 2-vertices for 3 ≤ k ≤ 10;
(C5) a 3-vertex;
(C6) a k-vertex adjacent to (k − 3) 2-vertices for 3 ≤ k ≤ 6;
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(a) (b) (c) (d) (e)

Fig. 2 Configurations C2–C6

(a) (b) (c)

Fig. 3 Configurations C7–C9

(C7) two vertices u and v linked by two distinct 2-paths, both paths having a 2-vertex
as internal vertex;

(C8) a 4-face wxyz such that x is 2-vertex, w and y are weak 7-vertices, and z is a
k-vertex adjacent to (k − 3) 2-vertices for 3 ≤ k ≤ 8;

(C9) a 4-face wxyz such that x is 2-vertex, w and y are weak 7-vertices, and z is a
k-vertex adjacent to (k − 4) 2-vertices for 4 ≤ k ≤ 7;

The drawing conventions for a configuration C contained in a graph G are the
following. If u and v are two vertices of C , then they are adjacent in G if and only
if they are adjacent in C . Moreover, the neighbors of a white vertex in G are exactly
its neighbors in C , whereas a black vertex may have neighbors outside of C . Two or
more black vertices in C may coincide in a single vertex in G, provided they do not
share a common white neighbor. Finally, an edge will represent an arc with any of its
two possible orientations. Configurations (C2)− (C9) are depicted in Figs. 2 and 3.

Let G be an oriented graph, v be a k-vertex with N (v) = {v1, v2, . . . , vk} and α be
an orientation k-vector such that αi = 0 whenever −→viv ∈ A(G) and αi = 1 otherwise.
Let ϕ be a T40-coloring of G \ {v} and S = (ϕ(v1), ϕ(v2), . . . , ϕ(vk)). Recall that
a necessary condition to have α-successors of S is that α must be compatible with
S, that is for any pair of vertices vi and v j , ϕ(vi ) 
= ϕ(v j ) whenever αi 
= α j and
ϕ(vi ) 
= t (ϕ(v j )) whenever αi = α j . Hence, every vertex v j forbids one color for
each vertex vi , i ∈ [1, k], i 
= j . We define f ϕvi (v j ) to be the forbidden color for vi

by ϕ(v j ) (i.e. f ϕvi (v j ) = ϕ(v j ) whenever αi 
= α j and f ϕvi (v j ) = t (ϕ(v j )) whenever
αi = α j ). Therefore, α is compatible with S if and only if we have ϕ(vi ) 
= f ϕvi (v j )

for every pair i, j, 1 ≤ i < j ≤ k. Note that if ϕ(vi ) 
= f ϕvi (v j ), then we necessarily
have ϕ(v j ) 
= f ϕv j (vi ).

For each configuration, we suppose that H contains it and we consider a trian-
gle-free reduction H ′ such that H ′ ≺ H ; therefore, by minimality of H,′ admits a
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Fig. 4 Configuration C7′

T40-coloring ϕ. We will then show that we can choose ϕ so that it can be extended to
H by Proposition 5, contradicting the fact that H is a counterexample.

In the remainder, if H contains a configuration, then H∗ will denote the graph
obtained from H by removing all the white vertices from this configuration.

Proof of Configuration (C1). Trivial. ��
Proof of Configuration (C2). Suppose that H contains the configuration depicted

in Fig. 2a and let ϕ be a T40-coloring of H∗. Let F = { f ϕv (v′
1), . . . , f ϕv (v′

k)} be the
set of forbidden colors for v. Any T40-coloring of H∗ can be extended to H since
|F | ≤ 39. ��

Proof of Configuration (C3). Suppose that H contains the configuration depicted
in Fig. 2b and let ϕ be a T40-coloring of H∗. Let F = { f ϕv (v′

1), . . . , f ϕv (v′
k)} be

the set of forbidden colors for v. By Property P1,19, ϕ can be extended to H since
|F | ≤ 18. ��

Proof of Configuration (C4). Suppose that H contains the configuration depicted
in Fig. 2c and let ϕ be a T40-coloring of H ′ = H \ {v3, . . . , vk}. Then, we clearly have
ϕ(v1) 
= f ϕv1(v2) since v is colored in H ′. Therefore, by Property P2,9, there exists a

T40-coloring ϕ′ of H ′ such that ϕ′(v) /∈ { f ϕ
′

v (v
′
3), . . . , f ϕ

′
v (v

′
k)}. The coloring ϕ′ can

be extended to H . ��
Proof of Configuration (C5). Suppose that H contains the configuration depicted

in Fig. 2d. Let H ′ be the graph obtained from H∗ by adding, for every 1 ≤ i < j ≤ 3,
a 2-path joining vi to v j with the same orientation as the path [vi , v, v j ] in H . Since
Configurations (C1)–(C4) are forbidden, we have dH (vi ) ≥ 3 for 1 ≤ i ≤ 3; we
thus have H ′ ≺ H since n3(H ′) = n3(H) − 1, and H ′ is clearly triangle-free. Any
T40-coloring ϕ of H ′ induces a coloring of H∗ such that ϕ(vi ) 
= f ϕvi (v j ) for any
i, j, 1 ≤ i < j ≤ 3. Then Property P3,4 allows us to extend ϕ to H . ��

Proof of Configuration (C6). Suppose that H contains the configuration depicted
in Fig. 2e. Let ϕ be a T40-coloring of H ′ = H \ {v4, . . . , vk}. Then, we clearly have
ϕ(vi ) 
= f ϕvi (v j ), for all 1 ≤ i ≤ j ≤ 3, since v is colored in H ′. Therefore, by Property

P3,4, there exists a T40-coloring ϕ′ of H ′ such that ϕ′(v) /∈ { f ϕ
′

v (v
′
4), . . . , f ϕ

′
v (v

′
k)}.��

Proof of Configuration (C7). Suppose first that H contains the configuration (C7′)
depicted in Fig. 4. Let H ′ be the graph obtained from H∗ by adding a 2-path uv′w
between u and w such that uv′w is directed if and only if uvw is not directed. We
have that H ′ ≺ H since |V (H ′)| = |V (H)| − 1 and n3(H ′) = n3(H). Due to the
orientations of the 2-paths uv′w and uvw, any T40-coloring ϕ of H ′ ensures that
ϕ(u) 
= ϕ(w) and ϕ(u) 
= t (ϕ(w)). The coloring ϕ can be extended to H .

Suppose that H contains the configuration depicted in Fig. 3a. Let H ′ be the graph
obtained from H∗ by adding an edge between u and w. We have that H ′ ≺ H since
|V (H ′)| = |V (H)|−2 and n3(H ′) = n3(H). Since Configuration (C7′) is forbidden,
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the vertices u and w are at distance at least 3 in H∗ and H ′ is therefore triangle-free.
Any T40-coloring ϕ of H ′ ensures that ϕ(u) 
= ϕ(w) and ϕ(u) 
= t (ϕ(w)). The
coloring ϕ can be extended to H . ��

Proof of Configurations (C8) and (C9). To prove that these two configurations are
forbidden in a minimal counterexample to Theorem 2, a computer check is needed.
Indeed, Properties P1,19, P2,9, P3,4 and P4,1 are not sufficient.

A computer check allows us to show that for any compatible color assignment on
the black vertices (i.e. any two black vertices at distance 2 in the configuration get
compatible colors) and any orientation of the arcs, the white vertices can be colored.
Our computer check runs in less than two days. Therefore, that shows that H does not
contain any of these two configurations. ��

3.2 Discharging Procedure

To complete the proof of Theorem 2, we use a discharging procedure. We define the
weight function ω by ω(x) = d(x) − 4 for every x ∈ V (H) ∪ F(H). Since H is a
plane graph, we have by Euler’s formula (|V (H)| − |A(H)| + |F(H)| = 2):

∑

v∈V (H)

ω(v)+
∑

f ∈F(H)

ω( f ) =
∑

v∈V (H)

(d(v)− 4)+
∑

f ∈F(H)

(d( f )− 4) = −8 < 0.

In what follows, we will define discharging rules (R1), (R2), and (R3) and redistribute
weights accordingly. Once the discharging is finished, a new weight function ω∗ is
produced. However, the total sum of weights is fixed by the discharging rules. Never-
theless, we can show that ω∗(v) ≥ 0 for every x ∈ V (H) ∪ F(H). This leads to the
following obvious contradiction:

0 ≤
∑

v∈V (H)

ω∗(v)+
∑

f ∈F(H)

ω∗( f ) =
∑

v∈V (H)

ω(v)+
∑

f ∈F(H)

ω( f ) < 0.

Therefore, no such counterexample H exists.
The discharging rules are defined as follows:

(R1) Each ≥4-vertex gives 1 to each of its 2-neighbors.
(R2) Each ≥5-face ...axb such that a and b are 2-vertices gives 1 (resp. 1

2 ) to x if x
is a weak 7-vertex (resp. is not a weak 7-vertex).

(R3) Each ≥5-face f = ...awxyb such that a, b, x are 2-vertices and w, y are weak
7-vertices either receives 1

2 from the vertex z if wxyz is a 4-face, or receives 1
from the ≥5-face f ′ = ...cwxyd if c, d are ≥4-vertices.

The discharging rules are illustrated in Fig. 5; white disks (resp. black disks, black
squares) are 2-vertices (resp. ≥4-vertices, weak 7-vertices).

3.2.1 For All Vertices v, ω∗(v) ≥ 0

In the following, d≥4(v) denotes the number of neighbors of v with degree at least 4.
In the same way, d2(v) denotes the number of neighbors of v with degree exactly 2.
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(a) (b) (c) (d) (e)

Fig. 5 Discharging rules

Then it is clear that, for every vertex v of H , we have d(v) = d≥4(v) + d2(v) since
H contains neither vertices of degree at most 1 by (C1), nor 3-vertices by (C5).

Let v be a k-vertex of H . Therefore, k = d≥4(v) + d2(v). Recall that the initial
charge of v is ω(v) = k − 4.

If k = 2, then v receives 2 × 1 by (R1); hence, ω∗(v) = ω(v)+ 2 = 0.
Clearly, in the remainder of this section, k ≥ 4.

– if d≥4(v) = 0, then d2(v) = k ≥ 40 by (C2). By (R1), v gives k × 1. By (C7),
v is incident with k ≥5-faces, and therefore v receives k × 1

2 by (R2). Hence,
ω∗(v) = ω(v)− k + k

2 ≥ 16.
– if d≥4(v) = 1, then d2(v) = k − 1 ≥ 19 by (C3). By (R1), v gives (k − 1) × 1.

By (C7), v is incident with (k − 2) ≥5-faces each of which gives 1
2 to v by (R2).

Moreover, v is adjacent to at most one weak 7-vertex and therefore (R3) does not
apply. Hence, ω∗(v) = ω(v)− (k − 1)+ k−2

2 ≥ 6.
– if d≥4(v) = 2, then d2(v) = k − 2 ≥ 9 by (C4). By (R1), v gives (k − 2) × 1.

By (C7), v is incident with (k − 4) ≥5-faces each of which gives 1
2 to v by (R2).

Moreover, by (R3), v gives at most 1
2 since v is adjacent to at most two weak

7-vertices. Hence, ω∗(v) = ω(v)− (k − 2)+ k−4
2 − 1

2 ≥ 1.
– if d≥4(v) = 3, then d2(v) = k − 3 ≥ 4 by (C6) and so k ≥ 7. In each subcase, by

(R1), v gives (k − 3)× 1.
� Suppose that the three ≥4-neighbors are consecutive. By (C7), v is incident

with (k − 4)≥5-faces of each of which gives 1
2 to v by (R2). Moreover, by

(R3), v gives at most 2 × 1
2 . If k ≤ 8, then d2(v) < 6 and by (C8), v gives

no charge. Hence, if k ≤ 8, ω∗(v) = ω(v) − (k − 3) + k−4
2 ≥ 1

2 ; if k ≥
9, ω∗(v) = ω(v)− (k − 3)+ k−4

2 − 2 · 1
2 ≥ 1

2 .
� Suppose that two ≥4-neighbors are consecutive. By (C7), v is incident with
(k − 5) ≥5-faces each of which gives 1

2 to v by (R2). Moreover, by (R3),
v gives at most 1

2 if and only if d2(v) ≥ 6, that implies k ≥ 9 by (C8).
Hence, if k ≤ 8, ω∗(v) = ω(v) − (k − 3) + k−5

2 ≥ 0; if k ≥ 9, ω∗(v) =
ω(v)− (k − 3)+ k−5

2 − 1
2 ≥ 1

2 .
� Suppose that none of the ≥4-neighbors are consecutive. By (C7), v is incident

with (k − 6) ≥5-faces each of which gives 1
2 to v by (R2) if d(v) ≥ 8, or
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give 1 to v by (R2) if d(v) = 7 (i.e. v is a weak 7-vertex). Moreover, (R3)
does not apply. Hence, if d(v) = 7, ω∗(v) = ω(v) − (k − 3) + 1 = 0; if
d(v) ≥ 8, ω∗(v) = ω(v)− (k − 3)+ k−6

2 ≥ 0.
– If d≥4(v) = 4, then d2(v) = k − 4. By (C1), v gives (k − 4)× 1.

Suppose that (R3) does not apply. Then, ω∗(v) ≥ ω(v) − (k − 4) = 0. Sup-
pose now that (R3) applies: it applies at most twice (otherwise there would be a
weak 7-vertex with three consecutive 2-neighbors). Moreover, by (C9), we have
d2(v) ≥ 4, that implies k ≥ 8.
� Suppose first that (R3) applies only once; then v gives 1

2 to the corresponding
4-face. Moreover, by (R2), v receives k−7

2 . Hence, ω∗(v) = ω(v)− (k − 4)+
k−7

2 − 1
2 ≥ 0.

� Suppose now that (R3) applies twice; then v gives 2 × 1
2 to the corresponding

4-faces. Moreover, by (R2), v receives k−6
2 . Hence, ω∗(v) = ω(v)− (k −4)+

k−6
2 − 2 × 1

2 ≥ 0.
– Suppose finally that d≥4(v) ≥ 5. By (C1), v gives (k − d≥4(v))× 1. Moreover, by

(R3), v gives at most 1
2 ×

⌊
d≥4(v)

2

⌋
. Hence, ω∗(v) ≥ ω(v)− (k − d≥4(v))− 1

2 ×
⌊

d≥4(v)

2

⌋
≥ 0.

Thus, for every v ∈ V (H), we have ω∗(v) ≥ 0.

3.2.2 For All Faces f, ω∗( f ) ≥ 0

Let f be a k-face of H . Since H is triangle-free, we have k ≥ 4. Recall that the initial
charge of f is ω( f ) = k − 4.

– If k = 4, then no rule applies. Hence, ω∗( f ) = ω( f ) = 0
– If k = 5, then f is incident with at most two 2-vertices by (C3).

� If f has no incident 2-vertices, then ω∗(v) ≥ ω( f ) = 1.
� If f is incident with one 2-vertex, then only (R3) may apply and henceω∗( f ) ≥
ω( f )− 1 = 0.

� If f is adjacent to two 2-vertices x and z, then f gives at most 1 to the common
neighbor of x and z by (R2). Hence ω∗(v) ≥ ω( f )− 1 = 0.

– If k = 6, then f is incident with at most three 2-vertices by (C3).
� If f has no incident 2-vertices, then ω∗(v) ≥ ω( f ) = 2.
� If f is incident with one 2-vertex, then only (R3) may apply and henceω∗( f ) ≥
ω( f )− 1 = 1.

� Suppose that f is incident with two 2-vertices x and z. If x and z has a common
neighbor, then f f gives at most 1 by (R2), and hence ω∗(v) ≥ ω( f )−1 = 0.
If x and z has no common neighbor, then only (R3) may apply at most twice.
Hence, ω∗(v) ≥ ω( f )− 2 × 1 = 0.

� Finally, suppose that f is adjacent to three 2-vertices.

� If f is incident with at most one weak 7-vertex, then f gives at most
1 × 1 + 2 × 1

2 = 2 by (R2). Hence, ω∗(v) ≥ ω( f )− 2 = 0.
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Fig. 6 Unavoidable
configuration in a 2-outerplanar
graph containing neither a
≤3-vertex, nor two adjacent
4-vertices

� If f is incident with two weak 7-vertices, then f gives 2 × 1 + 1 × 1
2 = 5

2
by (R2). Moreover, f receives at least 1

2 by (R3). Hence,ω∗(v) ≥ ω( f )−
5
2 + 1

2 = 0.
� If f is incident with three weak 7-vertices, then f gives 3 × 1 by (R2).

Moreover, f receives at least 3 × 1
2 by (R3). Hence, ω∗(v) ≥ ω( f )− 3 +

3 × 1
2 = 1

2 .
– Suppose finally that k ≥ 7, and assume that (R2) applies n times and (R3) applies

m times. It is clear that f gives weights by (R2) to at most
⌊ k

2

⌋
vertices: hence,

n ≤ ⌊ k
2

⌋
. Moreover, we can easily check that 2n + 3m ≤ k. With these con-

straints, we have n + m = n+2n+3m
3 ≤

⌊
k
2

⌋
+k

3 , which implies that n + m ≤ k − 4
when k ≥ 7. Hence, ω∗(v) ≥ ω( f )− n − m ≥ 0.

Thus, for every f ∈ F(H), we have ω∗(v) ≥ 0.

4 Proof of Theorem 4

In this section, we prove Theorem 4, which says that every oriented 2-outerplanar
graph G admits a homomorphism to T40.

Esperet and Ochem [7] proved the following structural theorem for 2-outerplanar
graphs.

Theorem 5 (Esperet, Ochem [7]) Let G be a 2-outerplanar graph. Then G contains
either a ≤3-vertex, or two adjacent 4-vertices, or the configuration depicted in Fig. 6.

Note that the class of 2-outerplanar graphs is minor closed.
To prove Theorem 4, we will consider a minimal counterexample and prove that

it cannot contain any of the configurations described in Theorem 5, to arrive at a
contradiction.

Let H be a hypothetical minimal counterexample (with respect to the minor order)
to Theorem 4.

– It is trivial to show that H does not contain a 1-vertex.
– Suppose that H contains a 2-vertex v adjacent to u1 and u2. If u1 and u2 are not

adjacent, let H ′ be the graph obtained from H by contracting the arc u1v; otherwise,
let H ′ = H \ {v}. By minimality of H , the graph H ′ admits a T40-coloring ϕ, and
since u1 and u2 are adjacent in H ′, ϕ(u1) 
= ϕ(u2) and ϕ(u1) 
= t (ϕ(u2)). By
P2,9, ϕ can be extended to H , a contradiction.

– Suppose that H contains a 3-vertex v adjacent to u1, u2, and u3. If v is a sink, let
H ′ = H ; otherwise, let H ′ be the graph obtained from H by pushing u1 and/or u2
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Fig. 7 Reduction of the
configuration depicted in Fig. 6

and/or u3 in such a way that v becomes a sink in H ′ (i.e. −→u1v,
−→u2v,

−→u3v ∈ A(H ′)).
By the Push Property (Proposition 3), the graph H ′ is clearly a minimal counter-
example to Theorem 4 since H ′ is T40-colorable if and only of H does.
Suppose first that the subgraph induced by u1, u2, and u3 in H ′ contains a sink, say
u1. Then, let H ′′ be the graph obtained from H ′ by contracting −→u1v. By minimality
of H ′, the graph H ′′ admits a T40-coloring ϕ. Since −−→u2u1,

−−→u3u1 ∈ A(H ′′), we have
that either the three vertices ϕ(u1), ϕ(u2), ϕ(u3) form a 3-clique in T40 or they
form a 2-clique in T40 with ϕ(u2) = ϕ(u3) (recall that N+(u) ∩ N+(t (u)) = ∅
for every u of T40). By P3,4, the coloring ϕ can be extended to H ′.
Suppose now that the subgraph induced by u1, u2, and u3 in H ′ does not contain a
sink; then, u1, u2, u3 form a directed cycle. Let H ′′ = H ′ \ {v}. By minimality of
H ′, the graph H ′′ admits a T40-coloring ϕ. It is clear that ϕ(u1), ϕ(u2) and ϕ(u3)

form a 3-clique in T40. By P3,4, the coloring ϕ can be extended to H ′.
Therefore, H admits a T40-coloring, a contradiction.

– Suppose that H contains two adjacent 4-vertices u and v and let H ′ = H \ {−→uv}.
Let u1, u2, u3 (resp. v1, v2, v3) denote the three neighbors of u (resp. v) distinct
from v (resp. u). By minimality of H, H ′ admits a T40-coloring ϕ. Then, erase the
colors of u and v. By P3,4, we can color u to get ϕ(u) /∈ ⋃

i=1,2,3 f ϕu (vi ). Then by
P4,1, there exists a color to extend ϕ to H , a contradiction.

– Suppose that H contains the configuration depicted in Fig. 6. Let H ′ be the graph
obtained from H by contracting the arcs u1v1, u1v3, and u3v2: we get the graph
H ′ depicted in Fig. 7. Note that if the edge-contractions create pairs of opposite
arcs in H ′, then we just keep the initial arc from each pair (i.e., one existing in
H ) and we delete the other one. By minimality of H, H ′ admits a T40-coloring ϕ.
Since u1, u3 and v4 form a triangle in H ′, we have that ϕ(u1), ϕ(u3) and ϕ(v4) are
compatible so that by P3,4 we can choose one of the four available colors for v3.
At least two of these four colors are distinct from f ϕv3(u2) and f ϕv3(u4). Then, by
P4,1, we can color v1 and v2, a contradiction.

Therefore, H does not contain any of the configurations described in Theorem 5, a
contradiction that proves Theorem 4.
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