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Abstract

A directed star forest is a forest all of whose components are stars with arcs emanating from the center to the leaves. The acircuitic
directed star arboricity of an oriented graph G (that is a digraph with no opposite arcs) is the minimum number of arc-disjoint
directed star forests whose union covers all arcs of G and such that the union of any two such forests is acircuitic. We show that
every subcubic graph has acircuitic directed star arboricity at most four.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We consider finite simple oriented graphs, that is digraphs with no opposite arcs. For an oriented graph G, we denote
by V (G) its set of vertices and by A(G) its set of arcs.

In [1], Algor and Alon introduced the notion of the directed star arboricity of a digraph G, defined as the minimum
number of edge-disjoint directed star forests needed to cover A(G). (A directed star forest is a forest all of whose
components are directed stars, that is stars with arcs emanating from the center.) In the same vein, we study here
the new notion of the acircuitic directed star arboricity of an oriented graph G, defined as the minimum number of
arc-disjoint directed star forests needed to cover A(G) in such a way that the union of any two such forests contains no
circuit (that is directed cycle). In [5], Guiduli proved that every oriented graph with indegree and outdegree both less
than D has directed star arboricity at most D + 20 log D + 84 colors.

In this paper, we prove the following.

Theorem 1. Every graph with maximum degree at most 3 has acircuitic directed star arboricity at most 4.

The notion of acircuitic directed star arboricity arises from the study of arc-coloring of oriented graphs. In [4],
Courcelle introduced the notion of vertex-coloring of oriented graphs as follows: a k-vertex-coloring of an oriented
graph G is a mapping f from V (G) to a set of k colors such that (i) f (u) �= f (v) whenever −→uv is an arc in G, and (ii)
f (u) �= f (x) whenever −→uv and −→wx are two arcs in G with f (v) = f (w). Vertex-coloring of oriented graphs have been
studied by several authors in the last past years (see e.g. [2,6,8] for an overview).
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Recall that an acyclic coloring of an undirected graph U is a proper coloring of U such that every cycle in U uses
at least three colors. Raspaud and Sopena proved in [7] that every orientation of an undirected graph that admits an
acyclic k-coloring admits an oriented (k · 2k−1)-coloring.

One can define arc-colorings of oriented graphs in a natural way by saying that, as in the undirected case, an arc-
coloring of an oriented graph G is a vertex-coloring of the line digraph of G. (Recall that the line digraph L(G) of G
is given by V (L(G)) = A(G) and (−→uv, −→vw) ∈ A(L(G)) whenever −→uv ∈ A(G) and −→vw ∈ A(G).) It is not difficult to
see that every oriented graph having a k-vertex-coloring admits a k-arc-coloring (from a k-vertex-coloring f, we obtain
a k-arc-coloring g by setting g(−→uv) = f (u)).

By adapting the proof of the above-mentioned result of Raspaud and Sopena, it is not difficult to prove that every
oriented graph with acircuitic directed star arboricity at most k admits a (k · 2k−1)-arc-coloring.

This paper is organized as follows: we introduce the main definitions and notation in the next section and prove our
main result in Section 3.

2. Definitions and notation

In the rest of the paper, oriented graphs will be simply called graphs. For a vertex v, we denote by d−(v) the indegree
of v, by d+(v) its outdegree and by d(v) its degree, that is d(v) = d+(v) + d−(v). A source vertex is a vertex v with
d−(v) = 0. The maximum degree and minimum degree of a graph G are, respectively, denoted by �(G) and �(G). A
graph G is said to be cubic if �(G) = �(G) = 3 and subcubic if �(G)�3.

We denote by −→uv the arc from u to v or simply uv whenever its orientation is not relevant (therefore uv = −→uv or
uv = −→vu). If a = −→uv is an arc, then u is the tail and v is the head of a.

For a graph G and a vertex v of V (G), we denote by G\v the graph obtained from G by removing v together with
the set of its incident arcs; similarly, for an arc a of A(G), G\a denotes the graph obtained from G by removing a.
These two notions are extended to sets in a standard way: for a set of vertices V ′, G\V ′ denotes the graph obtained
from G by successively removing all vertices of V ′ and their incident arcs, and for a set of arcs A′, G\A′ denotes the
graph obtained from G by removing all arcs of A′.

The notions of arboricity discussed in the previous section may be defined in terms of arc-colorings or partitions of
the set of arcs. More precisely, a k-directed-star-coloring (or simply k-dst-coloring) of a graph G is a partition of A(G)

into k directed star forests {F1, F2, . . . , Fk}. Equivalently, a k-dst-coloring of G is a k-coloring f of A(G) such that (i)
−→uv, −→vw ∈ A(G) ⇒ f (

−→
uv) �= f (

−−→
vw) and (ii) −→uv,

−→
tv ∈ A(G) ⇒ f (

−→
uv) �= f (

−→
tv). The directed star arboricity of G,

denoted by dst(G), is then the smallest k for which G admits a k-dst-coloring.
A graph G is acircuitic if it does not contain any circuit. A k-acircuitic-directed-star-coloring (or simply k-adst-

coloring) of a graph G is a partition of A(G) into k directed star forests {F1, F2, . . . , Fk} such that for all i, j ∈ [1, k],
Fi ∪Fj is acircuitic. Equivalently, a k-adst-coloring of G is a k-dst-coloring of G such that no circuit in G is bichromatic.
The acircuitic directed star arboricity of G, denoted by adst(G), is the smallest k for which G admits a k-adst-coloring.

Note that from the above definitions we get that every edge-coloring of an undirected graph H is a dst-coloring of
any orientation of H. Similarly, every acyclic edge-coloring of H is an adst-coloring of any orientation of H.

The following notation will be extensively used in the rest of the paper. Consider a graph G and let A′={a1, a2, . . . , an}
be a subset of A(G). We denote by CG(a1, a2, . . . , an), or simply CG(A′), the set of circuits of G that contain all the
arcs a1, a2, . . . , an.

Drawing conventions. In all the figures, we shall use the following convention: a vertex whose neighbors are totally
specified will be black, whereas a vertex whose neighbors are partially specified will be white. Moreover, an edge will
represent an arc with any of its two possible orientations.

3. Proof of Theorem 1

Suppose that Theorem 1 is false and consider a minimal counter-example G. We prove a series of lemmas. In each of
them, we reduce G to a smaller graph G′ (that is |A(G)| > |A(G′)|) which admits a 4-adst-coloring f ′ which is also a
partial adst-coloring of G (that is an adst-coloring only defined on some subset A′ of A(G)). We extend such a partial
adst-coloring f ′ to an adst-coloring f of G. In this case, it should be understood that we set f (a) = f ′(a) for every arc
a ∈ A(G′). We then explain how to set f (a) for every uncolored a ∈ A(G). The existence of f proves that G does not
contain some specific configurations. This set of configurations will finally lead to a contradiction.
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Consider a circuit C and let u, v ∈ V (C). We denote by PC(u, v) the directed path from u to v in C.
The following observation will be extensively used in the sequel:

Observation 2. Let C be a circuit, f an adst-coloring of C, and C′ the circuit obtained from C by replacing PC(u, v) by
a directed path PC′(u, v). If f ′ is a dst-coloring of C′ such that f ′(a) = f (a) for every a /∈ PC′(u, v) and {f (a); a ∈
PC(u, v)} ⊆ {f ′(a′); a′ ∈ PC′(u, v)} then f ′ is an adst-coloring of C′.

This directly follows from the fact that |f ′(C′)|� |f (C)|�3.
We first show that a minimal counter-example to Theorem 1 is necessarily a cubic graph.

Lemma 3. If G is a minimal counter-example to Theorem 1, then �(G)�3.

Proof. Let v ∈ V (G) with d(v)�2. We consider two cases:
Case 1: dG(v) = 1. Consider the dangling arc uv in G and let f ′ be any 4-adst-coloring of the graph G′ = G\{v}.

We extend f ′ to a 4-adst-coloring f of G by setting f (uv) = a for some color a distinct from the colors of the at most
two arcs incident to uv.

Case 2: dG(v) = 2. Consider the two arcs uv and wv in G and let f ′ be any 4-adst-coloring of the graph G′ obtained
from G by contracting uv in a single vertex x. We extend f ′ to a 4-adst-coloring f of G by setting f (wv)= f ′(wx) and
f (uv) = a for any a distinct from the colors of the three arcs incident to uv. (By Observation 2, no circuit in G can be
bichromatic).

In both cases we thus obtain a 4-adst-coloring f of G, a contradiction. �

Lemma 4. If G is a minimal counter-example to Theorem 1, then G does not contain any source vertex.

Proof. Let v ∈ V (G) be a source vertex. By Lemma 3, we know that d+(v) = 3. Let u1, u2 and u3 be the three
neighbors of v and f ′ be any 4-adst-coloring of the graph G′ =G\v. Each of the arcs −→vu1, −→vu2 and −→vu3 has at least two
available colors. Since they can get the same color, we can extend f ′ to a 4-adst-coloring f of G, a contradiction. �

We now prove that a minimal counter-example to Theorem 1 contains no triangle.

Lemma 5. If G is a minimal counter-example to Theorem 1, then G is triangle-free.

Proof. If G contains three pairwise adjacent triangles, then G is an orientation of the complete graph K4. By Lemma
4, we only have to consider the two orientations of K4 depicted on Figs. 1(a) and (b) that both admit a 4-adst-coloring.

If G contains two adjacent triangles, then G contains the configuration of Fig. 1(c). Consider the graph G′=G\{w, x}
and let f ′ be a 4-adst-coloring of G′ such that f ′(uv) �= f ′(yz) (this can be done since we have two possible choices
for coloring each of uv and yz). Suppose without loss of generality that f ′(uv) = 1 and f ′(yz) = 2. In this case, we
can produce an acyclic 4-edge-coloring as depicted in Fig. 1(c). Indeed, this coloring is a proper edge-coloring and no
path linking u and z is bichromatic. Hence, for all possible orientations of the arcs of the configuration, this coloring
gives a 4-adst-coloring f of G.

Suppose finally that G contains the configuration of Fig. 1(d), and let f ′ be any 4-adst-coloring of the graph G′
obtained from G by contracting the triangle v1v2v3 in a single vertex v. Therefore, every circuit C ∈ CG(−−→uivi,

−−→vjuj )

corresponds to a circuit C′ ∈ CG′(−→uiv, −→vuj ).
We now extend the partial adst-coloring f ′ to a 4-adst-coloring f of G as follows. We distinguish two cases:
Case 1: f ′(vu1) �= f ′(vu2) �= f ′(vu3) �= f ′(vu1). Without loss of generality, suppose that f ′(v1u1)=1, f ′(v2u2)=

2 and f ′(v3u3) = 3. We then set f (v3v1) = 2, f (v1v2) = 3 and f (v2v3) = 1.
Case 2: ∃i, j ∈ {1, 2, 3}, i �= j , f ′(viui) = f ′(vjuj ) = a. In this case we necessarily have −−→viui,

−−→vjuj ∈ A(G). Let
k ∈ {1, 2, 3}, k �= i, j . We then set f (vivk), f (vj vk) and f (vivj ) as follows:

1. f (vivk) = b for any b /∈ {a, f ′(ukvk)},
2. f (vj vk) = c for any c /∈ {a, b, f ′(ukvk)},
3. f (vivj ) = d for any d /∈ {a, b, c}.
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Fig. 1. Configurations of Lemma 5.

This can be done since we have four available colors.
In both cases, thanks to Observation 2, we obtain a 4-adst-coloring f of G, a contradiction. �

Let G be a graph and C a circuit in G. An arc having exactly one of its endpoints in C is said to be incident to C.
Moreover, two such incident arcs are neighboring if their endpoints in C are linked by an arc of C.

The four next lemmas will allow us to prove that a minimal counter-example G to Theorem 1 is necessarily acircuitic.

Lemma 6. If G is a minimal counter-example to Theorem 1, then G does not contain a circuit all of whose vertices
have indegree one and outdegree two.

Proof. Suppose that there exists a circuit C = {−−→v0v1, −−→v1v2, . . . ,
−−−−−→vk−2vk−1, −−−−→vk−1v0} in G such that d+(vi) = 1 and

d−(vi) = 2 for i ∈ [0, k − 1] and let f ′ be any 4-adst-coloring of the graph G′ = G\C. Let {−−→viui |i ∈ [0, k − 1]} be the
set of arcs incident to C.

We extend the partial coloring f ′ to a 4-adst-coloring f of G as follows. Due to the orientation of G, C is the only
circuit of G that does not belong to G′. Therefore, we only need to color the arcs of C in such a way that C is not
bichromatic. We distinguish two cases depending on the colors of the arcs incident to C.

1. All arcs incident to C are colored with the same color. In this case, we color the arcs of C using the three other
remaining colors.

2. Two neighboring arcs incident to C have distinct colors. Suppose without loss of generality that f ′(−−→v0u0)= c0 and
f ′(−−→v1u1) �= c0. In this case, we set
(a) f (−−→v0v1) = c0,
(b) ∀i ∈ [1, k − 2], f (−−−→vivi+1) = ci for any ci /∈ {ci−1, f (−−−−−→vi+1ui+1)},
(c) f (−−−−→vk−1v0) = ck−1 for any ck−1 /∈ {c0, c1, ck−2}.

The circuit C is clearly not bichromatic since c0 �= c1 �= ck−1 �= c0.

In both cases, we obtain a 4-adst-coloring f of G, a contradiction. �

Lemma 7. If G is a minimal counter-example to Theorem 1, then G does not contain a circuit all of whose vertices
have indegree two and outdegree one.
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Fig. 2. The configuration of Case 1 of Lemma 7 and its reduction: (a) the graph G; (b) the graph G′.
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Fig. 3. The configuration of Case 2 of Lemma 7 and its reduction: (a) the graph G; (b) the graph G′.

Proof. Suppose that there exists a circuit C = {−−→v0v1, −−→v1v2, . . ., −−−−−→vk−2vk−1, −−−−→vk−1v0} in G (see Figs. 2(a) or 3(a)) such
that d+(vi) = 2 and d−(vi) = 1 for i ∈ [0, k − 1]. Let {−−→uivi |i ∈ [0, k − 1]} be the set of arcs incident to C. By
Lemma 5, the tails of two neighboring arcs incident to C are necessarily distinct.

We consider two cases depending on whether the vertices u0 and u2 are distinct or not. We first show that in
both cases there exists a reduction G′ of G (see Figs. 2(b) and 3(b))) which admits a 4-adst-coloring f ′ such that
f ′(−−→u0v0) �= f ′(−−→u1v1) �= f ′(−−→u2v2) �= f ′(−−→u0v0).

Case 1: u0 �= u2 (see Fig. 2(a)). Let f ′ be any 4-adst-coloring of the graph G′ obtained from G\C by identifying
v0, v1 and v2 in a single vertex v (see Fig. 2(b)). We clearly have f ′(−→u0v) �= f ′(−→u1v) �= f ′(−→u2v) �= f ′(−→u0v).

Case 2: u0 = u2 = u (see Fig. 3(a)). Note that by Lemma 4 we have u1 �= u. Let f ′ be any 4-adst-coloring of the
graph G′ = G\C (see Fig. 3(b)). Since we have at least three available colors for the arcs −→uv0 and −→uv2, we can choose
f ′ in such a way that f ′(−→uv0) �= f ′(−−→u1v1) �= f ′(−→uv2) �= f ′(−→uv0).

Assume now that f ′(−−→u0v0) = c1, f ′(−−→u1v1) �= c1 and f ′(−−→u2v2) �= c1. As in the previous lemma, C is the only circuit
of G that does not belong to G′. Therefore, we only need to color the arcs of C in such a way that C is not bichromatic.
We then set f as follows:

1. f (−−→v1v2) = c1,
2. ∀ i ∈ [2, k − 1], j = i + 1 (mod k), f (−−→vivj ) = ci for any ci /∈ {ci−1, f (−−→uivi), f (−−→ujvj )},
3. f (−−→v0v1) = c0 for any c0 /∈ {ck−1, c1, f (−−→u1v1)}.

Note that ck−1 �= f (−−→u0v0) = c1. Therefore, ck−1 �= c0 �= c1 �= ck−1 and C is not bichromatic. We thus obtain a
4-adst-coloring f of G, a contradiction. �

From the two previous lemmas, we get that if C is a circuit in a minimal counter-example to Theorem 1, there exist
two neighboring arcs incident with C having opposite directions (with respect to C). The next two lemmas will show
that this situation is also not possible.
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Fig. 4. The configuration of Lemma 8 and its reduction: (a) the graph G; (b) the reduction G′.

Lemma 8. If G is a minimal counter-example to Theorem 1, then G does not contain the configuration depicted in Fig.
4(a) where u1u, u2u, y1y, y2y, v1v, v2v, z1z and z2z are pairwise distinct.

Proof. Suppose that the graph G contains the configuration of Fig. 4(a), and let f ′ be any 4-adst-coloring of the graph
G′ obtained from G\{w, x} by adding the arcs −→uy and −→vz (see Fig. 4(b)). Suppose that f ′(−→uy) = a and f ′(−→vz) = b.

We extend the partial 4-adst-coloring f ′ to a 4-adst-coloring f of G as follows.
Let S1 =CG(−→uw, −→wx, −→xy)∪CG(−→vw, −→wx, −→xz) and S2 =CG(−→uw, −→wx, −→xz) ∪ CG(−→vw, −→wx, −→xy). We first set f (−→xy)=a

and f (−→xz)=b. Clearly, all circuits in G not belonging to S1 ∪S2 also belong to G′, and thus are already not bichromatic.
Moreover, by Observation 2, the circuits in S1 will not be bichromatic. Therefore, we only have to pay attention to the
circuits in S2.

We consider two cases depending on the colors a and b:
Case 1: a �= b. We set f (−→uw) = a, f (−→vw) = b and f (−→wx) = c for any c /∈ {a, b}. Since |{f (−→uw), f (−→wx), f (−→xz)}| =

|{a, c, b}| = 3 and |{f (−→vw), f (−→wx), f (−→xy)}| = |{b, c, a}| = 3, no circuit in S2 is bichromatic.
Case 2: a = b. We consider three subcases.

1. {−→uu1,
−→uu2,

−→vv1,
−→vv2} ∩ A(G) �= ∅. We assume without loss of generality that −→vv1 ∈ A(G). In this case, we

first set f (−→uw) = c for any c /∈ {a, f (uu1), f (uu2)} and f (−→vw) = d for any d /∈ {a, c, f (vv2)}. Now, we can
color the arc −→wx with the fourth color e /∈ {a, c, d}. We recall that f (−→xy) = f (−→xz). Therefore, |{f (−→uw), f (−→wx),
f (−→xz)}|=|{c, e, a}| = 3, |{f (−→vw), f (−→wx), f (−→xy)}| =|{d, e, a}| = 3, and so no circuit in S2 is bichromatic.

2. −→u1u, −→u2u, −→v1v, −→v2v ∈ A(G) and {f (−→u1u), f (−→u2u)} �= {f (−→v1v), f (−→v2v)}. Note that since a /∈ {f (−→u1u), f (−→u2u),
f (−→v1v), f (−→v2v)}, we necessarily have {f (−→u1u), f (−→u2u)} ∩ {f (−→v1v), f (−→v2v)} �= ∅. Therefore, we can assume
without loss of generality that f (−→u1u) = f (−→v1v) = c, f (−→u2u) = d and f (−→v2v) = e, with a, c, d, e being pairwise
distinct. In this case, we set f (−→uw) = e and f (−→vw) = d. Now, we can color the arc −→wx with the color c. Therefore,
|{f (−→uw), f (−→wx), f (−→xz)}| =|{e, c, a}| = 3, |{f (−→vw), f (−→wx), f (−→xy)}| =|{d, c, a}| = 3, and so no circuit inS2 is
bichromatic.

3. −→u1u, −→u2u, −→v1v, −→v2v ∈ A(G) and {f (−→u1u), f (−→u2u)} = {f (−→v1v), f (−→v2v)}.
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We assume without loss of generality that f (−→u1u) = f (−→v1v) = c and f (−→u2u) = f (−→v2v) = d, a �= c �= d �= a. We then
set f (−→vw) = a and f (−→uw) = e with e /∈ {a, c, d}.

Since −→uw and −→xz are colored with distinct colors, no circuit in CG(−→uw, −→wx, −→xz) is bichromatic.
We still have to set the color of the arc −→wx. We consider three subcases.

(a) {−→y1y, −→y2y} ∩ A(G) �= ∅. We assume without loss of generality that −→y1y ∈ A(G). So, if f (yy2) = c (resp.
f (yy2) = d), we set f (−→wx) = d (resp. f (−→wx) = c), otherwise (f (yy2) = e), we use either c or d. Therefore,
|{f (−→wx), f (−→xy), f (−→yy2)}| = 3, and thus no circuit in CG(−→vw, −→wx, −→xy) is bichromatic.

(b) −→yy1,
−→yy2 ∈ A(G) and {f (−→v1v), f (−→v2v)} �= {f (−→yy1), f (−→yy2)}.We assume without loss of generality thatf (−→yy2)=

e. Now, if f (−→yy1)=c (resp. f (−→yy1)=d) we set f (−→wx)=d (resp. f (−→wx)=c). This implies that for any i ∈ {1, 2},
|{f (−→wx), f (−→xy), f (−→yyi)}| = 3, and thus no circuit in CG(−→vw, −→wx, −→xy) is bichromatic.

(c) −→yy1,
−→yy2 ∈ A(G) and {f (−→v1v), f (−→v2v)} = {f (−→yy1), f (−→yy2)}. We can suppose without loss of generality that

f (−→yy1) = c and f (−→yy2) = d . We then set f (−→wx) = c. If there is no arc emanating from y1 and colored with a,
no circuit in CG(−→vw, −→wx, −→xy) is bichromatic. If there exists an arc emanating from y1 and colored with a, then
there exists at least one available color distinct from c that can be used to recolor the arc −→yy1 in such a way that
we forbid bichromatic circuits in CG(−→vw, −→wx, −→xy).

In all cases, we obtain a 4-adst-coloring f of G, a contradiction. �

In the configuration of the previous lemma, the arcs uu′
i and vv′

j on one hand, yy′
i and zz′

j on the other hand, are
necessarily distinct since, by Lemma 5, a minimal counter-example to Theorem 1 contains no triangle. The next lemma
deals with the case where two arcs uu′

i (or vv′
i) and yy′

j (or zz′
j ) are the same. Without loss of generality, we will

suppose that the arcs v′
1v and z′

1z are the same.

Lemma 9. If G is a minimal counter-example to Theorem 1, then G does not contain the configuration depicted on
Fig. 5(a).

Proof. Suppose that the graph G contains the configuration of Fig. 5(a) (in this configuration, two arcs linking a black
and a white vertex may be the same provided it does not produce a triangle). We consider two cases depending on the
orientation of the arc vz.

Case 1: −→vz ∈ A(G). Consider the graph G′
1 (see Fig. 5(b)) obtained from G\{w, x} by adding the arcs −→uv and−→zy (see Fig. 5(b)) and let f ′

1 be any 4-adst-coloring of G′
1. Assume that f ′

1(
−→uv) = a, f ′

1(
−→vz) = b and f ′

1(
−→zy) = c

(see Fig. 5(b)). We extend the partial 4-adst-coloring f ′ to a 4-adst-coloring f of G as follows. We first set f (−→uw) = a,
f (−→wx) = f (−→vz) = b and f (−→xy) = c (see Fig. 5(a)). By Observation 2, no circuit in G is thus bichromatic. We then
color the arcs −→vw and −→xz so that f (−→vw) /∈ {a, b, f (v′v)} and f (−→xz) /∈ {b, f (zz′)}.

Case 2: −→zv ∈ A(G). Consider the graph G′
2 obtained from G\{w, x} by adding the arcs −→uz and −→vy and let f ′

2 be
any 4-adst-coloring of G′

2. Assume that f ′
2(

−→uz) = a, f ′
2(

−→zv) = b and f ′
2(

−→vy) = c (see Fig. 5(c)). We extend the partial
4-adst-coloring f ′ to a 4-adst-coloring f of G as follows. As in the previous case, we set f (−→uw=a, f (−→wx)=f (−→vz)=b

and f (−→xy) = c (see Fig. 5(a)). By Observation 2, we only have to pay attention to the circuits in CG(−→vw, −→wx, −→xz).
We then color the arcs −→vw and −→xz in such a way that f (−→vw) /∈ {a, b, f (v′v)} and f (−→xz) = a (this can be done since
f ′(zz′) �= a). Since a �= b �= f (−→vw) �= a, no circuit in CG(−→vw, −→wx, −→xz)is bichromatic.
In both cases we obtain a 4-adst-coloring f of G, a contradiction. �

Using the previous lemmas, we can now prove our main result.

Proof of Theorem 1. By Lemmas 6–9, a minimal counter-example G to Theorem 1 does not contain any circuit.
Therefore, any 4-dst-coloring of G is a 4-adst-coloring of G. Moreover, it follows from the definitions that any k-edge-
coloring of the underlying undirected graph of G is a k-dst-coloring of G. Therefore, by Vizing’s theorem [10], the
graph G admits a 4-edge-coloring and thus a 4-adst-coloring, acontradiction. �

The bound given in Theorem 1 is optimal. To see that, consider the orientation
−→
K4 of the complete graph K4

given in Fig. 6. If we want to color this graph with three colors, the only way to color the arcs −→uw, −→xu, −→wx, −→vw
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Fig. 5. The configuration of Lemma 9 and its reductions: (a) the graph G; (b) the reduction G′
1; (c) the reduction G′

2.
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u

w

Fig. 6. The orientation −→
K4 such that adst(−→K4) = 4.

and −→xv is clearly the one depicted in Fig. 6. But in this case, we need one more color for the arc −→uv and thus,
adst(

−→
K4) = 4.

4. Discussion

In [3] Burnstein proved that every graph with maximum degree 4 admits an acyclic 5-vertex-coloring. Since the
line graph of a subcubic graph has maximum degree at most 4, we get that every subcubic graph admits an acyclic
5-edge-coloring and thus a 5-adst-coloring. Our result shows that this bound can be decreased to 4 when considering
oriented graphs and acircuitic arc-colorings.

We also provided an oriented cubic graph with acircuitic directed star arboricity 4. However, we do not know any
other example of a cubic oriented graph that does not admit a 3-adst-coloring.

From our result, we get that every oriented graph with maximum degree 3 admits a 4 · 24−1 = 32-arc-coloring.
However, every such graph admits an 11-vertex-coloring [9] and thus an 11-arc-coloring.

Using similar techniques, we are able to prove that every K4-minor free oriented graph G has acircuitic directed star
arboricity at most min{�(G), �−(G) + 2}, where �−(G) stands for the maximum indegree of G. This class of graphs
contains in particular outerplanar graphs. It would thus be interesting to determine the acircuitic directed star arboricity
of planar graphs.
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