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Abstract

A homomorphism from an oriented graph G to an oriented graph H is an arc-preserving mapping ϕ from V (G) to V (H), that
is ϕ(x)ϕ(y) is an arc in H whenever xy is an arc in G. The oriented chromatic number of G is the minimum order of an oriented
graph H such that G has a homomorphism to H . The oriented chromatic index of G is the minimum order of an oriented graph H

such that the line-digraph of G has a homomorphism to H .
In this paper, we determine for every k � 3 the oriented chromatic number and the oriented chromatic index of the class of

oriented outerplanar graphs with girth at least k.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider oriented graphs, that is di-
graphs without opposite arcs. For an oriented graph G,
we denote by V (G) its set of vertices, by A(G) its set
of arcs, and by uv an arc from vertex u to vertex v. The
number of vertices of G is the order of G.

The girth of a graph G is the size of a smallest cycle
in G. We denote by Og the class of oriented outerplanar
graphs with girth at least g.
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An oriented k-vertex-coloring of an oriented graph
G is a mapping ϕ from V (G) to a set of k colors such
that

(i) ϕ(u) �= ϕ(v) whenever uv ∈ A(G),
(ii) ϕ(v) �= ϕ(x) whenever uv,xy ∈ A(G) and ϕ(u) =

ϕ(y).

Note that these two conditions ensure that any two ver-
tices linked by a directed path of length one or two are
assigned distinct colors in any oriented vertex-coloring.

The oriented chromatic number of G, denoted by
χo(G), is the smallest integer k such that G admits
an oriented k-vertex-coloring. The oriented chromatic
number χo(F ) of a class of oriented graphs F is de-
fined as the maximum of χo(G) taken over all graphs G

in F .
Let G and H be two oriented graphs. A homomor-

phism from G to H is a mapping ϕ from V (G) to V (H)
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that preserves the arcs (that is, ϕ(u)ϕ(v) ∈ A(H) when-
ever uv ∈ A(G)). An oriented k-vertex-coloring of an
oriented graph G can thus be viewed as a homomor-
phism from G to H , where H is an oriented graph of
order k. The existence of such a homomorphism from
G to H is denoted by G → H . The vertices of H are
called colors, and we say that G is H -vertex-colorable.
The oriented chromatic number of G can then be equiv-
alently defined as the smallest order of an oriented graph
H such that G → H . Links between colorings and ho-
momorphisms are presented in more details in the recent
monograph [5] by Hell and Nešetřil.

The notion of oriented vertex-coloring, introduced
by Courcelle in [3], has been studied by several au-
thors in the last decade and the problem of bounding
the oriented chromatic number has been investigated for
various graph classes (see e.g. [1,2,7,9–12]).

Concerning outerplanar graphs, Sopena proved in
[10] that the class of oriented series-parallel graphs (also
called partial 2-trees), which contains the class of ori-
ented outerplanar graphs, has oriented chromatic num-
ber at most 7 and that this bound is tight (he provided
an outerplanar graph with oriented chromatic num-
ber 7). In [4], Hosseini Dolama constructed an oriented
triangle-free outerplanar graph with oriented chromatic
number 6 and asked whether the oriented chromatic
number of the class of oriented triangle-free outerpla-
nar graphs is 6 or 7. Our first result gives a complete
classification of the oriented chromatic numbers of ori-
ented outerplanar graphs with given girth:

Theorem 1.

(1) χo(O4) = 6,
(2) χo(Og) = 5 for every g, g � 5.

An oriented arc-coloring of an oriented graph G is
an oriented vertex-coloring of its line digraph LD(G)

(recall that LD(G) is given by V (LD(G)) = A(G) and
ab ∈ A(LD(G)) if there exists u,v,w ∈ V (G) such that
a = uv and b = vw). We say that an oriented graph G is
H -arc-colorable if there exists a homomorphism ϕ from
LD(G) to H . The mapping ϕ is then an H -arc-coloring,
or simply an arc-coloring, of G. Therefore, an oriented
arc-coloring ϕ of G must satisfy

(i) ϕ(uv) �= ϕ(vw) whenever uv and vw are two con-
secutive arcs in G,

(ii) ϕ(vw) �= ϕ(xy) whenever uv, vw,xy, yz ∈ A(G)

with ϕ(uv) = ϕ(yz).
Note that these two conditions ensure that any two arcs
belonging to a directed path of length two or three must
get distinct colors in any oriented arc-coloring. Also
note that two arcs incoming to (resp. outgoing from) the
same vertex can get the same color since the two corre-
sponding vertices in LD(G) are not adjacent and do not
belong to a directed 2-path.

The oriented chromatic index of G, denoted by
χ ′

o(G), is the smallest order of an oriented graph H

such that G is H -arc-colorable. The oriented chromatic
index χ ′

o(F ) of a class of oriented graphs F is defined
as the maximum of χ ′

o(G) taken over all graphs G in F .
Let G and H be two oriented graphs and ϕ be a ho-

momorphism from G to H . It is not difficult to check
that the mapping ϕ′ :A(G) → V (H), given by ϕ′(xy) =
ϕ(x) for every arc xy in G is a homomorphism from
LD(G) to H . Hence we have:

Observation 2. [8] For every oriented graph G, χ ′
o(G)

� χo(G).

From that, we get that every oriented outerplanar
graph has oriented chromatic index at most 7. Our sec-
ond result gives a complete classification of the oriented
chromatic indexes of oriented outerplanar graphs with
given girth:

Theorem 3.

(1) χ ′
o(O3) = 7,

(2) χ ′
o(O4) = 6,

(3) χ ′
o(Og) = 5 for every g, 5 � g � 9,

(4) χ ′
o(Og) = 4 for every g, g � 10.

This paper is organized as follows. We give in Sec-
tion 2 some notation and preliminary results that will
be used later. We prove Theorem 1 in Section 3 and
Theorem 3 in Section 4. Finally, we discuss the case
of oriented series-parallel graphs in Section 5.

2. Notation and preliminary results

In the rest of the paper, we will use the following no-
tation. A k-vertex is a vertex of degree k. The minimum
degree of a graph G is denoted by δ(G). If uv is an arc,
u is a predecessor of v and v is a successor of u. For a
given vertex u in G, we denote by N+

G(u) (resp. N−
G(u))

the set of successors (resp. predecessors) of u in G.
A k-path in G is a sequence x0x1 . . . xk such that

xixi+1 ∈ A(G) or xi+1xi ∈ A(G) for every i, 0 � i < k.
A directed k-path in G is a sequence x0x1 . . . xk such
that xixi+1 ∈ A(G) for every i, 0 � i < k. The notions
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(a) (b)
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Fig. 1. Three target tournaments. (a) The tournament T4. (b) The tour-
nament T5. (c) The tournament T6.

of a k-cycle and of a directed k-cycle are defined in a
similar way.

For a graph G and a vertex v of V (G), we denote by
G\v the graph obtained from G by removing v together
with the set of its incident arcs. This notion is extended
to sets of vertices in a standard way.

Let G be an oriented graph and f be an oriented arc-
coloring of G. For a given vertex v of G, we denote
by C+

f (v) and C−
f (v) the outgoing color set of v (i.e.,

the set of colors of the arcs outgoing from v) and the
incoming color set of v (i.e., the set of colors of the arcs
incoming to v), respectively.

The upper bounds of Theorems 1 and 3 will be ob-
tained by proving that the corresponding oriented outer-
planar graphs are T -vertex- or T -arc-colorable for some
tournament T . The three tournaments that will be used
are depicted in Fig. 1.

The tournament T4 is the only tournament on four
vertices containing a directed 4-cycle.

Note that the tournament T5 is a circular tournament
and thus is vertex-transitive. Moreover, this tournament
has the following property:

Proposition 4. [2] For every pair of (not necessarily
distinct) vertices u,v ∈ V (T5), there exists an oriented
4-path connecting u with v for any of the 16 possible
orientations of such an oriented 4-path.

By a case analysis, it is tedious but not difficult to
prove the following:
Proposition 5. For every pair of (not necessarily dis-
tinct) vertices u,v ∈ V (T6), there exists an oriented
3-path connecting u with v for any of the 8 possible
orientations of such an oriented 3-path.

Finally, we will extensively use the following obvi-
ous property of outerplanar graphs with high girth:

Proposition 6. Every outerplanar graph G with girth
at least k and δ(G) � 2 contains a face of length l � k

with at least l − 2 consecutive 2-vertices.

3. The oriented chromatic number of outerplanar
graphs

In this section we prove our Theorem 1.

Proof of Theorem 1(1). We first prove that χo(O4) �
6. To show that, we prove that every triangle-free outer-
planar graph has a homomorphism to the tournament T6
depicted in Fig. 1(c). Let H be a minimal (with respect
to inclusion as a subgraph) triangle-free outerplanar
graph having no homomorphism to T6. We show that
H contains neither a 1-vertex nor two adjacent 2-ver-
tices.

(1) Suppose that H contains a 1-vertex u. Then,
due to the minimality of H , the triangle-free outerpla-
nar graph H ′ = H \ u admits an oriented T6-vertex-
coloring f . Since every vertex of T6 has at least two
successors and at least two predecessors, f can easily
be extended to H .

(2) Suppose now that H contains two adjacent 2-ver-
tices v and w. Then, due to the minimality of H , the
triangle-free outerplanar graph H ′ = H \ {v,w} admits
an oriented T6-vertex-coloring f . By Proposition 5, f

can be extended to H .
We thus get a contradiction thanks to Proposition 6.
In [4], Hosseini Dolama constructed an oriented

triangle-free outerplanar graph G with oriented chro-
matic number 6 (see Fig. 2). For completion, we prove
now that χo(G) � 6.

Assume to the contrary that f is a T -vertex-coloring
of G for some tournament T on five vertices (V (T ) =
{1,2,3,4,5}) and let f (u) = 1, f (v) = 2, f (w) = 3,
f (x) = 4 and f (y) = 5 (these five vertices belong to a
directed 5-cycle in G and thus must be assigned distinct
colors).

Since every vertex in {u,v,w,x, y} has 2 successors
and 2 predecessors that are linked by a directed 2-path
in G, each vertex of T must have 2 predecessors and
2 successors. Hence, T is necessarily the tournament T5
depicted in Fig. 1(b). (Note that since the tournament
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Fig. 2. An oriented triangle-free outerplanar graph with oriented chro-
matic number 6.

T5 is arc-transitive, we may still assume, without loss of
generality, that f (u) = 1, f (v) = 2, f (w) = 3, f (x) =
4 and f (y) = 5.)

Finally, observe that we necessarily have f (u2) = 3
and that we cannot color the remaining vertices z1 and
z2 since there is no directed 3-path in T5 from 1 to 3.

This completes the proof of Theorem 1(1). �
Proof of Theorem 1(2). We first prove that χo(Og) � 5
for every g, g � 5. Note that it is enough to consider the
case g = 5. More precisely, we prove that every outer-
planar graph with girth at least 5 has a homomorphism
to the tournament T5 depicted in Fig. 1(b).

Let H be a minimal (with respect to inclusion as a
subgraph) outerplanar graph with girth 5 having no ho-
momorphism to T5. We show that H contains neither a
1-vertex nor three adjacent 2-vertices.

(1) Suppose that H contains a 1-vertex u. Then, due
to the minimality of H , the outerplanar graph H ′ =
H \ u (which has girth at least 5) admits an oriented
T5-vertex-coloring f . Since every vertex of T5 has two
successors and two predecessors, f can easily be ex-
tended to H .

(2) Suppose now that H contains three adjacent
2-vertices u, v and w. Then, due to the minimality of
H , the outerplanar graph H ′ = H \ {u,v,w} (which has
girth at least 5) admits an oriented T5-vertex-coloring f .
By Proposition 4, f can be extended to H .

We thus get a contradiction thanks to Proposition 6.
In [6], Nešetřil et al. constructed for every g, g � 3,

an oriented outerplanar graph Gg with girth at least g

which has no homomorphism to the tournament T4. We
recall this construction here.

Let Pg be the oriented path on �g/2� vertices whose
edges have alternatively forward and backward direc-
Fig. 3. An oriented outerplanar graph with oriented chromatic index 7.

tion and let u and v denote its end-vertices. The graph
Gg is then constructed as follows: let x1x2 . . . xp be a
directed cycle on p � g vertices, such that p ≡ 1 or
2 (mod 3). To every vertex xi attach two copies of Pg

by identifying the two u-vertices with xi and adding an
arc (with any direction) linking the two v-vertices. The
graph Gg thus obtained has clearly girth g or g + 1.
Moreover, for every homomorphism f :Gg → T4, one
vertex xi at least satisfies f (xi) = 3. It is then easy to
check that the two v-vertices of the paths attached to xi

are mapped to the same vertex of T4, namely 0 or 3 de-
pending on the parity of �g/2�. Since these two vertices
are joined by an arc in Gg we obtain the desired contra-
diction and the result follows.

This completes the proof of Theorem 1(2). �
4. The oriented chromatic index of outerplanar
graphs

In this section we prove our Theorem 3.

Proof of Theorem 3(1). In [10], Sopena proved that
every outerplanar graph has oriented chromatic number
at most 7. By Observation 2, we thus get that the ori-
ented chromatic index of every outerplanar graph is at
most 7.

To show that this bound is tight, we shall prove that
the oriented outerplanar graph G depicted on Fig. 3 has
oriented chromatic index 7.

Assume to the contrary that f is an arc-coloring of G

using at most six colors (say 1,2,3,4,5,6). Necessar-
ily, the colors of the arcs u1u2, u2u3, u3u4, u4u5, u5u6
and u6u1 are pairwise distinct since any two such arcs
belongs to a directed 2- or 3-path in G. Suppose with-
out loss of generality, that f (uiuj ) = i (as drawn on
Fig. 3). This forbids for each remaining uncolored arc
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3 or 4 colors. The sets of available colors for each of
these arcs are given in Fig. 3.

Suppose first that f (u6u2) = 6 and f (u2u4) = 3.
This implies f (u11u6) = 5 and f (u4u10) = 4 and then
f (u10u5) = 1 and f (u5u11) = 2 since we already have
1 → 2 with u1u2 and u2u3. Therefore, since we have
2 → 5 with u5u11 and u11u6 (resp. 4 → 1 with u4u10
and u10u5), we necessarily have f (u7u2) = 1 (resp.
f (u2u8) = 2). Finally, this implies f (u1u7) = 4 and
f (u8u3) = 5 and there is no remaining available color
for u4u6.

Suppose now that f (u6u2) = 1 and f (u4u6) = 4.
This implies f (u2u8) = 2 and f (u9u4) = 3 and then
f (u8u3) = 5 and f (u3u9) = 6 since we already have
5 → 6 with u5u6 and u6u1. Therefore, since we have
6 → 3 with u3u9 and u9u4 (resp. 2 → 5 with u2u8
and u8u3), we necessarily have f (u4u10) = 4 (resp.
f (u6u12) = 6). Finally, this implies f (u10u5) = 2 and
f (u12u1) = 3 and there is no remaining available color
for u2u4.

Finally, suppose that f (u2u4) = 2 and f (u4u6) = 5.
This implies f (u7u2) = 1 and f (u6u12) = 6 and then
f (u12u1) = 3 and f (u1u7) = 4 since we already have
3 → 4 with u3u4 and u4u5. Therefore, since we have
6 → 3 with u6u12 and u12u1 (resp. 4 → 1 with u1u7
and u7u2), we necessarily have f (u11u6) = 5 (resp.
f (u9u4) = 3). Finally, this implies f (u5u11) = 1 and
f (u3u9) = 6 and there is no remaining available color
for u6u2.

Therefore, the colors of u2u4, u4u6 and u6u2 are re-
spectively either 3,5,1 or 2,4,6.

Suppose first that f (u2u4) = 3, f (u4u6) = 5 and
f (u6u2) = 1. This implies f (u9u4) = 3 and f (u11u6)

= 5. Then, we necessarily have f (u3u9) = 6 and
f (u5u11) = 2. Finally, this implies f (u4u10) = 4, and
there is no remaining available color for u10u5.

Finally, suppose that f (u2u4) = 2, f (u4u6) = 4
and f (u6u2) = 6. This implies f (u4u10) = 4 and
f (u2u8) = 2. Then, we necessarily have f (u10u5) = 1
and f (u8u3) = 5. Finally, this implies f (u9u4) = 3,
and there is no remaining available color for u3u9.

Hence, there exists no tournament T on six vertices
such that G is T -arc-colorable, which completes the
proof of Theorem 3(1). �
Proof of Theorem 3(2). By Theorem 1(1), every
triangle-free outerplanar has oriented chromatic num-
ber at most 6 and thus, by Observation 2, has oriented
chromatic index at most 6.

To show that this bound is tight, we shall prove that
the oriented triangle-free outerplanar graph G depicted
on Fig. 4(a) has oriented chromatic index 6.
Fig. 4. An oriented triangle-free outerplanar graph with oriented chro-
matic index 6.
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Assume to the contrary that f is an oriented arc-
coloring of G using at most 5 colors, say 1,2,3,4,5.
Necessarily, the colors of the arcs uv, vw, wx, xy and
yu have to be pairwise distinct. Suppose without loss
of generality, that f (uv) = 1, f (vw) = 2, f (wx) = 3,
f (xy) = 4 and f (yu) = 5.

We first prove that f is an oriented T5-arc-coloring
(T5 is the tournament depicted on Fig. 1(b)). Suppose to
the contrary that f is an oriented T ′

5-arc-coloring of G,
with T ′

5 �= T5. We may assume without loss of general-
ity, that N+

T ′
5
(1) = {2}, which implies N−

T ′
5
(1) = {3,4,5}.

This successively implies f (vv2) = 2, f (w1w) = 5,
f (ww2) = 3, f (x1x) = 2, f (xx2) = 4, f (y1y) = 2,
f (v1v) = 1 and f (uu2) = 3. Then, the only available
color for u1u and yy2 is 5, a contradiction.

Therefore, f is an oriented T5-arc-coloring of G.
(Note that since the tournament T5 is arc-transitive, we
may still assume without loss of generality that f (uv) =
1, f (vw) = 2, f (wx) = 3, f (xy) = 4 and f (yu) = 5.)

Observe now that we have either f (uu2) = 1 or
f (uu2) = 2. In each case, the color of f (uu2) fixes the
colors of all but five arcs of G (see Fig. 4(b) for the case
f (uu2) = 1 and Fig. 4(c) for the case f (uu2) = 2).

To complete the T5-arc-coloring f , we thus need a
directed 3-path in T5 from color 1 to 3 (when f (uu2) =
1) or from color 3 to 5 (when f (uu2) = 2). Since such
paths do not exist in T5, we get a contradiction which
completes the proof of Theorem 1(1). �
Proof of Theorem 3(3). By Theorem 1(2), every out-
erplanar graph with girth g, 5 � g � 9, has oriented
chromatic number at most 5 and thus, by Observation 2,
has oriented chromatic index at most 5.

To show that this bound is tight, we construct an
outerplanar graph with girth 9 and oriented chromatic
index 5.

Consider the configuration H , made of an alternating
path of ten vertices and four directed 9-cycles arranged
as depicted on Fig. 5. Observe first that the tourna-
ment T4 (depicted on Fig. 1(a)) contains only two di-
rected 3-cycles, namely 124 and 134. Hence, any ori-
ented T4-arc-coloring of the directed 9-cycle has the
form 1x41x41x4 with x ∈ {2,3}. Let now h be a T4-
arc-coloring of H with h(y1y2) = 1. We then necessar-
ily have h(y2z) ∈ {2,3} and, by the observation before,
h(z′y3) = 4, which implies h(y3y2) = h(y3y4) = 1. By
repeating this argument for the four directed 9-cycles of
H , we get h(y9y10) = 1.

Consider finally the oriented graph G obtained from
the directed 10-cycle C10 = x0x1 . . . x9 by gluing ten
copies of H to the ten arcs of C10 by identifying y1
with xi and y10 with xi−1 (subscripts are taken mod-
Fig. 5. The configuration H for the proof of Theorem 3(3).

ulo 10) for every i, 0 � i � 9. The so-obtained graph
G has clearly girth 9. If T is a tournament on four ver-
tices such that G admits a T -arc-coloring then T must
contain a directed 4-cycle since G contains a directed
10-cycle. Therefore, T is necessarily the tournament T4.

Let now f be a T4-arc-coloring of G. Since 10 ≡
1 (mod 3), the color 4 must be used on some arc of the
cycle C10, say f (x0x1) = 4. Considering the copy of
H glued to x0x1, we necessarily have f (x1y2) = 1 and
thus f (y9x0) = 1 from the above discussion, a contra-
diction.

Hence, the graph G has no T4-arc-coloring and has
thus oriented chromatic index 5. That completes the
proof of Theorem 1(2). �

In order to prove Theorem 3(4) we need the follow-
ing technical results.

We say that a T4-arc-coloring f of an oriented graph
G is good if

(1) ∀u ∈ V (G), C+
f (u) ∈ {{1}, {2}, {3}, {4}, {2,3},

{3,4}},
(2) ∀u ∈ V (G), C−

f (u) ∈ {{1}, {2}, {3}, {4}, {1,2},
{2,3}}.

Ochem et al. [8] proved the following:

Proposition 7. [8] Let P = v0, v1, . . . , v9, v10 be an ori-
ented 10-path. Any good T4-arc-coloring of P ′ = P \
{v2, . . . , v8} can be extended to a good T4-arc-coloring
of P .

A computer check shows the following:

Proposition 8. Let P = u,v1, v2, . . . , v8,w be an ori-
ented 9-path. Any good T4-arc-coloring of P ′ = P \
{v2, . . . , v7} such that C−

f (u) ∩ C+
f (w) �= ∅ or C+

f (u) ∩
C−

f (w) �= ∅ can be extended to a good T4-arc-coloring
of P .

We are now able to prove Theorem 3(4).

Proof of Theorem 3(4). We first prove that χ ′
o(Og) � 4

for every g, g � 10. Note that it is enough to consider
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the case g = 10. More precisely, we prove that every
outerplanar graph with girth at least 10 admits a good
T4-arc-coloring (where T4 is the tournament depicted in
Fig. 1(a)).

Let H be a minimal (with respect to inclusion as a
subgraph) outerplanar graph with girth 10 having no ho-
momorphism to T4. We show that H contains neither a
1-vertex nor a face F of length l � 10 with l − 2 con-
secutive 2-vertices.

(1) Suppose that H contains a 1-vertex u. Let v be
its neighbor and suppose that uv ∈ A(H). The graph
H ′ = H \ u is an outerplanar graph with girth at least
10 and, due to minimality of H , admits a good T4-arc-
coloring f . Therefore, we have C+

f (v) ∈ {{1}, {2}, {3},
{4}, {2,3}, {3,4}}. For each possible case, there clearly
exists a predecessor in T4 that can be used to extend f

to a good T4-arc-coloring of H . The proof of the case
vu ∈ A(H) is similar.

(2) Suppose now that H contains a face F of length
l � 10 with l − 2 consecutive 2-vertices. We consider
two cases:

(a) l = 10.
Let F = u,v1, v2, . . . , v8,w. Due to the minimal-
ity of H , the graph H ′ = H \ {v2, . . . , v7} admits a
good oriented T4-arc-coloring f . Moreover, since
uw ∈ A(H) or wu ∈ A(H), we have C−

f (u) ∩
C+

f (w) �= ∅ or C+
f (u) ∩ C−

f (w) �= ∅, respectively.
By Proposition 8, f can be extended to H .

(b) l > 10.
The face F contains nine consecutive 2-vertices,
say u1, . . . , u9. Due to the minimality of H , the
graph H ′ = H \ {u2, . . . , u8} admits a good T4-arc-
coloring f . By Proposition 7, f can be extended
to H .

We thus get a contradiction thanks to Proposition 6.
We finally prove that for every k � 3 there exist

outerplanar graphs with girth k and oriented chromatic
index at least 4, using a construction proposed in [8].
Observe first that any arc-coloring of a directed cycle of
length p, p ≡ 1 or 2 (mod 3), must use at least 4 colors.
Hence, the graph Gk made of two directed cycles shar-
ing one arc, one with length k, the other with length p,
p ≡ 1 or 2 (mod 3), p � k, has the desired property.

This completes the proof of Theorem 3(4). �
5. Oriented series-parallel graphs

Recall that a series-parallel graph is a K4-minor-
free graph (also known in the literature as a partial 2-
Fig. 6. An oriented triangle-free series-parallel graph with oriented
chromatic number 7.

tree) and that the class of oriented series-parallel graph
strictly contains the class of outerplanar graphs.

A natural question is thus to extend our results to the
case of series-parallel graphs.

As discussed before, Sopena proved in [10] that
every oriented series-parallel graph has oriented chro-
matic number at most 7 and that this bound is tight.
Moreover, we can prove that this bound is also tight for
oriented triangle-free series-parallel graphs:

Theorem 9. There exist oriented triangle-free series-
parallel graphs with oriented chromatic number 7.

Proof. We shall prove that the oriented triangle-free
series-parallel graph G depicted on Fig. 6 has oriented
chromatic number 7.

Suppose that G admits an oriented 6-vertex-coloring
f . Clearly, the colors of the vertices u,w1,w2, w3,w4, v

have to be pairwise distinct. Without loss of general-
ity, we assume that f (u) = 1, f (v) = 2, f (w1) = 3,
f (w3) = 4, f (w3) = 5 and f (w4) = 6.

Suppose first that f (w) = 3 (resp. f (w) = 4). Then,
the two vertices v2 and v4 (resp. v1 and v3) must get
distinct colors and the two only available colors are 2
and 5 (resp. 2 and 6). Therefore, we will have an arc in
G from the color 2 to the color 1 (resp. from 1 to 2).
Now, the vertices u1 and u4 (resp. u2 and u3) must get
distinct colors and the only two available colors are 1
and 6 (resp. 1 and 5). We get a contradiction since we
will then have an arc in G from the color 1 to the color
2 (resp. from 2 to 1).
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The remaining cases f (w) = 5 and f (w) = 6 lead to
a contradiction in a similar way. �

Finally note that Theorem 3(1) implies that the ori-
ented chromatic index of every oriented series-parallel
is at most 7 and that this bound is tight.

It would thus be interesting to determine the ex-
act value of the oriented chromatic number (resp. of
the oriented chromatic index) of oriented series-parallel
graphs with girth k, for every k � 5 (resp. k � 4).
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[6] J. Nešetřil, A. Raspaud, É. Sopena, Colorings and girth of ori-
ented planar graphs, Discrete Math. 165–166 (1997) 519–530.

[7] P. Ochem, Oriented colorings of triangle-free planar graphs, In-
form. Process. Lett. 92 (2004) 71–76.

[8] P. Ochem, A. Pinlou, É. Sopena, On the oriented chromatic index
of oriented graphs, Research Report RR-1390-06, LaBRI, Uni-
versité Bordeaux 1, 351, Cours de la Libération, 33405 Talence
Cedex, France, 2006.

[9] A. Raspaud, É. Sopena, Good and semi-strong colorings of ori-
ented planar graphs, Inform. Process. Lett. 51 (4) (1994) 171–
174.

[10] É. Sopena, The chromatic number of oriented graphs, J. Graph
Theory 25 (1997) 191–205.

[11] É. Sopena, Oriented graph coloring, Discrete Math. 229 (1–3)
(2001) 359–369.

[12] D.R. Wood, Acyclic, star and oriented colourings of graph sub-
divisions, Discrete Math. Theoret. Comput. Sci. 7 (1) (2005)
37–50.


