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Abstract—Recently, the data mining community has several minutes of the frequent patterns are useful to
focused on a new challenging model where data arrives detect network intrusions [5].
sequentially in the form of continuous rapid streams. Due to the large volume of data, data streams
It is often referred to as data streams or streaming .5 hardly be stored in main memory for on-line
data. Many real-world applications data are more ap- o oqqing A crucial issue in data streaming that

propriately handled by the data stream model than by o : .
traditional static databases. Such applications can be: has recently attracted significant attention is hence to

stock tickers, network traffic measurements, transaction Maintain the most frequent items encountered [8], [9].
flows in retail chains, click streams, sensor networks and For example, algorithms concerned with applications
telecommunications call records. In this paper we propose Such as answering iceberg query, computing iceberg
a new approach, calledSPEeD (Sequential Patterns Efficient cubes or identifying large network flows are mainly
Extraction in Data streamj to identify sequential patterns interested in maintaining frequent items. Furthermore,
in a_data stream. To_the best _of. our knowlr—_zdge this is since data streams are continuous, high-speed and
the first approach defined for mining sequential pattems ;o\ nded, it is impossible to mine association rules
in streaming data. The main originality of our mining by using algorithms that require multiple scans. As a

method is that we use a novel data structure to maintain h dt intai
frequent sequential patterns coupled with a fast pruning consequence new approaches were proposed to maintain

strategy. At any time, users can issue requests for frequent ItMsets rather than items [12], [6], [4], [10], [22].
sequences over an arbitrary time interval. Furthermore, Nevertheless, according to the definition of itemsets,

our approach produces an approximate support answer they consider that there is no limitation on items order.
with an assurance that it will not bypass a user-defined In this paper we consider that items are really ordered
frequency error threshold. Finally the proposed method is into the streams, therefore we are interested in mining
analyzed by a series of experiments on different datasets. sequences rather than itemsets. To the best of our
knowledge, there is no proposition for maintaining
such frequent sequences. We propose a new approach,
Recently, the data mining community has focused orcalled SPEED (Sequential Patterns Efficient Extraction
new challenging model where data arrives sequentiallyim Data streamp to mine sequential patterns in a
the form of continuous rapid streams. It is often referrathta stream. The main originality of our approach is
to as data streams or streaming data. Many real-wotltht we use a novel data structure to incrementally
applications data are more appropriately handled by timaintain frequent sequential patterns (with the help
data stream model than by traditional static databases.tilted-time windowy coupled with a fast pruning
Such applications can be: stock tickers, network traffgtrategy. At any time, users can issue requests for
measurements, transaction flows in retail chains, cliflequent sequences over an arbitrary time interval.
streams, sensor networks and telecommunications dalirthermore, our approach produces an approximate
records. In the same way, as the data distribution aepport answer with an assurance that it will not bypass
usually changing with time, very often end-users aweuser-defined frequency thresholds.
much more interested in the most recent patterns [4].
For example, in network monitoring, changes in the pastThe remainder of the paper is organized as follows.

I. INTRODUCTION



Section 1l goes deeper into presenting the problecontains a sequencg if S is a subsequence of the
statement. In Section Il we propose a brief overview afata sequence. In order to decide whether a sequence
related work and place particular emphasis on sequentglfrequent or not, a minimum support value (denoted
patterns mining. The BEED approach is presented inminsupp is specified by the user, and the sequence is
Section IV. Section V reports the result of our expesaid to befrequentif the conditionsupp(S) > minsupp
iments. In Section VI, we summarize our findings andolds. Given a database of customer transactions the
conclude the paper with future avenues for research. problem of sequential pattern mining is to find all the
sequences whose support is greater than a specified
threshold (minimum support). Each of these represents
In this section we give the formal definition of thea sequential pattern, also called a frequent sequence.
problem of mining sequential patterns in data streami&ne anti-monotonic Apriori property [1] holds for se-
First, we give a brief overview of the traditional sequencguential patterns [18].
mining problem by summarizing the formal descriptio%
introduced in [21] and extended in [20]. Second we

Il. PROBLEM STATEMENT

. Sequential Patterns Mining on Data Streams
Let data steamDS = BY, B!, .., Bl be an

examine the problem when considering streaming data.—* 2 Dajis , _
infinite sequence of batches, where each batch is asso-
A. Mining of Sequential Patterns ciated with a time periodag,bs], i.e. BY, and letB:"

Let DB be a set of customer transactions where eaPf the most recent batch. Each baify consists of
transaction consists of customer-id, transaction tim& S€t of customer data sequences; thatBig;, = [51,
and a set of items involved in the transaction. S2, S3, ..., Sj]. For each data sequencein Bg: we
Let I = {iy,is...im} be a set of literals called items.2r€ thus provided with its list of itemsets. In the rest
An itemset is a non-empty set of items. A sequende of the paper we will consider,without loss of generality,

a set of itemsets ordered according to their timestanfp@t an itemset is merely reduced to one item. We also
It is denoted by< s; sy ...s, >, wheres;,j € 1..n assume that batches do not have necessarily the same

is an itemset. Ak-sequence is a sequence lofitems Size. Hence, the blengtﬁ;][ of the data stream is defined
' . _ b; i4+1 b, by

(or of length k). For example, let us consider that &L = |Bg| +[Baii[+... + |bBaJ where|B;:| stands

given customer purchased items 1, 2, 3, 4, 5, accordifgj the cardinality of the seB; .

to the following sequenceS =< (1) (2,3) (4) (5) >.

Therefore, aside from 2 and 3 which were purchased B} Sa | (1) (2) (3) (4) ()
together in a common transaction, all other items in the S | (8) (9)
sequence were bought separatedyis a 5-sequence. EEER0I0 |
Sa | (1) (2) ()
A sequenced’ =< s} s, ... s, > is a subsequence of B3 Se | (1) (2) (8) (9)
another sequencg =< sy s ... s, >, denotedS’ < S, Sy | (2) (1)

if there exist integerg; < 4o < ... 4; ... <1, such

p p ) , ) Fig. 1. The set of batcheB}, B? and B3
thats] C s;,, s4 C sig, ... s, C siy, .

For example, the sequenc® —< (2) (5) > is a In this context, we define the support of a sequential

subsequence o, i.e. S’ < S becausé2) C (2, 3) and pattern as follows: the support of a sequengeat

(5) C (5). However< (2) (3) > is not a subsequence? specific time interval|a;,b;] is denoted by the

of s since items were not bought during the sanf@t0 Of the number of customers having sequeice
transaction. in the current time window to the total number of

customers. Therefore, given a user-defined minimum

All transactions from the same customer are groupéprort’ t'he pro'?'em of sequential patterns in data
together and sorted in increasing order and are Ca”%taeams_ IS to_ find aII_ frequent pgtterngk over
a data sequence. A support value (denctegp(s)) al? arbitrary time period [a;,b;] , i.e. verifying
for a sequence gives its number qf actual Occu”en?isupporx(sk) > minsupp x |BY|, of the streaming
in DB. Nevertheless, a sequence in a data sequenc 15 '
taken into account only once to compute the support evéata using as little main memory as possible.
if several occurrences are discovered. A data sequence



Example 1:In the rest of the paper we will use thisfrequent 1-sequences (sequences having a single itemset,
toy example as an illustration, while assuming that thitself a singleton). The set of candidate 2-sequences
first batch B} is merely reduced to two customer datés built up according to the following assumption:
sequences. Figure 1 illustrates the set of all batcheandidate 2-sequences could be any couple of frequent
Let us now consider the following batct3?, which items, whether embedded in the same transaction or
only contains one customer data sequence. Finally wet. Frequent 2-sequences are determined by counting
will also assume that three customer data sequencesthee support. From this point, candidatesequences
embedded inB3. Let us now assume that the minimunare generated from frequenk-{)-sequences obtained
support value is set to 50%. If we look d}, we in pass-g-1). The main idea of candidate generation
obtain the two following maximal frequent patternsis to retrieve, from among#kfl)-sequences, pairs of
< (1)(2)(3)(4)(5) > and < (8)(9) >. If we now sequences;S’) such that discarding the first element
consider the time intervdd — 2], i.e. batches3} and B?, of the former and the last element of the latter results in
maximal frequent patterns are:(1)(2) >. Finally when two fully matching sequences. When such a condition
processing all batches, i.e.[& — 3] time interval, we holds for a pair §,5’), a new candidate sequence is
obtain the following set of frequent patterrs:(1)(2) >, built by appending the last item ¢f to S. The supports
< (1) > and < (2) >. According to this example, onefor these candidates are then computed and those with
can notice that the support of the sequences can vamnimum support become frequent sequences. The
greatly depending on the time periods and so we nepbcess iterates until no more candidate sequences are
to have a framework that enables us to store these tiMiermed. Another method based on the Generating-
sensitive supports. Pruning principle is Bp [13] where a prefix-tree based
approach is used. The methods presented thereafter
also use Generating-Pruning approach and need to load

The task of discovering all the frequent sequencestie database (or a rewriting of the database) in main
quite challenging since the search space is extremahemory. For instance, in [23], thePSDE algorithm is
large: let< s; s9 ...s,, > be a provided sequence angroposed and needs only three database scans in order
n; = |s;| cardinality of an itemset. Then the searclo extract the sequential patternspA™ [2] proposes
space, i.e. the set of all potentially frequent sequencesvertical bitmap representation of the database for
is 2t nm both candidate representation and support counting. An

original approach for mining sequential patterns aims at

In this section we first propose an overview of trarecursively projecting the data sequences into smaller
ditional approaches used for mining sequential pattergsitabases. Firstly proposed in [7]REESPAN, and its
We then discuss why the approaches are irrelevantextension REFIXSPAN [17], are the first algorithms
a data stream context. Second, as recent researcltogsidering the pattern projection method for mining
interested in considering evolution of databasesré- sequential patterns instead of Generating-Pruning
mental mining we will present these approaches iapproaches.
order to measure their relevance to our problem. Finally
we propose an overview on recent approaches for data
stream mining.

[11. RELATED WORK

Traditional approaches differ from streaming data
mining at least in the three following aspects. First,

From the definition presented so far, differenGenerating Pruning techniques are irrelevant since the
approaches were proposed to mine sequential pattegeneration is performed through a set of join operations
We shall now briefly review the & algorithm principle whereas join is a typical blocking operator, i.e. computa-
[20] which was the first Apriori-based approach [1]. Téion for any sequence cannot complete before seeing the
build up candidates and frequent sequences, tee@ (past and future data sets [6]. Second, each data element
algorithm makes multiple passes over the database. Tihestreaming data should be examined at most once.
first step aims at computing the support of each iteRor instance REFIXSPAN requires two passes on the
in the database. When this step has been completgatabase. Finally, memory usage for mining data streams
the frequent items (i.e. those that satisfy the minimushould be bounded even through new data elements are
support) have been discovered. They are consideredcastinuously generated from the data stream [12].

A. Mining sequential patterns



B. Considering incremental approaches introduced in [3] and is based on the fact that people are

As databases evolve, the problem of maintaining gften interested in recent changes at a fine granularity
quential patterns over a significantly long period of timBut long term changes at a coarse granularity.
becomes essential since a large number of new recofgighe following, we report example from [6]. Figure
may be added to a database. To reflect the current stat8hows a natural tilted-time windows table: the most
of the database, in which previous sequential patteri@€nt 4 quarters of an hour, then ,in another level of
would become irrelevant and new sequential patterganularity, the last 24 hours, and 31 days. Based on
might appear, incremental approaches were proposggs model, one can store and compute data in the last
ISE [14] is an efficient algorithm for computing thehour with the precision of quarter of an hour, the last
frequent sequences in the updated database. It minimigg¥ With the precision of hour, and so on. By matching
computational costs by re-using the minimal informatiof” €ach sequence of a batch a tilted-time window, we
from the old frequent sequences, the set of candig&@ve the flexibility to mine a variety of frequent patterns
sequences to be tested is thus substantially reduced. #gending on different time intervals. In [6], the authors
SPADE algorithm was extended in thesw algorithm Propose to extend natural tilted-time windows table to
[16]. In order to update the supports and enumerdggarithmic tilted-time windows table by simply using a
frequent sequences, it maintains "maximally freque}qgarithmic time scale as shown in Figure 3. The main
sequences” and "minimally infrequent sequences’ (i.8dvantage is that with one year of data and a finest
a negative border). Kp [11] also proposes to takePrecision of quarter, this model needs only 17 units of
advantage of the knowledge previously computed atige instead of 35,136 units for the natural model. In
generates a knowledge base for further queries ab8ffler to maintain these tables, the logarithmic tilted-
sequential patterns of various support values. time windows frame will be constructed using different
Since they are Generating-Pruning based, all these #y€ls of granularity each of them containing a user-
proaches suffer the same drawbacks as traditional &gfined number of windows. L&By, By, ..., B, be an
proaches. Furthermore, maintaining a border &8 in infinite sequence of batches whdBeg is the oldest batch.
data streaming would be very memory consuming ah@’ ¢ = Jj. and for a given sequenc§, let fs(i, )

time consuming. denote the frequency o in B} where Bi={J,_; Bi.
o By using a logarithmic tilted-time window, the following
C. Data stream mining approaches frequencies ofS are kept:f(n,n) ; f(n — 1,n — 1) ;

To the best of our knowledge there is no propositiofin—2,n—3) ; f(n—4,n—7).... This table is updated
for mining sequential patterns in streaming datas follows. Given a new batch B, we first replate., n),
Therefore, in this section we give an overview ofhe frequency at the finest level of time granularigvél
approaches for mining all frequent itemsets over ti®, with f(B) and shift back to the next finest level of
entire history of a streaming data. time granularity level 1. f(n,n) replacesf(n—1,n—1)

at level 1. Before shiftingf(n — 1,n — 1) back to level

The first approach was proposed by [12] where th&y we check if the intermediate window for level 1 is
study the landmark model where patterns support is calll (in this example the maximum windows for each
culated from the start of the data stream. They also defiegel is 2). If yes, thenf(n — 1,n — 1) + f is shifted
the first single-pass algorithm for data streams basedck to level 2. Otherwise it is placed in the intermediate
on the anti-monotonic property. Li et al. [10] use awindow and the algorithm stops. The process continues
extended prefix-tree-based representation and a top-davatil shifting stops. If we receivedv batches from the
frequent itemset discovery scheme. In [22] they propostream, the logarithmic tilted-time windows table size
a regression-based algorithm to find frequent itemsetsvifill be bounded by2 x [log2(N)] + 2 which makes this
sliding windows. Chi et al. [4] consider closed frequenwindows schema very space-efficient.
itemsets and propose the closed enumeration tree (CET)
to maintain a dynamically selected set of itemsets. | 31 days | 24 hours | ‘4 ‘qt‘rs‘

In [6], authors consider an FP-tree-based algorithm [7] :
to mine frequent itemsets at multiple time granularities
by a novel logarithmic tilted-time window technique. Let
us have a closer look at this technique becauseed

also considers tilted-time windows. This notion was first According to our problem, all presented approaches

Fig. 2. Natural Tilted-Time Windows Table



1) Processing new batchedirom the batches from
Example 1, our algorithms performs as follows: we
process the first sequencg, in B} by first storing
S, into our tree {reereg). This tree has the following
Time characteristics: each path incereg is provided with a
region and sequences in a path are ordered according to
the inclusion property. By construction, all subsequences
of a sequence are in the same region. This tree is used
in order to reduce the search space when comparing
consider inter-transaction associations, i.e. there is aad pruning sequences. Furthermore, only "maximal
limitation on order of events while we consider sesequences” are stored inteeereg. These sequences are
quences, which implies a strict order of events. Bgither sequences directly extracted from batches or their
considering such an order, we are thus provided withaximal subsequences which are constructed from items
a challenging problem since the search space is signifi-S, such as all these items are in the same region.
cantly larger. Such a merging operation has to respect item order in the

sequence, i.e. this order is expressed through their times-
IV. THE SPEED APPROACH tamp. By storing only maximal subsequences we aim at

mining sequential patterns in streaming data. are able to answer a user query. When the processing of
S, completes, we are provided with a set of items (1..5),

one sequences() andtreereg updated. Items are stored
as illustrated in Figure 4. TheTilted-T W' attribute is

e number of occurrences of the corresponding item in
|t| e batch. The Root,.,” attribute stands for the root

Fig. 3. Logarithmic Tilted-Time Windows Table

A. An overview

In this section, we give an overview of the&eD ap-
proach. Our main goal is to mine all maximal sequenti

patterns over an arbitrary time interval of the stream. T : S
of the corresponding region itreereg. Of course, for

algorithm runs in 2 steps: :
) ) ) one region we only have onBootr., and we also can
« The insertion of each sequence of the studied balfh e several regions for one item. For sequences (C.f.
in the data structurdreereg using the regions rg e 5) we store both the size of the sequence and
principle. _ ‘the associated tilted-time window. This information will
« The extraction of the maximal subsequences USIRg \sefy| during the pruning phase. The left part of the
the LCSP algorithm. Figure 6 illustrates how the-eereg tree is updated when
We will now focus on how each new batch is processe@nsiderings,.
then we will have a closer look on the pruning of | et us now process the second sequencBpfSince
unfrequent sequences. Sp is not a subsequence 6%, it is inserted intreereg
in a new valuation (C.f. subtre§, in Figure 6).

| Items | Tilted-T W | (Regions, Roqt.,) |

1 {[to.11} {@, S,)} | ltems| Tilted-T W | (Regions, Roqj,) |
2 {[to.1]} {(1, Sa)} 1 | {lto.1], [t1,1]} {(1, Sa)}

3 {[to,1]} {3, Sa)} 2 | {[to,1], [t1,A]} {(1, S)}

4 {[to. 11} {(1, S.)} T

S {[to, 11} {@, Sa)} 8 {[to, 1]} {(2, Sp)}

Fig. 4. Updated items after the sequert:e 9 {[to,l]} {(2, Sb)}

Fig. 7. Updated items afteB;

| Sequences Size | Tilted-Time Windows|

Sa 5 {[th 1]}
Sb 2 {[to, 1]}

Fig. 5. Updated sequences after the sequétice

Let us now consider the batcB? merely reduced
to S.. Since itemsl and 2 already exist in the set of
sequences, their tilted-time windows must be updated
(C.f. Figure 7). Furthermore, items 1 and 2 are in the
same region: 1 and the longest subsequence for these




Root

I
Sa
(First Batch — Sa)

Root
1 2

Sa Sb

(First Batch — Sa, Sb)

Fig. 6. The region tree after the first batch

| Sequences Size | Tilted-Time Windows|

Sa 5 {[to, 1]}

Se 2 {[t071]7 [tlal]’ [t271]}
Sa 3 {[to, 1], [t2, 1]}
Fig. 8. Updated sequences afigr of B2

items is< (1) (2) >, i.e. S. which is included inS,,.

look on the sequencg,. We can notice that items 1 and

2 are in region 1 while items 8 and 9 are in region 2.
We can believe that we are provided with a new region.
Nevertheless, we can notice that in fact the sequence
< (8)(9) > already exist irtreereg and is a subsequence
of S.. The longest subsequence &f in the region 1 is

< (1)(2) >. In the same way, the longest subsequence of
Se for region 2 is< (8)(9) >. As we are provided with
two different regions ane: (8)(9) > is a root of region

for 2, we do not create a new region but we insgrt

We thus have to inserb, in treereg in the region 1. as a root of region for 2 and we insert the subsequence
Nevertheless as. is a subsequence df, that means  (1)(2) > both on tree for region 1 and 2. Of course,
that whenS, occurs in previous batch it also occursjjted-time windows are updated. Finally we proceed
for S. So the tilted-time window of5. has to be also g the last sequencé;. We can notice that the order

updated.
| ltems| Tilted-T W | (Regions, Rogt.,) |
1 {[to,l]’ [tlil] {(1! Sa)}
» [t2,2]} {(2, Se)}
2 {[to,l], [tlil] {(l! Sa)}
» [t2,2]} 12, Se)}
{3, 5}

Fig. 10. Updated items after the sequetse

| Sequences Size | Tilted-Time Windows |

Sa 5 {{to, 1]}
Sb 2 {[to, 1], [t2, 1]}
Se 2 | {[to, 1], [t1,1], [t2, 2]}
Sd 3 {[to. 1], [t2, 1]}
Se 4 {[t2,1]}
Sy 2 {lt2, 1]}

Fig. 11. Updated sequences af@r of B3

between itemsets is different from previous sequences.
When parsing the set of items, we can conclude that
they occur in the same region 1. Nevertheless the longest
subsequences are reducedtdl) > and < (2) >, i.e.
neither Sy < S. or S. < Sy holds, then we have to
consider a new region.

2) Pruning sequences:Let us now discuss how
stored sequences are pruned. While pruning in [6] is
done in 2 distinct operations, SPEED prunes unfre-
quent patterns in a single operation which is in fact a
dropping of the tail sequences of tilted-time windows
fs(te), fs(tes1), .-, fs(tn) when the following condi-
tion holds:

Vi, k < i < n,supportl (S) < es|BY|

By navigating intotreereg, and by using the regions
index, we can directly and rapidly prune irrelevant se-
guences without further computations. This process is
repeated after each new batch in order to use as little
main memory as possible. During the pruning phase,
titted-windows are merged in the same way as in [6].

B. TheSPEED algorithm
We describe in more detail thee§eD algorithm (C.f.

The sequencé, is considered in the same way 8s Algorithm 1). While batches are available, we consider
(C.f. Figure 9 and Figure 11). Let us now have a closeequences embedded in batches in order to update



Root

Sa Se St

e |

Sd Sb

/

Sc

(Third Batch — Se)

Fig. 9. The valuation tree after batches processing

Algorithm 1. The SPEED algorithm the added sequence, it will be a subsequence and will
Data: an infinite set of batches B=Bj, be included in one of the already existif®d+ 1 regions.
Bi, .. B ..; a minsupp user-defined
threshold; an error rate In other words, in the worst case, our algorithm has
Result A set of frequent items and sequences to check, for each sequence embedded in a batch 1
/I init phase regions.
treereqg «— 0; ITEMS «— 0; SEQS « 0;
region «— 1; The SEQS structure is used to store sequences. Each
while batches are availablelo value of SEQS is a tuple §, size(s),{time, occ}) where
foreach B! € B do size(s) stands for the number of items embedded in
UPDATE(B!, treereg, ITEMS, SEQS, s. Finally, the treereg structure is a tree where each
minsupp, €); node is a sequence storedSt'Q.S and where vertices
PRUNE(treereg, ITEMS, SEQS, correspond to the associated region (according to the
minsupp, €); previous overview).

Let us now examine the Update algorithm (C.f.

Algorithm 2) which is the main core of our approach.

We consider each sequence embedded in the batch.
our structures (BDATE). Then we prune unfrequentFrom a sequencé, we first get regions of all its items
sequences in order to maintain our structures in MgIBETREGIONS). If items were not already considered
memory (FRRUNETREE). In the following, we consider we only have to inser§ in a new region. Otherwise, we
that we are provided with the three next structures. Eaektract all different regions associated on itemsofor
value of ITEMS is a tuple {abelitem, {time,occ}, each region the 6rFIRSTSEQOFVAL function returns
{(regions, Rootg.y)}) Wherelabelitem stands for the a new subsequencé, constructed by merging items
considered item{time, occ} is used in order to storesharing same region with their associat®dot g.,. We
the number of occurrences of the item for different timen compute the longest common subsequences, of
of batches and for each region fnegions} we store its in Rooty, by applying the LCSPLongest Common
associated sequenceRdpt .4 in the treereg structure. Sequential Patterngunction. This function returns an
According to the following property, the number okempty set both when there are no subsequences or if
regions is limited. subsequences are merely reduced to onelitem

Property 1: Let ® be the number of items iD.S. The Property 2: Let u, v be two sequences and|, |v|
maximal number of regions is bounded &y + 1.

. : 1Due to lack of space, we do not describe this function. Interested
Proof: Let & be the number of items. We can ger]eratree der may refer to [19]. LCSP is an extension of the NKY algorithm

2 - . -
®* maximal sequences of size 2 and one Maximgs) of time complexityO(n(m - r )) wheren andm are the sizes of
sequence. Each of them stands for a region. Whategequences andthe size of the longest maximal sequence.



Algorithm 2: The UPDATE algorithm

Data: a batch B =
minsupp user-defined threshold; an error

[51, S9, 53, ey Sk]; a

ratee.
Result treereg, ITEMS, SEQS updated.

foreach sequence Seq € B} do

else

if

Lattice M erge « 0; DelayedInsert < ();
Candidates < GETREGIONYSeq);
if Candidates = () then

| INSERT(Seq,NewVal + +);

foreach region Val € Candidates do

/I Get the maximal sequence from
regionVal

FirstSeq —
GETFIRSTSEQOFVAL (V al);

/I Compute all the longest common
/I subsequences

NewSeq «— LCSPSeq,FirstSeq);

if [NewSeq| =1 then

/I There is a direct inclusion

if (NewSeq[0] ==
Seq)||(NewSeq[0] == FirstSeq)
then

| LatticeMerge < Val,

else
// Found a new subsequence
/Il to be added
INSERT(N ewSeq[0], Val);
UPDATET TW(NewSeq[0]);
DelayedInsert «+— NewSegq;

else
DelayedInsert < Segq;
foreach sequence S € NewSeq
do
INSERT(S, Val);
L UPDATETTW(S);
DelayedInsert «— S

/I Create a new region
| Lattice Merge| = 0 then

INSERT(Seq, NewVal + +);

| UPDATETTW(Seq);
Ise

if |LatticeMerge| =1 then
INSERT(Seq, Lattice M erge[0]);
L UPDATETTW(Seq);
else
| MERGHLatticeMerge, Seq);

INSERTANDUPDATEALL (DelayedInsert,
LatticeMerge[0]);

/I between the two tested sequences

the associated size. Let be the size of the maximal
subsequence betweenandwv. Let A be the number of
maximal subsequences. We havex (v=mn(uklvD),
Proof: Let « and v be two sequences. We can
obtain respectively2/*/ and 2"l subsequences. The

set of maximal subsequences having sizas then:
mz’n(('ﬁ‘), (Igl)) = (w=mir;(|u|7|v|))

If there is only one subsequence, i.e. cardinality of
NewSeq is 1, we know that the subsequence is either
a root of region orS, itself. We thus store it in a
temporary arrayl(atticeMerg@. This array will be used
in order to avoid to create a new region if it already
exists a root of region included i¥. Otherwise we
know that we are provided with a subsequence and then
we insert it intotreereg (INSERT) and propagate the
tilted-time window (WPDATETTW). Sequences are also
stored in a temporary arrayDélayedinseit If there
exist more than one subsequence, then we insert all
these subsequences on the corresponding region and
also store withS on Delayedinsertthem in order to
delay their insertion for a new region. latticeMergeis
empty we know that it does not exist any subsequence
of S included on sequences ofecereg and then we
can directly insertS in a new region. Otherwise, we
insert the subsequence ireereg for the region of
LatticeMerge. If the cardinality of LatticeMerge is
greater than 1, we are provided with a sequence which
will be a new root of region and then we insert it. For
the both last case, we insert all the set of subsequences
embedded and we update their tilted-time windows
(INSERTANDUPDATEALL).

Property 3: Let treereg be the structure at the end
of the process. Lef and S’ be two sequences such as
S’ < S, then:

1) If S’ does not exist inreereg then S also does

not exist intreereg.

2) If S’ exists intreereg, let Supy, ..., Supl, (resp.

Supo, . . ., Sup,, for S) be the supports 08’2 in
all of its tilted-time windows then:
n > m and Sup; > Sup; ,Vi such as) <i <m

Proof:

1) The first part is proved by induction on N, i.e. the

number of batches.

For N = 0 (the oldest batch), ifS € treereg
then Supporto(S) > €¢|Bf|. Let us consider that
S’ ¢ treereg, asS’ ¢ S we haveSupporty(S) <

2where Sup}, is the support in the most recent window.



ef|BY|. So we haveS ¢ treereg. this item in sequences; (ii) to prune sequencesdareg
For N > 0, let us considerS’ ¢ treereg after also appearing iff'oPrune. This function takes advan-
processing theVth batch. We have to consider theage of the anti-monotonic property as well as the order
two following cases: (i)S’ ¢ treereg after the of stored sequences. It performs as follows, nodes in
processing of thé N —1)! batch then by induction treereg, i.e. sequences, are pruned until a node occurring
we also haveS ¢ treereg by extending in the in the path and having siblings is found. Otherwise, each
same way the cast = 0. (ii) S’ € treereg after sequence is updated by pruning the unfrequent item.
the (N — 1)** batch and the sequence was prunétfhen an item remains frequent, we only have to prune
when processing the batéti. As S' Z S, it exists sequences if'oPrune by navigating intotreereg.
S1,...,8p such asS; = S” andS, = S, whereS;
is the subsequence 6f. ; for 1 < i < p. With the V. EXPERIMENTS
pruning condition, we know tha$, ..., S, were In this section, we report our experiments results.
already pruned during the processing of the batdkle describe our experimental procedures and then our
N thus S ¢ treereg. results.

2) AsS’ < S, we haveSy, ..., S, (cf previous part). )
By using the pruning condition, we know that thé®: EXperimental Procedures
table of tilted-time windows of; has much more The stream data was generated by the IBM
windows thanS;,; with 1 < i < p, thus S’ has synthetic market-basket data generator, available at

much more windows tha$ (m > n). http://www.almaden.ibm.com/cs/quest. In all the exper-
By definition, we know thatSupy,...,Sup,_1 iments we used 1K distinct items and generated 1M
and Supy,...,Sup,_, are the support ofS of transactions. Furthermore, we have fixed minsupp

and S’ for each batch. These windows havat 10%. We conducted two sets of experiments, in the
the same structure, we can thus apply the anfiest, we set the frequency error threshold(at with
monotonic property:Supp;(S’) > Supp;(S) for an average sequence length of 3 or 5 itemsets and
1<i<n-—1. in the second we set the frequency error threshold at
Let us assumeW, (resp. Wy), the set of 0.2 with the same sequence lengths. The stream was
sequences having incremented (resp. S’) for broken in batches of 20 seconds for the 3-sequences
the batchlV, i.e Supp,(S) = |W;|. We thus have and 90 seconds for the 5-sequences. Furthermore, all the
Ws € W and by the antimonotonic property:itransactions can be fed to our program through standard
Suppg(S’) = |[Wy| > Suppy(S) = |Ws|. input. Finally, our algorithm was written in C++ and
compiled using gcc without any optimizations flags. All
Maintaining all the data streams in the main memotye experiments were performed on an AMD Athlon XP-
requires too much space. So we have to store ordl00 running Linux with 512 MB of RAM.
relevant sequences and drop sequences when the tail-
dropping condition holds. When all the tilted-time winB- Results
dows of the sequence are dropped the entire sequence Bt each processing of a batch the following informa-
dropped fromtreereg. As a result of the tail-dropping tions were collected: the size of the SPEED data structure
we no longer have an exact frequency overrather at the end of each batch in bytes, the total number of
an approximate frequency. Now let us dendfg(L) seconds required per batch, the total number of maximal
the frequency of the sequence in all batches Ag@L) sequences generated for this batch and the number of
the approximate frequency. With < minsupp this valuations present on the data stream sequences. The x
approximation is assured to be less than the act@lis represents the batch number.
frequency according to the following inequality [6]: Figure 12 show time results for 3 and 5-sequences.
Fs(L) — €|L| < Fs(L) < Fs(L). Every two batches the algorithm needs more time to
Due to lack of space we do not present the entipgocess sequences, this is in fact due to the merge
PRUNE algorithm we rather explain how it performsoperation of the tilted-time windows which is done in
First all sequences verifying the pruning constraint amr experiments every 2 batches on the finest granularity
stored in a temporary sef'¢Prunc). We then consider level. The jump in the algorithm is thus the result of
items inIT EM S data structure. If an item is unfrequentextra computation cycles needed to merge the tilted-time
then we navigate througtreereg in order: (i) to prune windows values for all the nodes in thecereg structure.
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The time requirements of the algorithm tend to grow vemgsult from a request with a large time interval could
slowly as the stream progresses and do not excess lieeimproved. Secondly, we are currently studying how
20 or the 90 seconds computation time limit for everpng sequences, i.e. sequences embedded in different
batch. Figure 13 show memory needs for the processicmnsecutive batches, can be consideredAiBeD. Finally

of our sequences. Space requirements is bounded fom@& would like to develop query answering techniques
sequences by 35M and 78M for the 5-sequences, thidapted to our approach.

requirement is however acceptable as this can easily fit
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