
Towards A Multiagent-Based Distributed
Intrusion Detection System using Data Mining

Approaches

Imen Brahmi1, Sadok Ben Yahia1, Hamed Aouadi2, and Pascal Poncelet3

1 Faculty of Sciences of Tunis, Tunisia
sadok.benyahia@fst.rnu.tn

2 ISLAIB, Beja, Tunisia
Hamed aouadi@yahoo.fr

3 LIRMM UMR CNRS 5506,161 Rue Ada, 34392 Montpellier Cedex 5, France
poncelet@lirmm.fr

Abstract. The system that monitors the events occurring in a com-
puter system or a network and analyzes the events for sign of intrusions
is known as Intrusion Detection System (IDS). The IDS need to be accu-
rate, adaptive, and extensible. Although many established techniques and
commercial products exist, their effectiveness leaves room for improve-
ment. A great deal of research has been carried out on intrusion detec-
tion in a distributed environment to palliate the drawbacks of centralized
approaches. However, distributed IDS suffer from a number of drawbacks
e.g., high rates of false positives, low efficiency, etc. In this paper, we
propose a distributed IDS that integrates the desirable features provided
by the multi-agent methodology with the high accuracy of data mining
techniques. The proposed system relies on a set of intelligent agents that
collect and analyze the network connections, and data mining techniques
are shown to be useful to detect the intrusions. Carried out experiments
showed superior performance of our distributed IDS compared to the cen-
tralized one.

Keywords: Intrusion Detection System; Multi-agents; Misuse Detec-
tion; Anomaly Detection; Data Mining Techniques

1 Introduction

Since the cost of information processing and Internet accessibility is dropping,
more and more organizations are becoming vulnerable to a wide variety of cyber
threats. Therefore, it has become increasingly important to make our informa-
tion systems, especially those used for critical functions such as military and
commercial purpose, resistant to and tolerant of such attacks. Intrusion Detec-
tion Systems (IDS) are an integral part of any security package of a modern
networked information system. An IDS detects intrusions by monitoring a net-
work or system and analyzing an audit stream collected from the network or
system to look for clues of malicious behavior.

2 Brahmi et al.

Basically, two main IDS can be distinguished: anomaly detection and misuse
detection [9]. Indeed, misuse detection systems [9] use patterns of well known
attacks or weak spots of the system to match and identify known intrusions.
However, misuse detection techniques, in general, are not effective against novel
attacks that have no already matched rules or patterns [9]. On the contrary,
the anomaly detection systems flag activities, that significantly deviate from the
established normal usage profiles as abnormal or in other words as intrusions.
Anomaly detection techniques have been shown to be effective against unknown
or novel attacks since no prior knowledge about specific intrusions is required.
Nevertheless, the main moan that can be addressed to the anomaly detection
systems is that they tend to generate more false alarms than do misuse detection
systems, i.e., an anomaly can be simply a new normal behavior [32].

The conventional approaches to intrusion detection involving a central unit1
to monitor an entire system have several drawbacks [14]. To palliate them, the
dedicated research witnessed a wealthy number of works heading towards a dis-
tributed2 framework of monitors that carry out local detection and provide in-
formation to perform global detection of intrusions [14].

Nevertheless, current distributed IDS also suffer from some drawbacks [19].
In fact, most commercial IDS are built in a hierarchical architecture: a tree
structure with a control system at the top; information aggregation units at the
internal nodes; and sensor units at the leaf nodes. Within these systems, the
local intrusion detection components look for local intrusions and transmit their
analysis results to the upper levels of the hierarchy. The components at the upper
levels scrutinize the refined data from multiple lower level components and seek
to establish a global view of the system state. Such IDS are not truly distributed
systems, because of the centralized data analysis performed at the higher levels
of the hierarchy [14]. Moreover, these systems suffer from the problem of single
point of failure. In addition, most IDS detect attacks by analyzing information
from a single host, or a single network interface, at many locations throughout
the network. Thus, the designed feature of communication and cooperation be-
tween an IDS components are badly missing. This fact hampers the capability
to efficiently detect large-scale distributed attacks [14].

In the past twenty years, two of most prominent, dynamic and exciting re-
search areas: multi-agent systems [42] and data mining [12] have emerged and
developed separately. On the one hand, IDS needed to be able to resist attacks
on themselves, fault tolerant, highly adaptable and configurable [29]. Given these
characteristics, the multi-agent technology seemed to be an appropriate alter-
native for developing IDS [18]. Indeed, a distributed IDS based on multi-agent
technology can effectively improve the detection accuracy, the detection speed,
and enhance the system’s own security [19]. Several IDS based on the multi-agent

1 An IDS is considered as centralized whenever the analysis of data is performed at a
fixed number of locations, independent of how many hosts are being monitored [39].

2 An IDS is considered as distributed whenever the analysis of the data is performed in
a number of locations proportional to the number of hosts that are being monitored
[39].

MAD-IDS system 3

methodology were developed [4, 22, 19, 29, 39]. On the other hand, along with the
increasing complexity of networks, protecting a system against new and complex
attacks, while keeping an automatic and adaptive framework, is a thriving issue
within the intrusion detection domain. One answer to the problem could rely
on data mining techniques [6, 28]. Following this trend, a wide variety of data
mining techniques have been successfully applied into the intrusion detection
domain [3, 8, 20, 24, 37].

In this paper, we investigate another way of tackling the aforementioned prob-
lems. Thus, we introduce a new distributed IDS, called MAD-IDS (Multi-Agent
using Data mining based Intrusion Detection System). MAD-IDS is based on
the integration of the multi-agents technology and the data mining techniques.
In this respect, our proposed system uses a set of agents that can be applied to
a number of tasks, namely: data capturing, detecting the known and unknown
attack categories, extracting the set of signatures-based rules and ultimately
alerting the administrator. Moreover, MAD-IDS efficiently merge both anomaly
and misuse detection strategies by exploiting the advantages of the one to pal-
liate the limitations of the other and vice versa. The performance of the IDS
can be improved by combing anomaly and misuse analysis [10, 17, 33]. The main
thrust of our approach stands in the use of an unsupervised anomaly detec-
tion technique based on the clustering algorithm. Furthermore, given the very
high volume of connections observed per unit time, the association rule mining
technique is shown to be useful in enabling a security analyst to understand
and characterize emerging threats. The obtained model is more effective since
the integration of multi-agent technology and data mining techniques makes
an IDS more autonomous and efficient. Through extensive carried out experi-
ments on intrusion detection benchmark datasets and real life network traffic,
we show the effectiveness of our proposal in terms of (i) the detection delay; (ii)
the scalability-related criteria such as network bandwidth and system response
time; and (iii) the detection ability.

The remaining of the paper is organized as follows. Section 2 sheds light
on the related work that focuses on the integration of the multi-agent systems
with the data mining techniques. We introduce our new distributed intrusion
detection system based on the multi-agent technology in Section 3. We also
relate the encouraging results of the carried out experiments in Section 4. Finally,
Section 5 concludes and points out avenues of future work.

2 Scrutiny of the related work

In recent years and within the intrusion detection domain, an increasingly evi-
dent trend has emerged. The trend stands within the crossroads of multi-agent
systems and data mining. Its development has reached to the level as a new and
promising research area. In this respect, various distributed intrusion detection
architectures using the multi-agent design methodology and the data mining
techniques have been developed.

4 Brahmi et al.

One of the well known examples of applying a combination of multi-agents
methodology and the data mining techniques is JAM (Java Agents for Meta-
learning) [40]. The original idea behind JAM was the use of data mining tech-
niques to correlate knowledge to build better models for fraud and intrusion
detection. Thus, JAM uses association rules and frequent episode mining al-
gorithms to determine the relationships between the different fields in audit
trails. Moreover, a meta-learning classifier learns the signatures of attacks. For
instance, JAM seemed to be shared between multiple organizations. However, it
suffers from serious shortcomings that include the increase demand for runtime
system resources and the inability to combine multiple models computed over
distributed datasets with different schemas.

With the aim to improve the JAM’s approach, Helmer et al. introduced in [16]
a distributed IDS that integrates the data mining techniques, as well as mobile
and static agents. Indeed, static agents collect the information and transform
it in a common format. Besides, the mobile agents travel between monitored
systems in a network, to obtain the information from the static agents, clas-
sify, correlate and report it to a user interface and a database via mediators.
Finally, data mining agents use machine learning approaches towards an auto-
mated discovery of concise rules from system logs and audit data, to facilitate
building, monitoring, and analyzing intrusions on distributed systems. In con-
trary to JAM, the proposed IDS focuses on data mining within an organization.
It uses a different data representation that provides a single signature for each
process.

Motivated by the issue that most of the existing commercial network-based
IDS products are signature-based but not adaptive, Lui et al. [25] proposed an
adaptive system using various data mining techniques and agent architecture.
The data mining approaches include: the clustering, association and sequential
rule extraction algorithms. These algorithms are used to accurately capture the
actual behavior of the network traffic, and the mined portfolio is useful for
differentiating “normal” and “attack” traffics.

Zhang et al. [44] combined the advantages of agent-based distributed analy-
sis and clustering-based intrusion detection technique. The proposed approach
focuses on the use of the clustering algorithm: (i) to select the candidate anom-
alies at the level of IDS agents; and (ii) to choose the true attack at the central
IDS. However, the results of the clustering algorithm depend on the choice of
the values of the cluster width. Whenever the latter is an unappropriate value,
then the algorithm might label some intrusions as “normal”, and some normal
ones as “intrusion”.

Moreover, Rehák et al. [35] introduced a prototype of agent-based IDS de-
signed for deployment on high-speed backbone networks. The main contribution
of the system, called CAMNEP, is the integration of several anomaly detection
techniques by means of collective trust modeling within a group of collaborative
detection agents, each featuring a specific detection algorithm. These algorithms
maintain a model of expected traffic on the network and compare it with real
traffic to identify the discrepancies that are identified as possible attacks. How-

MAD-IDS system 5

ever, CAMNEP is not able to detect attacks that consist of few packets, e.g.,
Buffer Overflow attack.

Palomo et al. [30] proposed an approach that integrates the Self-Organization
Map (SOM) clustering approach within a multi-agents system. Indeed, the ap-
proach describes a multi-agents system with capabilities to analyze and discover
knowledge gathered from distributed agents. These enhanced capabilities are
obtained through a dynamic SOM and a multi-agents based communication sys-
tem. The central administrator agent dynamically obtains information about the
intrusions from the distributed agents and maintains a knowledge pool using a
proposed growing SOM.

Recently, Shyu and Sainani [38] proposed a data mining assisted multi-agent-
based IDS, called DMAS-IDS. DMAS-IDS employs three layers, called Host,
Classification and Manager layers. Each one of these layers comprises agents
capable of communicating the obtained results with each other. The agents are
facilitated with a supervised classification algorithm called the Collateral Rep-
resentative Subspace Projection Modeling (C-RSPM). However, C-RSPM is an
ineffective classification algorithm with datasets possessing a very high number
of classes, especially when the classes’ distributions are very similar. In addition,
the results of C-RSPM rely on a labeled training data instances which is not
suitable for an on-line IDS.

In this paper, we propose a new distributed IDS, called MAD-IDS, which in-
tegrates the data mining techniques and the multi-agent technology. Unlike most
of the surveyed works, where only one strategy is used for the detection of vari-
ous attacks; MAD-IDS exploits the advantages of both misuse and anomaly de-
tection strategies by merging them to remedy the corresponding disadvantages.
Particularly, MAD-IDS focuses on the use of: (i) an unsupervised anomaly-based
clustering technique to detect the unknown intrusions; and (ii) an association
rule mining algorithm to summarize the network connections that are classified
as anomalous.

3 The MAD-IDS system

The distributed structure of MAD-IDS is composed of different cooperative,
communicant and collaborative agents for collecting and analyzing massive amounts
of network traffic, called respectively: Sniffer, Filter, Misuse Detection, Anom-
aly Detection, Rule Mining and Reporter Agent. Figure 1 sketches the overall
architecture of MAD-IDS.

The processing steps of MAD-IDS can be summarized as follows:

1. The Sniffer Agent is the first agent that connects to the network and gathers
the packets;

2. The gathered packets are send to the Filter Agent which filters them;
3. The Misuse Detection Agent analyzes the collected and filtered packets, to

detect the network connections that correspond to attacks for which signa-
tures are available, and then to remove them from further analysis;

6 Brahmi et al.

Fig. 1. The architecture of MAD-IDS

4. The remaining network packets are fed into an Anomaly Detection Agent,
which uses the clustering technique to detect the abnormal connections;

5. The Rule Mining Agent aims at providing a concise representation of the
network traffic. Typically, it summarizes the network connections that are
selected as anomalous by the Anomaly Detection Agent. The obtained set
of generic association rules can be periodically fed to the Misuse Detection
Agent to update its signature database allowing the detection of known
attacks;

6. Finally, the Reporter Agent generates reports and logs.

Each of these agents is individually described in the following subsections.

3.1 The Sniffer Agent (SA)

A sniffer is a device that is able to intercept and log traffic passing over a network.
It allows the capture of each packet and, if needed, it analyzes its content. The
traffic can be IP, IPX, or AppleTalk network packets. In general, the sniffing can
be used to: i) analyze network problems; ii) detect network intrusion attempts;
and iii) documenting regulatory compliance through logging all perimeter and
endpoint traffic; etc.

Firstly, the Sniffer Agent (SA) captures the incoming packets by reading
them from the network card in the machine and caches them in the memory at
the interval of every 5 seconds. The benefits of this kind of agents include: i) the

MAD-IDS system 7

cloning and the distribution throughout the network; and ii) the duplication in
order to lighten the network charge. Finally, the captured packets will be the
input of the next agent, i.e., the Filter Agent.

3.2 The Filter Agent (FA)

A distributed IDS must undertake to analyze a huge volumes of events collected
from different sources around the network. Consequently, the FA filters the pack-
ets already captured by the SA. It will treat these crude packets by achieving
the following tasks:

– Distinguish the various fields of the packets collected in crude such as desti-
nation address and the protocol;

– Sort the packets by the category of packets (TCP, UDP, ICMP, etc.) con-
cerned by a specific kind of intrusion.

The FA performs its tasks as a pretreatment phase, which precedes the analy-
sis phase carried out by the following agent.

3.3 The Misuse Detection Agent (MDA)

This kind of agents analyzes the packets captured by the Sniffer Agent and
then pre-processed by the FA. In fact, MDA searches for attack signatures3 in
these packets. Hence, if there is a similarity between the filtered packets and
attacks signatures, then the agent raises an alert to the Reporter Agent, and
then removes these anomalous packets from further analysis.

Within MAD-IDS, the MDA detects known attacks in the network connec-
tions, using a rule set based on the intruder signatures as well as an efficient
pattern-matching using the Rete algorithm [13]. Attack signatures are a specific
rule set provided by the Rule Mining Agent. Thus, each rule has the following
structure:

1. Rule antecedent part : Contains the basic information about the rule, includ-
ing:
a Protocol: The protocol used by the packet being analyzed.
b Source information: IP address and port of the source computer that

originated the packet. It is also possible to ignore these addresses to
apply the rule on all packets irrespective of the IP address or the port
number;

c Destination information: IP address and port of the destination com-
puter in the packet.

2. Rule conclusion part : Indicates the alert that will be generated whenever the
rule antecedent conditions are met.

3 An attack signature is a known attack method that exploits the system vulnerabili-
ties and causes security problem.

8 Brahmi et al.

Example 1. Let consider the rule: {Protocol=TCP, Src IP=206.163.37.95, Dst Port
= 139}⇒{Attack}. This rule will generate an alert, each time a packet using the
IP source {206.163.37.95} and the destination port {139} is detected for any IP
destination and for any source port.

Even thought, the known attacks are detected, it remains nevertheless the
problem of the new attacks detection. In this respect, to protect a system against
new and complex attacks, while building an automatic IDS, researchers are in-
creasingly looking at using data mining techniques for anomaly detection [7,
32–34]. In particular, the clustering technique can be considered as one of the
most important unsupervised learning algorithms [5, 7, 15, 45].

Thus, we introduce an anomaly detection agent based on the clustering tech-
nique. The agent is described in the following.

3.4 The Anomaly Detection Agent (ADA)

The Anomaly Detection Agent provides the combination of distributed IDS with
the anomaly-based clustering technique.

Clustering is a widely used data mining technique [11, 26] which groups sim-
ilar items, to obtain meaningful groups/clusters of data items in a data set.
These clusters represent the dominant modes of behavior of the data objects
determined using a similarity measure. A data analyst can get a high level un-
derstanding of the characteristics of the data set by analyzing the clusters.

Clustering provides an effective solution to discover the expected and un-
expected modes of behavior and to obtain a high level understanding of the
network traffic [7]. The main advantage that clustering affords is the ability to
learn and detect intrusions in the audit data, while not requiring the system ad-
ministrator to provide explicit descriptions of various attack classes/types [32].
The idea behind this technique is that the amount of normal connection data is
usually overwhelmingly larger than the number of intrusions [15, 32]. Whenever
this assumption holds, the anomalies and attacks can be detected based on clus-
ter sizes, i.e, large clusters correspond to normal data, and the rest of the data
points, which are outliers, correspond to attacks [15, 32].

Indeed, the ADA detects the abnormal packets using an unsupervised anomaly-
based clustering algorithm that we introduce, calledAD-Clust (Anomaly Detection-
based Clustering) [5]. AD-Clust combines two prominent categories of cluster-
ing, namely: distance-based as well as density-based (e.g. K-means [26] and
DBSCAN [11], respectively). It exploits the advantages of one to palliate the
limitations of the other and vice versa. On the one hand, K-means is fast, easy
to implement and not memory greedy. However , it is easily affected by the noise4

and suffers from a greater time complexity, which becomes an extremely impor-
tant factor within intrusion detection due to the very large dataset sizes [34].
Moreover, the number of clusters dependency and the degeneracy constitute the
4 A noisy data point does not belong to any cluster properly [11].

MAD-IDS system 9

drawbacks that hamper the use of K-means for anomaly detection [15]. On
the other hand, while the density-based clustering can solve the problem of
the number of clusters dependency and handles noise well, it is not suitable as
a stand-alone tool for intrusion detection. Indeed, the density-based clustering
produces the suboptimal partitions of the dataset and puts lots of instances into
noises which are dropped out, which makes the detection rates and the false
positif rates worse [45]. Thus, the AD-Clust algorithm enables DBSCAN to
efficiently handle very large data and improves the quality of the K-means al-
gorithm by removing the noisy data and solving the problem of the number of
clusters dependency.

The processing steps of our algorithm AD-Clust can be summarized as
follows [5]:

1. Extraction of the density-based clusters that are considered as candidate
initial cluster centers. The density-based clustering is used as a preprocessing
step for the AD-Clust algorithm;

2. Compute the Euclidean distance between the candidate cluster center and
the instance that will be assigned to the closest cluster. For an instance xi

and a cluster center zi, the Euclidean distance is defined as:

distance(xi, zi) =

����
n�

i=1

(xi − zi)2 (1)

3. The size of a neighborhood of instances is specified by an input parameter.
We use k� parameter to distinguish it from the k parameter used by the
K-means algorithm. Hence, k� specifies the minimal number of instances
in a neighborhood and controls the granularity of the final clusters of the
clustering-based density. If k� is set to a large value, then a few large clusters
are found. To reduce the number of candidate clusters k� to the expected
number k, we can iteratively merge the two most similar clusters. Otherwise,
if k� is set too small, then many small clusters will be generated. The clusters
will be split, new clusters will be created to replace the empty ones and the
instances will be re-assigned to existing centers. This iteration will continue
until there is no empty cluster. Consequently, the outliers5 of clusters will be
removed to form new clusters, in which instances are more similar to each
other. In this way, the value of initial cluster centers k will be determined
automatically by splitting or merging clusters;

4. Within the detecting phase, the AD-Clust algorithm performs the detection
of intrusions. Thus, for each novel instance I the algorithm proceeds as
follows:
(a) Compute the Euclidean distance and find the cluster with the shortest

distance to I.

5 An outlier is defined as an object where an instance p of the dataset is further than
distance D from the object, where p and D are parameters specified by the users.

10 Brahmi et al.

(b) Classify I by the category of the closest cluster. Clearly, if the distance
between I and the cluster of “normal” is the shortest one, then I will be
a normal instance. Otherwise, I is an intrusion.

The pseudo-code is shown by Algorithm 1 and the used notations are sum-
marized in Table 1.

Table 1. List of used notations in the AD-Clust algorithm.

D : The network dataset which contains n packets {p1, ..., pn}.
ε : The Euclidean neighborhood radius.
η : The minimum number of neighbors required in ε.neighborhood to form a cluster.
N : The set of points in ε.neighborhood of pi

C : The set of clusters that outputs the algorithm.
Z : The final cluster centers.
k : The number of clusters to be found.
C’ : The clusters initially found by density based clustering algorithm.
Z� : The initial cluster centers.
k� : The number of clusters initially found by density based clustering algorithm.

Firstly, the algorithm starts by the use of the density-based clustering al-
gorithm to produce a set of initial candidate clusters (cf. lines 2-14). Thus, it
determines the neighborhood of each instance. If the neighborhood of instances
is smaller than η, then a new cluster is created. Otherwise, the current instance
is assigned to noise. The resulted clusters are considered as candidate initial
cluster centers. The algorithm calculates the distance between the instances and
the centers of the candidate clusters. Next, each instance will be assigned to
the closest cluster (cf. lines 15-17). In addition, AD-Clust splits or merges the
clusters to automatically determine the value of initial cluster centers k (cf. lines
18-26). Finally, a new set of initial cluster centers is obtained and used in the k-
means algorithm to classify the instances into ‘normal’ clusters and ‘abnormal’
clusters. (cf. lines 27-28).

Once the anomaly network connections are selected, the Rule Mining Agent
is ready to carry out its task, which is described in the following subsection.

3.5 The Rule Mining Agent (RMA)

Even thought improving the detection rate and reducing the false alarm rate for
attacks is an objective of paramount importance for an IDS, this task alone is
not sufficient if the rate of network traffic is very high. For example, suppose a
security analyst examines the output of an anomaly detector every 10 minutes
during which two million connections are established. Even if a hundred of these
connections are reported as anomalous, it is unfeasible for the analyst to examine

MAD-IDS system 11

Algorithm 1: The AD-Clust algorithm

Input: D: A network dataset.
Output: C: The set of classified clusters.

Begin1

C’ :=0 ;2

k� :=0 ;3

Foreach pi ∈ D do4

Compute the number of points N in the neighborhood of pi defined5

with ε;
If N < η then6

Mark pi as noise ;7

Else8

Add pi to cluster C’ ;9

C’ := C’ + 1 ;10

k� := k� + 1 ;11

return (N) ;12

// Now we obtain C’ clusters based on density.13

Foreach cluster C’ do14

Find the cluster centers z�
j by computing the mean ;15

Assign each instance pi to the closest cluster such that C’(pi) =16

min distance(pi, z�
j);

repeat17

If k� > k then18

Select two clusters based on density and join them;19

Find the new cluster center z�
j ;20

// Finally we will have k centers21

Else22

Select a cluster based on density and split it using the K-means23

clustering algorithm ;
Find the new cluster center z�

j ;24

//Finally we will have k centers ;25

until achieving k clusters;26

Z :=Z�;27

C := K-means(k, Z, D);28

End29

them in 10 minutes. Thus, there is a need for an approach whereby anomalous
connections can be summarized into patterns that capture the essence of the
anomalous behavior. In addition to making the human analyst’s task manage-
able, this also had the advantage of providing templates from which signatures
of novel attacks can be built for augmenting the database of signature-based
IDSs.

In this respect, the RMA uses the association rule mining to achieve sum-
marization of detected attacks. The formalization of the association rule mining
problem was initially introduced by Agrawal et al. [1]. Given a set of records, the

12 Brahmi et al.

objective of mining association rules is to extract all rules of the form X ⇒ Y
that satisfy a user-specified minimum support and minimum confidence thresh-
olds. In fact, X is the premise of the rule and Y is its conclusion.

In the intrusion detection context, the association rule mining have been
found to be valuable for analyzing a network traffic data [24, 41, 43]. Often times,
the number of anomalous connections flagged by an IDS can be very large, thus
requiring analysts to spend a large amount of time interpreting and analyzing
each connection. By applying the association rule mining techniques, analysts
can obtain a high-level summary of anomalous connections [7].

Generally, standard association rule mining technique relies on a user-specified
minimum support threshold to eliminate patterns that occur infrequently in the
data. For a network intrusion data, the proportion of network traffic that cor-
responds to an attack is considerably smaller than that of normal traffic [7].
As a result, we should set the minsupp6 value to a very low value to detect
patterns involving the attack class [23]. However, this fact will degrade the per-
formance of the association rule mining algorithm considerably and produces an
overwhelming large number of rules for the normal class.

Although the association rules can detect sets of features that occur fre-
quently in the network traffic data, the number of mined rules can be quite
large, depending on the value of minsupp, which affects the speed of IDS and
hampers its whole performance [7]. Some of these rules are redundant since they
contains patters that correspond to the subsets of other patterns.

Example 2. Given two association rules:

1. R1: Protocol=TCP, Dst Port=8888 ⇒ Attack
2. R2: Dst Port=8888 ⇒ Attack

The first association rule is more descriptive than the second one. The premise
of R2, Dst Port=8888, is a subset of the premise of R1. If the support of these
two rules is close, then R2 is considered as redundant.

As consequence, to generate association rules without redundancy, we apply
the generic association rule basis, which provides a concise representation of as-
sociation rules introduced in [31]. Particularly, we apply the Informative Generic
Basis (IGB) [2]. In addition to the elimination of redundancy, the application
of the IGB basis during an intrusion detection process provides the increase of
the overall coverage of detectable attacks.

Thus, once the anomalous connections are detected by the ADA, then the
RMA is ready to mine the generic association rule set using IGB. The benefit is
the reduction of information overloading for the security analysts. The extracted
rule set may be a candidate signature-based rule for addition to the signature
basis used by the MDA. This means that the database of signatures is updated
regularly in order to ensure an adequate protection.

6 minsupp is the minimum support threshold pre-defined by the user.

MAD-IDS system 13

3.6 The Reporter Agent (RA)

The MDA and the ADA report their findings to the RA which transmits them to
the administrator. Whenever an intrusion is detected, it will send an alert to the
system administrator. This alert can be a message on the screen or a message
to a centralized machine or an alert file.

4 Experimental results

In order to assess the overall performance of MAD-IDS in a realistic scenario,
a prototype of the proposed architecture was implemented using Sun’s Java
Development Kit 1.4.1, the well known platform JADE 3.7, the Eclipse and the
JPCAP 0.7.

JADE (Java Agent DEvelopment Framework)7 is a software Framework,
which simplifies the implementation of multi-agent systems. The agent platform
can be distributed by moving agents from one machine to another one.

In addition, JPCAP (Java library for CAPturing and sending network Pack-
ets)8 is an open source library for capturing and sending network packets.

All experiments were carried out on equivalent machines equipped with a
3GHz Pentium IV and 2GB of main memory running under Linux Fedora Core
6.

Through the carried out experiments, we have a twofold aim: first, we focus
on the assessment of the AD-Clust detection ability. Second, we have to stress
on evaluating the overall performance of the MAD-IDS system.

4.1 AD-Clust performances assessment

To assess the performance of the AD-Clust algorithm, we choose to compare
AD-Clust vs. K-means and DBSCAN algorithms respectively. During exper-
iments, we partly use the common benchmark, namely, the KDD99 dataset 9.
The dataset provides a standard corpus for evaluating intrusion detection algo-
rithms. It also introduced more insider attacks. The attacks can roughly split
into four main categories:

1. DoS (Denial of Service);
2. R2L (Remote to User);
3. U2R (Unauthorized Access to Root);
4. Probing (Surveillance and Probing).

Indeed, Table 2 shows the distributions of record types in training and test-
ing datasets, used during our experiments. The first row shows the numbers
of normal network packets, while the second row gives the distributions of the
network attacks.
7 Available at: http://jade.tilab.com
8 Available at: http://netresearch.ics.uci.edu/kfujii/jpcap/doc/
9 Available at: http ://www.ll.mit.edu/IST/ideval/data/data index.html

14 Brahmi et al.

Table 2. The considered KDD99 datasets.

Record Type Training Set Testing Set

Normal 897277 1260592

Intrusion 116743 180436

Total 1014020 1441028

Generally, to evaluate the detection ability of the intrusion detection algo-
rithms, two interesting metrics are usually of use [34]: the Detection Rate (DR)
and the False Positive Rate (FR).

1. The DR equals the number of correctly detected intrusions divided by the
total number of intrusions in the dataset;

2. The FR equals the total number of normal instances that were incorrectly
considered as attacks divided by the total number of normal instances in the
dataset.

The value of the DR is expected to be as large as possible, while the value of
the FR is expected to be as small as possible.

Table 3 sketches the DR and FR for the considered datasets, using, respec-
tively the K-means, the DBSCAN and the AD-Clust algorithms.

Table 3. The DR and FR of AD-Clust vs. K-means and DBSCAN.

Algorithm k DR (%) FR (%)

K-means 5 26.29 0.32
23 57.52 3.09
300 87.98 8.90
600 97.19 12.50
700 99.11 15.92

DBSCAN 621 94.64 24.58
AD-Clust 621 99.12 1.41

Indeed, we test K-means using different numbers of the initial cluster centers
k. According to Table 3, we remak that both DR and FR increase as far as the
number of clusters increases. However, this relationship is not suitable, since
within an effective anomaly detection algorithm the FR should decreases along
with the increase of both number of clusters and DR [15]. In addition, whenever
the values of k are equal to 5, 23 and 300, the DR value is low. Otherwise, when
the value of k is equal to 600, the DR increases to 97%. The increase of DR is
due to the partition optimal of K-means. Thus, within the K-means algorithm,
we have to try different values of k in order to find the optimal one.

In addition, Table 3 shows that the DR of AD-Clust is 99.12% and is greeter
than that of DBSCAN. The FR of AD-Clust is only 1.41% and is by far lower

MAD-IDS system 15

than that of DBSCAN. The bad results of DBSCAN can be explained by the
suboptimal partitions of the dataset and the consideration of several instances
as noises which are dropped out.

Finally, Table 3 shows that theAD-Clust algorithm automatically partitions
the same data set into 621 clusters. Moreover, it allows the reduction of FR along
with the increase of DR.

During the following experiments, we set the value of k of K-means at the
optimal value, i.e. 621.

The rates DR and FR change in relation to each other. Whenever the DR is
the highest, the FR is the lowest, and vice versa. Consequently, these two metrics
can be of use to plot a ROC curve (Receiver Operating Characteristic) [27].
Figure 2 (Right) compares the ROC curve of AD-Clust vs. those of K-means
and DBSCAN. The ROC curve assesses the accuracy of the intrusion detection
algorithm [27]. Thus, we conclude that AD-Clust is more accurate than K-
means and DBSCAN.

(Right) ROC cruves (Left) The scalability

 70

 75

 80

 85

 90

 95

 100

 0 2 4 6 8 10

D
et

ec
tio

n
R

at
es

 (%
)

False Positif Rates (%)

K-means
DBSCAN
AD-Clust

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10000 20000 30000 40000 50000

Ti
m

e
(s

ec
)

Number of instances

K-means
DBSCAN
AD-Clust

Fig. 2. Accuracy and scalability of AD-Clust vs. K-means and DBSCAN.

In addition, we tested the scalability of AD-Clust, DBSCAN and K-means.
Figure 2 (Left) plots the running time against different numbers of data points.
These results show that the running time of the three algorithms linearly in-
creases with the number of instances. Thus, we can conclude that AD-Clust is
faster than both DBSCAN and K-means.

4.2 Overall Performance of the MAD-IDS System

In the following, the performance of the entire MAD-IDS architecture will be
evaluated. In this respect, we used machines that were connected via a switch,
thus forming a switched network. For a realistic testing environment, attacks
needed to be interjected into a volume of network traffic. Consequently, we sim-
ulated attacks using the well known tool Metasploit10 version 3.5.1. Metasploit
is both a penetration testing system and a development platform for creating
10 Available at: http://www.metasploit.com/

16 Brahmi et al.

security tools. It is used by the security researchers world-wide to test an IDS.
The description of the eight different attack types used in the evaluation is shown
in Table 4.

Table 4. The simulated attacks at a glance.

Attack Name Description

attack1: DoS
Smurf

ICMP echo reply flood, caused by an ICMP echo packet with
spoofed address (of victim) sent to a network broadcast address.

attack2:
Backdoor
Back Office

A remote administration tool that allows almost complete con-
trol over a computer by the remote attacker.

attack3:
SPYWARE-
PUT Hijacker

The spyware Hijacker is a type of malware that can be installed
on computers, and which collects small pieces of information
about users without their knowledge.

attack4:
Nmap TCP
Scan

Scans many ports to determine available services on a single host
using UDP packets.

attack5: Fin-
ger User

Allows an attacker to disrupt a network using the redirection
capability in the finger daemon.

attack6:
RPC Linux
Statd Over-
flow

Buffer overflow vulnerability exists making it possible for mal-
formed requests by an attacker to be devised giving root privi-
leges.

attack7:
DNS Zone
Transfer

DNS server provides information for all DNS resource records
registered with DNS server that can be used by attackers to
better understand a network.

attack8:
HTTP IIS
Unicode

An attacker could send a specially crafted URL containing Uni-
code characters to access files and folders on the Web server with
the privileges of the user account.

We have conducted evaluations in terms of (i) the detection delay; (ii) the
scalability-related criteria such as network bandwidth and system response time;
and (iii) the detection ability. During the evaluations, we compare the results
of the MAD-IDS system vs. that of Snort. Snort is an open source network
IDS. It is able to perform the analysis of network traffic in a real-time using
a rule-driven language, which combines the benefits of signature, protocol and
anomaly based inspection methods [36].

Multi-agents vs. centralized IDS Firstly, we answer to the question: why the
realization of the multi-agents IDS is advantageous ? Indeed, Figure 3 (Right)
plots the detection delay against the number of packets, using the MAD-IDS
and Snort systems. Clearly, the results show that the detection delay of both

MAD-IDS system 17

systems linearly increases with the number of packets. Thus, the figure highlights
that our proposed system MAD-IDS is faster than the system Snort.

(Right) (Left)

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000

D
et

ec
tio

n
Ti

m
e

(s
ec

)

Number of packets

SNORT
MAD-IDS

 0

 0.5

 1

 1.5

 2

 0 200 400 600 800 1000

D
et

ec
tio

n
Ti

m
e

(s
ec

)

Number of packets

Centralized
MAD-IDS

Fig. 3. Multi-agents vs. centralized IDS in terms of detection delay.

Moreover, we also implemented a centralized IDS with local sensor that for-
ward filtered data to a central analysis node. Figure 3 (Left) shows the detection
time needed, using the MAD-IDS system vs. that of need by a centralized one.
Thus, our proposed distributed IDS is much faster than the centralized one. This
can be explained by the fact that agents operate directly on the host, where an
action has to be taken, their response is faster than systems where actions were
taken by the central coordinator.

Bandwidth consumption and response time It is known that two of the
most important elements of network performance are bandwidth and latency.
On the one hand, the bandwidth is the transmission capacity of the network,
usually measured in bits per second.

On the other hand, the network latency is the amount of time it takes for a
packet to travel from the source to the destination. We use latency to describe
the amount of time it takes once an attack takes place till it gets resolved.

As depicted in Figure 4 (Right), the maximum bandwidth consumed by
MAD-IDS is 0.06 Mbits/sec, which is very low as well. This makes our pro-
posed system low cost which is definitely a desirable feature for any distributed
system.

Figure 4 (Left) illustrates the network latency, i.e., the response times re-
quired by MAD-IDS with respect to the attack types. According to this figure,
the detection of all attack types, on average, result in very similar and low re-
sponse time. This is definitely a desirable feature.

In conclusion, it is clear from the obtained results that in our proposed ar-
chitecture, the performance of the system will not deteriorate too much with
the increase in the number of attacks, which is justified by its low bandwidth
consumption and quick response time behavior. Also, in case of more machines
are connected to the network, the MAD-IDS system still withstand the load and

18 Brahmi et al.

(Right) Bandwidth Consumption (Left) Network latency

 0.054

 0.055

 0.056

 0.057

 0.058

 0.059

 0.06

at
ta

ck
8

at
ta

ck
7

at
ta

ck
6

at
ta

ck
5

at
ta

ck
4

at
ta

ck
3

at
ta

ck
2

at
ta

ck
1

M
bi

ts
/s

ec

 35

 35.5

 36

 36.5

 37

 37.5

at
ta

ck
8

at
ta

ck
7

at
ta

ck
6

at
ta

ck
5

at
ta

ck
4

at
ta

ck
3

at
ta

ck
2

at
ta

ck
1

R
es

po
ns

e
Ti

m
e

(s
ec

)

Fig. 4. The bandwidth Consumption and the network latency of MAD-IDS.

swiftly deliver the results.

Detection ability According to Figure 5 (Right), we can see that the false
alarm rates of our adaptive system is significantly lower compared to that of
Snort. For instance, adaptive mechanisms used by the agents can change nor-
mal profiles correspondingly, enabling MAD-IDS to better suit the environment.
Consequently, false alarms can be reduced correspondingly.

(Right) False alarm rates (Left) Detection rates

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

at
ta

ck
8

at
ta

ck
7

at
ta

ck
6

at
ta

ck
5

at
ta

ck
4

at
ta

ck
3

at
ta

ck
2

at
ta

ck
1

Fa
ls

e
po

si
tif

 R
at

es
 (%

) MAD-IDS
Snort

 70

 75

 80

 85

 90

 95

 100

 105

at
ta

ck
8

at
ta

ck
7

at
ta

ck
6

at
ta

ck
5

at
ta

ck
4

at
ta

ck
3

at
ta

ck
2

at
ta

ck
1

D
et

ec
tio

n
R

at
es

 (%
)

MAD-IDS
Snort

Fig. 5. Detection ability of MAD-IDS vs. Snort.

This result is confirmed by Figure 5 (Left) that shows that the detection
rates of MAD-IDS is by far better than Snort configuration.

Knowing that a main challenge of existing IDSs is to decrease the false alarm
rates, the main benefit of our adaptive system is to lower the false alarm rate,
while maintaining a good detection rate.

MAD-IDS system 19

5 Conclusion

In this paper, a novel distributed IDS, called MAD-IDS was introduced. MAD-
IDS incorporates the desirable features of the multi-agents methodology with
the highly accurate data mining techniques. On the one hand, the multi-agent
system is efficient for enhancing security, flexibility and cooperative detective
ability of distributed IDS. On the other hand, the MAD-IDS system uses the
clustering and the association rules techniques to analyze large network packets
more intelligently and automatically. In fact, the anomaly-based clustering tech-
nique, particularly the AD-Clust algorithm, will try to automatically determine
which data instances fall into the normal class and which ones are intrusions.
The AD-Clust algorithm was able to detect a large number of intrusions while
keeping the false rate reasonably low. As consequence, our system addresses the
specific limitations described by the central approaches and the monolithic sys-
tems. It performs a distributed search and analysis using multi-agent system,
eliminating then the single point of failure drawbacks. In addition, MAD-IDS
guarantees that the system can be extended in a straightforward manner. For
example, new task agents can be added after the MAD-IDS is initially deployed,
without requiring any changes to the existing set of agents. The experimental re-
sults showed that MAD-IDS is an efficient system that yields promising results,
indicating a high accuracy, a good scalability and a low response time.

Future work include the following issues:

– First, the network data is temporal (i.e., streaming) in nature, and the de-
velopment of algorithms for mining data streams is necessary for building
real-time IDS;

– Second, the low frequency of computer attacks requires modification of stan-
dard data mining algorithms for their detection;

– Finally, new approaches have been suggested using ontologies as a way to
represent and understand the attacks domain knowledge, expressing the IDS
much more in terms of their domain and performing intelligent reasoning [21].
Thus, as future work, we need to integrate ontology within MAD-IDS. This
fact can provide agents with a common interpretation of the environment
signatures which are matched through the data structure based on the MDA.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules Between Sets
of Items in Large Databases. In Proceedings of the International Conference on
Management of Data, Washington, D.C., pages 207–216, 1993.

2. S. Ben Yahia, G. Gasmi, and E. Mephu Nguifo. A New Generic Basis of Factual
and Implicative Association rules. Intelligent Data Analysis, 13(4):633–656, 2009.

3. Y. Bouzida and F. Cuppens. Detecting Known and Novel Network Intrusion. In
Proceedings of the 21st IFIP International Conference on Information Security,
Karlstad, Sweden, pages 258–270, 2006.

20 Brahmi et al.

4. I. Brahmi, S. Ben Yahia, and P. Poncelet. A Snort-Based Mobile Agent For
A Distributed Intrusion Detection System. In Proceedings of the International
Conference on Security and Cryptography, Seville, Spain, 2011. To appear.

5. I. Brahmi, S. Ben Yahia, and P. Poncelet. AD-Clust: Dtection des Anomalies
Basée sur le Clustering. In Atelier Clustering Incrémental et Méthodes de Détection
de Nouveauté en conjonction avec 11ème Conférence Francophone d’Extraction et
de Gestion de Connaissances EGC 2011, Brest, France, pages 27–41, 2011.

6. A. Chalak, R. Bhosale, and N. D. Harale. Effective data mining techniques for in-
trusion detection and prevention system. In Proceedings of the International Con-
ference on Advanced Computing, Communication and Networks’11, Chandugari,
India, pages 1130–1134, 2011.

7. V. Chandola, E. Eilertson, L. Ertoz, G. Simon, and V. Kumar. Data Mining
for Cyber Security. In A. Singhal, editor, Data Warehousing and Data Mining
Techniques for Computer Security, pages 83–103. Springer, 2006.

8. D. Christine, J. Hyun Ik, and Z. Wenjun. A New Data-Mining Based Approach
for Network Intrusion Detection. In Proceedings of the 7th Annual Conference
on Communication Networks and Services Research, Moncton, New Brunswick,
Canada, pages 372–377, 2009.

9. H. Debar, M. Dacier, and A. Wespi. Towards a Taxonomy of Intrusion-Detection
Systems. Computer Networks, 31:805–822, 1999.

10. O. Depren, M. Topallar, E. Anarim, and M.K. Ciliz. An Intelligent Intrusion
Detection System (IDS) for Anomaly and Misuse Detection in Computer
Networks. Expert System with Applications, 29:713–722, 2005.

11. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the
2nd International Conference on Knowledge Discovery and Data Mining, Portland,
Oregon, pages 226–231, 1996.

12. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD Process of Extracting
Useful Knowledge from Volumes of Data. Communications of the ACM, 39(11):27–
34, 1996.

13. C. Forgy. Rete: A Fast Algorithm for the many Pattern/many Object Pattern
match Problem. Artificial Intelligence, 19(1):17–37, 1982.

14. R. Gopalakrishna and E.H. Spafford. A Framework for Distributed Intrusion
Detection using Interest Driven Cooperating Agents. In Proceedings of the 4th
International Symposium on Recent Advances in Intrusion Detection, Davis, CA,
USA, 2001.

15. Y. Guan, A. Ghorbani, and N. Belacel. Y-Means: A Clustering Method for
Intrusion Detection. In Proceedings of Canadian Conference on Electrical and
Computer Engineering; Montréal, Québec, Canada, pages 1083–1086, 2003.

16. G. Helmer, J.S.K. Wong, V.G. Honavar, and L. Miller. Automated Discovery of
Concise Predictive Rules for Intrusion Detection. Journal of Systems and Software,
60(3):165–175, 2002.

17. T. Helmy. Adaptive Ensemble Multi-Agent Based Intrusion Detection Model. In
K. Ragab, T. Helmy, and A. E. Hassanien, editors, Developing Advanced Web Ser-
vices through P2P Computing and Autonomous Agents: Trends and Innovations,
pages 36–48. IGI Global, 2010.

18. Á. Herrero and E. Corchado. Multiagent Systems for Network Intrusion Detection:
A Review. In Proceedings on the Computational International in Security for
Information Systems, AISC 63, Berlin, Heidelberg, pages 143–154, 2009.

MAD-IDS system 21

19. W. Huang, Y. An, and W. Du. A Multi-Agent-based Distributed Intrusion
Detection System. In Proceedings of the 3rd International Conference on Advanced
Computer Theory and Engineering, Chengdu, Sichuan province, China, pages 141–
143, 2010.

20. L.-F Iren, M.-P. Francisco, M.-G. F. José, L.-F. Rogelio, G.-M.-A. J. Antonio,
and M.-J. Diego. Intrusion Detection Method Using Neural Networks Based on
the Reduction of Characteristics. In Proceedings of the 10th International Work-
Conference on Artificial Neural Networks, Salamanca, Spain, pages 1296–1303,
2009.

21. G. A. Isaza, A. G. Castillo, and N. D. Duque. An Intrusion Detection and
Prevention Model Based on Intelligent Multi-Agent Systems, Signatures and
Reaction Rules Ontologies. In Proceedings of the 7th International Conference
on Practical Applications of Agents and Multi-Agent Systems, PAAMS’09, Sala-
manca, Spain, pages 237–245, 2009.

22. G. Kolaczek and K. Juszczyszyn. Attack Pattern Analysis Framework for
Multiagent Intrusion Detection System. International Journal of Computational
Intelligence Systems, 1(3), 2008.

23. W. Lee. A Data Mining Framework for Constructing Features and Models for
Intrusion Detection Systems. Phd thesis, Columbia University, New York, NY,
USA, 1999.

24. T. R. Li and W. M. Pan. Intrusion Detection System Based on New Association
Rule Mining Model. In Proceedings of the International Conference on Granular
Computing; Beijing, China, pages 512–515, 2005.

25. C.-L. Lui, T.-C. Fu, and T.-Y. Cheung. Agent-Based Network Intrusion Detection
System Using Data Mining Approaches. In Proceedings of the 3rd International
Conference on Information Technology and Applications, Sydney, Australia, pages
131–136, 2005.

26. J.B. MacQueen. Some Methods for Classification and Analysis of Multivariate
Observations. In Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, Berkeley, pages 281–297, 1967.

27. R. A. Maxion and R. R. Roberts. Proper Use of ROC Curves in
Intrusion/Anomaly Detection. Technical report series cs-tr-871, School of Com-
puting Science, University of Newcastle upon Tyne, 2004.

28. R. G. Mohammed and A. M. Awadelkarim. Design and Implementation of a Data
Mining-Based Network Intrusion Detection Scheme. Asian Journal of Information
Technology, 10(4):136–141, 2011.

29. E. Mosqueira-Rey, B. Guijarro-Berdias A. Alonso-Betanzos, D. Alonso-Ros, and
J. Lago-Pieiro. A Snort-based Agent for a JADE Multi-agent Intrusion Detection
System. International Journal of Intelligent Information and Database Systems,
3(1):107–121, 2009.

30. E. J. Palomo, E. Domı́nguez, R. M. Luque, and J. Mu noz. A Self-Organized
Multiagent System for Intrusion Detection. In Proceedings of the 4th International
Workshop on Agents and Data Mining Interaction, Budapest, Hungary, pages 84–
94, 2009.

31. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient Mining of Association
Rules Using Closed Itemset Lattices. Journal of Information Systems, 24(1):25–46,
1999.

32. A. Patcha and J.M. Park. An Overview of Anomaly Detection Techniques:
Existing Solutions and Latest Technological Trends. Computer Networks, 51:3448–
3470, 2007.

22 Brahmi et al.

33. S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas. Modeling Intrusion
Detection System Using Hybrid Intelligent Systems. Journal of Network Computer
Applications, 30:114–132, 2007.

34. L. Portnoy, E. Eskin, and W. S. J. Stolfo. Intrusion Detection with Unlabeled
Data using Clustering. In Proceedings of ACM CSS Workshop on Data Mining
Applied to Security (DMSA-2001), Philadelphia, PA, 2001.

35. M. Rehák, M. Pechoucek, P. Celeda, J. Novotny, and P. Minarik. CAMNEP:
Agent-Based Network Intrusion Detection System. In Proceedings of the 7th
International Conference on Autonomous Agents and Multiagent Systems, Esto-
ril,Portugal, pages 133–136, 2008.

36. M. Roesch. Snort - Lightweight Intrusion Detection System for Networks. In Pro-
ceedings of of the 13th USENIX Conference on System Administration (LISA’99),
Seattle, Washington, pages 229–238, 1999.

37. J. Shun and H.A. Malki. Network Intrusion Detection System Using Neural
Networks. In Proceedings of the 4th International Conference on Natural Com-
putation (ICNC’08), Jinan, China, pages 242–246, 2008.

38. M.-L. Shyu and V. Sainani. A Multiagent-based Intrusion Detection System with
the Support of Multi-Class Supervised Classification. In Data Mining and Multi-
agent Integration, pages 127–142. Springer-Verlag, 2009.

39. E.H. Spafford and D. Zamboni. Intrusion Detection Using Autonomous Agents.
The International Journal of Computer and Telecommunications Networking,
34(4):547–570, 2000.

40. S. Stolfo, A.L. Prodromidis, S. Tselepis, W. Lee, D.W. Fan, and P.K. Chan. JAM:
Java Agents for Meta-Learning over Distributed Databases. In Ptoceedings of the
3rd International Conference on Knowledge Discovery and Data Mining, Newport
Beach, California, pages 74–81, 1997.

41. F.S. Tsai. Network Intrusion Detection Using Association Rules. International
Journal of Recent Trends in Engineering, 2(2):202–204, 2009.

42. M. Wooldridge. An Introduction to MultiAgent Systems - Second Edition. John
Wiley and Sons, 2009.

43. W. Xuren, H. Famei, and X. Rongsheng. Modeling Intrusion Detection System by
Discovering Association Rule in Rough Set Theory Framework. In Proceedings of
the International Conference on Computational Intelligence for Modelling Control
and Automation, Sydney, Australia,, pages 24–29, 2006.

44. Y.F. Zhang, Z.Y. Xiong, and X.Q. Wang. Distributed Intrusion Detection Based
on Clustering. In Proceedings of the Fourth International Conference on Machine
Learning and Cybernetics, Guangzhou, pages 2379–2383, 2005.

45. Z. Zhao, S. Guo, Q. Xu, and T. Ban. G-Means: A Clustering Algorithm for
Intrusion Detection. In Processing of the 15th International Conference on Ad-
vances in Neuro-Information, Auckland, New Zealand, pages 563–570, 2008.

