
Need for SPEED: Mining Sequential Patterns in
Data Streams

C. Räıssi
EMA-LGI2P/Site EERIE

Parc Scientifique Georges Besse
30035 N̂ımes cedex 1 - France
Email: Chedy.Raissi@ema.fr

P. Poncelet
EMA-LGI2P/Site EERIE

Parc Scientifique Georges Besse
30035 N̂ımes cedex 1 - France
Email: Pascal.Poncelet@ema.fr

M. Teisseire
LIRMM UMR CNRS 5506

161 Rue Ada
34392 Montpellier cedex 5 - France

Email: teisseire@lirmm.fr

Abstract— Recently, the data mining community has
focused on a new challenging model where data arrives
sequentially in the form of continuous rapid streams.
It is often referred to as data streams or streaming
data. Many real-world applications data are more ap-
propriately handled by the data stream model than by
traditional static databases. Such applications can be:
stock tickers, network traffic measurements, transaction
flows in retail chains, click streams, sensor networks and
telecommunications call records. In this paper we propose
a new approach, calledSPEED(Sequential Patterns Efficient
Extraction in Data streams), to identify sequential patterns
in a data stream. To the best of our knowledge this is
the first approach defined for mining sequential patterns
in streaming data. The main originality of our mining
method is that we use a novel data structure to maintain
frequent sequential patterns coupled with a fast pruning
strategy. At any time, users can issue requests for frequent
sequences over an arbitrary time interval. Furthermore,
our approach produces an approximate support answer
with an assurance that it will not bypass a user-defined
frequency error threshold. Finally the proposed method is
analyzed by a series of experiments on different datasets.

I. I NTRODUCTION

Recently, the data mining community has focused on a
new challenging model where data arrives sequentially in
the form of continuous rapid streams. It is often referred
to as data streams or streaming data. Many real-world
applications data are more appropriately handled by the
data stream model than by traditional static databases.
Such applications can be: stock tickers, network traffic
measurements, transaction flows in retail chains, click
streams, sensor networks and telecommunications call
records. In the same way, as the data distribution are
usually changing with time, very often end-users are
much more interested in the most recent patterns [4].
For example, in network monitoring, changes in the past

several minutes of the frequent patterns are useful to
detect network intrusions [5].

Due to the large volume of data, data streams
can hardly be stored in main memory for on-line
processing. A crucial issue in data streaming that
has recently attracted significant attention is hence to
maintain the most frequent items encountered [8], [9].
For example, algorithms concerned with applications
such as answering iceberg query, computing iceberg
cubes or identifying large network flows are mainly
interested in maintaining frequent items. Furthermore,
since data streams are continuous, high-speed and
unbounded, it is impossible to mine association rules
by using algorithms that require multiple scans. As a
consequence new approaches were proposed to maintain
itemsets rather than items [12], [6], [4], [10], [22].
Nevertheless, according to the definition of itemsets,
they consider that there is no limitation on items order.
In this paper we consider that items are really ordered
into the streams, therefore we are interested in mining
sequences rather than itemsets. To the best of our
knowledge, there is no proposition for maintaining
such frequent sequences. We propose a new approach,
called SPEED (Sequential Patterns Efficient Extraction
in Data streams), to mine sequential patterns in a
data stream. The main originality of our approach is
that we use a novel data structure to incrementally
maintain frequent sequential patterns (with the help
of tilted-time windows) coupled with a fast pruning
strategy. At any time, users can issue requests for
frequent sequences over an arbitrary time interval.
Furthermore, our approach produces an approximate
support answer with an assurance that it will not bypass
a user-defined frequency thresholds.

The remainder of the paper is organized as follows.

Section II goes deeper into presenting the problem
statement. In Section III we propose a brief overview of
related work and place particular emphasis on sequential
patterns mining. The SPEED approach is presented in
Section IV. Section V reports the result of our exper-
iments. In Section VI, we summarize our findings and
conclude the paper with future avenues for research.

II. PROBLEM STATEMENT

In this section we give the formal definition of the
problem of mining sequential patterns in data streams.
First, we give a brief overview of the traditional sequence
mining problem by summarizing the formal description
introduced in [21] and extended in [20]. Second we
examine the problem when considering streaming data.

A. Mining of Sequential Patterns

Let DB be a set of customer transactions where each
transactionT consists of customer-id, transaction time
and a set of items involved in the transaction.
Let I = {i1, i2...im} be a set of literals called items.
An itemset is a non-empty set of items. A sequences is
a set of itemsets ordered according to their timestamp.
It is denoted by< s1 s2 ...sn >, wheresj , j ∈ 1...n,
is an itemset. Ak-sequence is a sequence ofk items
(or of length k). For example, let us consider that a
given customer purchased items 1, 2, 3, 4, 5, according
to the following sequence:S =< (1) (2, 3) (4) (5) >.
Therefore, aside from 2 and 3 which were purchased
together in a common transaction, all other items in the
sequence were bought separately..s is a 5-sequence.

A sequenceS′ =< s′1 s′2 ... s′n > is a subsequence of
another sequenceS =< s1 s2 ... sm >, denotedS′ ≺ S,
if there exist integersi1 < i2 < ... ij ... < in such
that s′1 ⊆ si1 , s′2 ⊆ si2, ... s′n ⊆ sin .

For example, the sequenceS′ =< (2) (5) > is a
subsequence ofS, i.e.S′ ≺ S because(2) ⊆ (2, 3) and
(5) ⊆ (5). However< (2) (3) > is not a subsequence
of s since items were not bought during the same
transaction.

All transactions from the same customer are grouped
together and sorted in increasing order and are called
a data sequence. A support value (denotedsupp(S))
for a sequence gives its number of actual occurrences
in DB. Nevertheless, a sequence in a data sequence is
taken into account only once to compute the support even
if several occurrences are discovered. A data sequence

contains a sequenceS if S is a subsequence of the
data sequence. In order to decide whether a sequence
is frequent or not, a minimum support value (denoted
minsupp) is specified by the user, and the sequence is
said to befrequentif the conditionsupp(S) ≥ minsupp
holds. Given a database of customer transactions the
problem of sequential pattern mining is to find all the
sequences whose support is greater than a specified
threshold (minimum support). Each of these represents
a sequential pattern, also called a frequent sequence.
The anti-monotonic Apriori property [1] holds for se-
quential patterns [18].

B. Sequential Patterns Mining on Data Streams

Let data streamDS = Bbi

ai
, B

bi+1

ai+1
, ..., Bbn

an
be an

infinite sequence of batches, where each batch is asso-
ciated with a time period[ak,bk], i.e. Bbk

ak
, and letBbn

an

be the most recent batch. Each batchBbk

ak
consists of

a set of customer data sequences; that is,Bbk

ak
= [S1,

S2, S3, ..., Sj]. For each data sequenceS in Bbk

ak
we

are thus provided with its list of itemsets. In the rest
of the paper we will consider,without loss of generality,
that an itemset is merely reduced to one item. We also
assume that batches do not have necessarily the same
size. Hence, the length (L) of the data stream is defined
asL = |Bbi

ai
|+ |B

bi+1

ai+1
|+ . . . + |Bbn

an
| where|Bbk

ak
| stands

for the cardinality of the setBbk

ak
.

B1
0

Sa (1) (2) (3) (4) (5)
Sb (8) (9)

B2
1 Sc (1) (2)

B3
2

Sd (1) (2) (3)
Se (1) (2) (8) (9)
Sf (2) (1)

Fig. 1. The set of batchesB1

0 , B2

1 andB3

2

In this context, we define the support of a sequential
pattern as follows: the support of a sequenceS at
a specific time interval[ai, bi] is denoted by the
ratio of the number of customers having sequenceS
in the current time window to the total number of
customers. Therefore, given a user-defined minimum
support, the problem of sequential patterns in data
streams is to find all frequent patternsSk over
an arbitrary time period [ai, bi] , i.e. verifying
bi

∑

t=ai

supportt(Sk) ≥ minsupp × |Bbi

ai
|, of the streaming

data using as little main memory as possible.

Example 1: In the rest of the paper we will use this
toy example as an illustration, while assuming that the
first batchB1

0 is merely reduced to two customer data
sequences. Figure 1 illustrates the set of all batches.
Let us now consider the following batch,B2

1 , which
only contains one customer data sequence. Finally we
will also assume that three customer data sequences are
embedded inB3

2 . Let us now assume that the minimum
support value is set to 50%. If we look atB1

0 , we
obtain the two following maximal frequent patterns:
< (1)(2)(3)(4)(5) > and < (8)(9) >. If we now
consider the time interval[0−2], i.e. batchesB1

0 andB2
1 ,

maximal frequent patterns are:< (1)(2) >. Finally when
processing all batches, i.e. a[0 − 3] time interval, we
obtain the following set of frequent patterns:< (1)(2) >,
< (1) > and < (2) >. According to this example, one
can notice that the support of the sequences can vary
greatly depending on the time periods and so we need
to have a framework that enables us to store these time-
sensitive supports.

III. R ELATED WORK

The task of discovering all the frequent sequences is
quite challenging since the search space is extremely
large: let< s1 s2 ...sm > be a provided sequence and
ni = |sj | cardinality of an itemset. Then the search
space, i.e. the set of all potentially frequent sequences
is 2n1+n2+...nm .

In this section we first propose an overview of tra-
ditional approaches used for mining sequential patterns.
We then discuss why the approaches are irrelevant in
a data stream context. Second, as recent research is
interested in considering evolution of databases (incre-
mental mining) we will present these approaches in
order to measure their relevance to our problem. Finally
we propose an overview on recent approaches for data
stream mining.

A. Mining sequential patterns

From the definition presented so far, different
approaches were proposed to mine sequential patterns.
We shall now briefly review the GSP algorithm principle
[20] which was the first Apriori-based approach [1]. To
build up candidates and frequent sequences, the GSP

algorithm makes multiple passes over the database. The
first step aims at computing the support of each item
in the database. When this step has been completed,
the frequent items (i.e. those that satisfy the minimum
support) have been discovered. They are considered as

frequent 1-sequences (sequences having a single itemset,
itself a singleton). The set of candidate 2-sequences
is built up according to the following assumption:
candidate 2-sequences could be any couple of frequent
items, whether embedded in the same transaction or
not. Frequent 2-sequences are determined by counting
the support. From this point, candidatek-sequences
are generated from frequent (k-1)-sequences obtained
in pass-(k-1). The main idea of candidate generation
is to retrieve, from among (k-1)-sequences, pairs of
sequences (S, S′) such that discarding the first element
of the former and the last element of the latter results in
two fully matching sequences. When such a condition
holds for a pair (S, S′), a new candidate sequence is
built by appending the last item ofS′ to S. The supports
for these candidates are then computed and those with
minimum support become frequent sequences. The
process iterates until no more candidate sequences are
formed. Another method based on the Generating-
Pruning principle is PSP [13] where a prefix-tree based
approach is used. The methods presented thereafter
also use Generating-Pruning approach and need to load
the database (or a rewriting of the database) in main
memory. For instance, in [23], the SPADE algorithm is
proposed and needs only three database scans in order
to extract the sequential patterns. SPAM [2] proposes
a vertical bitmap representation of the database for
both candidate representation and support counting. An
original approach for mining sequential patterns aims at
recursively projecting the data sequences into smaller
databases. Firstly proposed in [7], FREESPAN, and its
extension PREFIXSPAN [17], are the first algorithms
considering the pattern projection method for mining
sequential patterns instead of Generating-Pruning
approaches.

Traditional approaches differ from streaming data
mining at least in the three following aspects. First,
Generating Pruning techniques are irrelevant since the
generation is performed through a set of join operations
whereas join is a typical blocking operator, i.e. computa-
tion for any sequence cannot complete before seeing the
past and future data sets [6]. Second, each data element
in streaming data should be examined at most once.
For instance PREFIXSPAN requires two passes on the
database. Finally, memory usage for mining data streams
should be bounded even through new data elements are
continuously generated from the data stream [12].

B. Considering incremental approaches

As databases evolve, the problem of maintaining se-
quential patterns over a significantly long period of time
becomes essential since a large number of new records
may be added to a database. To reflect the current state
of the database, in which previous sequential patterns
would become irrelevant and new sequential patterns
might appear, incremental approaches were proposed.
ISE [14] is an efficient algorithm for computing the
frequent sequences in the updated database. It minimizes
computational costs by re-using the minimal information
from the old frequent sequences, the set of candidate
sequences to be tested is thus substantially reduced. The
SPADE algorithm was extended in the ISM algorithm
[16]. In order to update the supports and enumerate
frequent sequences, it maintains ”maximally frequent
sequences” and ”minimally infrequent sequences” (i.e.
a negative border). KISP [11] also proposes to take
advantage of the knowledge previously computed and
generates a knowledge base for further queries about
sequential patterns of various support values.
Since they are Generating-Pruning based, all these ap-
proaches suffer the same drawbacks as traditional ap-
proaches. Furthermore, maintaining a border as ISM in
data streaming would be very memory consuming and
time consuming.

C. Data stream mining approaches

To the best of our knowledge there is no proposition
for mining sequential patterns in streaming data.
Therefore, in this section we give an overview of
approaches for mining all frequent itemsets over the
entire history of a streaming data.

The first approach was proposed by [12] where they
study the landmark model where patterns support is cal-
culated from the start of the data stream. They also define
the first single-pass algorithm for data streams based
on the anti-monotonic property. Li et al. [10] use an
extended prefix-tree-based representation and a top-down
frequent itemset discovery scheme. In [22] they propose
a regression-based algorithm to find frequent itemsets in
sliding windows. Chi et al. [4] consider closed frequent
itemsets and propose the closed enumeration tree (CET)
to maintain a dynamically selected set of itemsets.
In [6], authors consider an FP-tree-based algorithm [7]
to mine frequent itemsets at multiple time granularities
by a novel logarithmic tilted-time window technique. Let
us have a closer look at this technique because SPEED

also considers tilted-time windows. This notion was first

introduced in [3] and is based on the fact that people are
often interested in recent changes at a fine granularity
but long term changes at a coarse granularity.
In the following, we report example from [6]. Figure
2 shows a natural tilted-time windows table: the most
recent 4 quarters of an hour, then ,in another level of
granularity, the last 24 hours, and 31 days. Based on
this model, one can store and compute data in the last
hour with the precision of quarter of an hour, the last
day with the precision of hour, and so on. By matching
for each sequence of a batch a tilted-time window, we
have the flexibility to mine a variety of frequent patterns
depending on different time intervals. In [6], the authors
propose to extend natural tilted-time windows table to
logarithmic tilted-time windows table by simply using a
logarithmic time scale as shown in Figure 3. The main
advantage is that with one year of data and a finest
precision of quarter, this model needs only 17 units of
time instead of 35,136 units for the natural model. In
order to maintain these tables, the logarithmic tilted-
time windows frame will be constructed using different
levels of granularity each of them containing a user-
defined number of windows. LetB1, B2, . . . , Bn be an
infinite sequence of batches whereB1 is the oldest batch.
For i ≥ j, and for a given sequenceS, let fS(i, j)
denote the frequency ofS in Bi

j whereBi
j=

⋃i
k=j Bk.

By using a logarithmic tilted-time window, the following
frequencies ofS are kept:f(n, n) ; f(n − 1, n − 1) ;
f(n−2, n−3) ; f(n−4, n−7) This table is updated
as follows. Given a new batch B, we first replacef(n, n),
the frequency at the finest level of time granularity (level
0), with f(B) and shift back to the next finest level of
time granularity (level 1). f(n, n) replacesf(n−1, n−1)
at level 1. Before shiftingf(n − 1, n − 1) back to level
2, we check if the intermediate window for level 1 is
full (in this example the maximum windows for each
level is 2). If yes, thenf(n − 1, n − 1) + f is shifted
back to level 2. Otherwise it is placed in the intermediate
window and the algorithm stops. The process continues
until shifting stops. If we receivedN batches from the
stream, the logarithmic tilted-time windows table size
will be bounded by2×⌈log2(N)⌉+2 which makes this
windows schema very space-efficient.

31 days 24 hours 4 qtrs

t

. .

Fig. 2. Natural Tilted-Time Windows Table

According to our problem, all presented approaches

tt2t2t4t

Time

Fig. 3. Logarithmic Tilted-Time Windows Table

consider inter-transaction associations, i.e. there is no
limitation on order of events while we consider se-
quences, which implies a strict order of events. By
considering such an order, we are thus provided with
a challenging problem since the search space is signifi-
cantly larger.

IV. T HE SPEED APPROACH

In this section we propose the SPEED approach for
mining sequential patterns in streaming data.

A. An overview

In this section, we give an overview of the SPEED ap-
proach. Our main goal is to mine all maximal sequential
patterns over an arbitrary time interval of the stream. The
algorithm runs in 2 steps:

• The insertion of each sequence of the studied batch
in the data structuretreereg using the regions
principle.

• The extraction of the maximal subsequences using
the LCSP algorithm.

We will now focus on how each new batch is processed
then we will have a closer look on the pruning of
unfrequent sequences.

Items Tilted-T W (Regions, RootReg)

1 {[t0,1]} {(1, Sa)}
2 {[t0,1]} {(1, Sa)}
3 {[t0,1]} {(1, Sa)}
4 {[t0,1]} {(1, Sa)}
5 {[t0,1]} {(1, Sa)}

Fig. 4. Updated items after the sequenceSa

Sequences Size Tilted-Time Windows

Sa 5 {[t0, 1]}
Sb 2 {[t0, 1]}

Fig. 5. Updated sequences after the sequenceSb

1) Processing new batches:From the batches from
Example 1, our algorithms performs as follows: we
process the first sequenceSa in B1

0 by first storing
Sa into our tree (treereg). This tree has the following
characteristics: each path intreereg is provided with a
region and sequences in a path are ordered according to
the inclusion property. By construction, all subsequences
of a sequence are in the same region. This tree is used
in order to reduce the search space when comparing
and pruning sequences. Furthermore, only ”maximal
sequences” are stored intotreereg. These sequences are
either sequences directly extracted from batches or their
maximal subsequences which are constructed from items
in Sa such as all these items are in the same region.
Such a merging operation has to respect item order in the
sequence, i.e. this order is expressed through their times-
tamp. By storing only maximal subsequences we aim at
storing a minimal number of sequences such that we
are able to answer a user query. When the processing of
Sa completes, we are provided with a set of items (1..5),
one sequence (Sa) andtreereg updated. Items are stored
as illustrated in Figure 4. The ”Tilted-T W” attribute is
the number of occurrences of the corresponding item in
the batch. The ”Rootreg” attribute stands for the root
of the corresponding region intreereg. Of course, for
one region we only have oneRootReg and we also can
have several regions for one item. For sequences (C.f.
Figure 5), we store both the size of the sequence and
the associated tilted-time window. This information will
be useful during the pruning phase. The left part of the
Figure 6 illustrates how thetreereg tree is updated when
consideringSa.

Let us now process the second sequence ofB1
0 . Since

Sb is not a subsequence ofSa, it is inserted intreereg
in a new valuation (C.f. subtreeSb in Figure 6).

Items Tilted-T W (Regions, RootReg)

1 {[t0,1], [t1,1]} {(1, Sa)}
2 {[t0,1], [t1,1]} {(1, Sa)}
...
8 {[t0,1]} {(2, Sb)}
9 {[t0,1]} {(2, Sb)}

Fig. 7. Updated items afterB1

1

Let us now consider the batchB2
1 merely reduced

to Sc. Since items1 and 2 already exist in the set of
sequences, their tilted-time windows must be updated
(C.f. Figure 7). Furthermore, items 1 and 2 are in the
same region: 1 and the longest subsequence for these

Root

Sa

1

(First Batch − Sa)

Sa

1

Root

Sb

2

(First Batch − Sa, Sb)

Fig. 6. The region tree after the first batch

Sequences Size Tilted-Time Windows

Sa 5 {[t0, 1]}
Sc 2 {[t0, 1], [t1, 1], [t2, 1]}
Sd 3 {[t0, 1], [t2, 1]}
...

Fig. 8. Updated sequences afterSd of B2

2

items is< (1) (2) >, i.e. Sc which is included inSa.
We thus have to insertSc in treereg in the region 1.
Nevertheless asSc is a subsequence ofSa that means
that whenSa occurs in previous batch it also occurs
for Sc. So the tilted-time window ofSc has to be also
updated.

Items Tilted-T W (Regions, RootReg)

1 {[t0,1], [t1,1] {(1, Sa)}
, [t2,2]} {(2, Se)}

{(3, Sf)}
2 {[t0,1], [t1,1] {(1, Sa)}

, [t2,2]} {(2, Se)}
{(3, Sf)}

...

Fig. 10. Updated items after the sequenceSf

Sequences Size Tilted-Time Windows

Sa 5 {[t0, 1]}
Sb 2 {[t0, 1], [t2, 1]}
Sc 2 {[t0, 1], [t1, 1], [t2, 2]}
Sd 3 {[t0, 1], [t2, 1]}
Se 4 {[t2, 1]}
Sf 2 {[t2, 1]}

Fig. 11. Updated sequences afterSf of B3

2

The sequenceSd is considered in the same way asSc

(C.f. Figure 9 and Figure 11). Let us now have a closer

look on the sequenceSe. We can notice that items 1 and
2 are in region 1 while items 8 and 9 are in region 2.
We can believe that we are provided with a new region.
Nevertheless, we can notice that in fact the sequence
< (8)(9) > already exist intreereg and is a subsequence
of Se. The longest subsequence ofSe in the region 1 is
< (1)(2) >. In the same way, the longest subsequence of
Se for region 2 is< (8)(9) >. As we are provided with
two different regions and< (8)(9) > is a root of region
for 2, we do not create a new region but we insertSe

as a root of region for 2 and we insert the subsequence
< (1)(2) > both on tree for region 1 and 2. Of course,
tilted-time windows are updated. Finally we proceed
to the last sequenceSf . We can notice that the order
between itemsets is different from previous sequences.
When parsing the set of items, we can conclude that
they occur in the same region 1. Nevertheless the longest
subsequences are reduced to< (1) > and< (2) >, i.e.
neither Sf ≺ Sc or Sc ≺ Sf holds, then we have to
consider a new region.

2) Pruning sequences:Let us now discuss how
stored sequences are pruned. While pruning in [6] is
done in 2 distinct operations, SPEED prunes unfre-
quent patterns in a single operation which is in fact a
dropping of the tail sequences of tilted-time windows
fS(tk), fS(tk+1), . . . , fS(tn) when the following condi-
tion holds:

∀i, k ≤ i ≤ n, supportbi

ai
(S) < εf |B

bi

ai
|

By navigating intotreereg, and by using the regions
index, we can directly and rapidly prune irrelevant se-
quences without further computations. This process is
repeated after each new batch in order to use as little
main memory as possible. During the pruning phase,
titled-windows are merged in the same way as in [6].

B. TheSPEED algorithm

We describe in more detail the SPEED algorithm (C.f.
Algorithm 1). While batches are available, we consider
sequences embedded in batches in order to update

Sa

Sd

Sc

Se Sf

Root

Sb

21
3

(Third Batch − Se)

Fig. 9. The valuation tree after batches processing

Algorithm 1: The SPEED algorithm

Data: an infinite set of batches B=B0
0 ,

B1
1 , ... Bn

n ...; a minsupp user-defined
threshold; an error rateǫ.

Result: A set of frequent items and sequences
// init phase
treereg ← ∅; ITEMS ← ∅; SEQS ← ∅;
region ← 1;
while batches are availabledo

foreach Bi
i ∈ B do

UPDATE(Bi
i , treereg, ITEMS, SEQS,

minsupp, ε);
PRUNE(treereg, ITEMS, SEQS,
minsupp, ε);

our structures (UPDATE). Then we prune unfrequent
sequences in order to maintain our structures in main
memory (PRUNETREE). In the following, we consider
that we are provided with the three next structures. Each
value of ITEMS is a tuple (labelitem, {time, occ},
{(regions, RootReg)}) where labelitem stands for the
considered item,{time, occ} is used in order to store
the number of occurrences of the item for different time
of batches and for each region in{regions} we store its
associated sequences (RootReg in the treereg structure.
According to the following property, the number of
regions is limited.

Property 1: Let Φ be the number of items inDS. The
maximal number of regions is bounded byΦ2 + 1.
Proof: Let Φ be the number of items. We can generate
Φ2 maximal sequences of size 2 and one maximal
sequence. Each of them stands for a region. Whatever

the added sequence, it will be a subsequence and will
be included in one of the already existingΦ2+1 regions.

In other words, in the worst case, our algorithm has
to check, for each sequence embedded in a batchΦ2 +1
regions.

TheSEQS structure is used to store sequences. Each
value ofSEQS is a tuple (s, size(s),{time, occ}) where
size(s) stands for the number of items embedded in
s. Finally, the treereg structure is a tree where each
node is a sequence stored inSEQS and where vertices
correspond to the associated region (according to the
previous overview).

Let us now examine the Update algorithm (C.f.
Algorithm 2) which is the main core of our approach.
We consider each sequence embedded in the batch.
From a sequenceS, we first get regions of all its items
(GETREGIONS). If items were not already considered
we only have to insertS in a new region. Otherwise, we
extract all different regions associated on items ofS. For
each region the GETFIRSTSEQOFVAL function returns
a new subsequenceSx constructed by merging items
sharing same region with their associatedRootReg. We
then compute the longest common subsequences ofSx

in RootV al by applying the LCSPLongest Common
Sequential Patternsfunction. This function returns an
empty set both when there are no subsequences or if
subsequences are merely reduced to one item1.

Property 2: Let u, v be two sequences and|u|, |v|

1Due to lack of space, we do not describe this function. Interested
reader may refer to [19]. LCSP is an extension of the NKY algorithm
[15] of time complexityO(n(m - r)) wheren andm are the sizes of
sequences andr the size of the longest maximal sequence.

Algorithm 2: The UPDATE algorithm

Data: a batch Bt
t = [S1, S2, S3, ..., Sk]; a

minsupp user-defined threshold; an error
rate ǫ.

Result: treereg, ITEMS, SEQS updated.

foreach sequence Seq ∈ Bt
t do

LatticeMerge ← ∅; DelayedInsert ← ∅;
Candidates ← GETREGIONS(Seq);
if Candidates = ∅ then

INSERT(Seq,NewV al + +);

else
foreach region V al ∈ Candidates do

// Get the maximal sequence from
regionV al
F irstSeq ←
GETFIRSTSEQOFVAL (V al);
// Compute all the longest common
// subsequences
NewSeq ← LCSP(Seq,FirstSeq);
if |NewSeq| = 1 then

// There is a direct inclusion
// between the two tested sequences
if (NewSeq[0] ==
Seq)||(NewSeq[0] == FirstSeq)
then

LatticeMerge ← V al;

else
// Found a new subsequence
// to be added
INSERT(NewSeq[0], V al);
UPDATETTW(NewSeq[0]);
DelayedInsert ← NewSeq;

else
DelayedInsert ← Seq;
foreach sequence S ∈ NewSeq
do

INSERT(S, V al);
UPDATETTW(S);
DelayedInsert ← S;

// Create a new region
if |LatticeMerge| = 0 then

INSERT(Seq, NewV al + +);
UPDATETTW(Seq);

else
if |LatticeMerge| = 1 then

INSERT(Seq, LatticeMerge[0]);
UPDATETTW(Seq);

else
MERGE(LatticeMerge, Seq);

INSERTANDUPDATEALL (DelayedInsert,
LatticeMerge[0]);

the associated size. Letr be the size of the maximal
subsequence betweenu andv. Let Λ be the number of
maximal subsequences. We have:Λ ≤

(

w=min(|u|,|v|)
r

)

.
Proof: Let u and v be two sequences. We can
obtain respectively2|u| and 2|v| subsequences. The
set of maximal subsequences having sizer is then:
min(

(

|u|
r

)

,
(

|v|
r

)

) ≡
(

w=min(|u|,|v|)
r

)

If there is only one subsequence, i.e. cardinality of
NewSeq is 1, we know that the subsequence is either
a root of region orSx itself. We thus store it in a
temporary array (LatticeMerge). This array will be used
in order to avoid to create a new region if it already
exists a root of region included inS. Otherwise we
know that we are provided with a subsequence and then
we insert it into treereg (INSERT) and propagate the
tilted-time window (UPDATETTW). Sequences are also
stored in a temporary array (DelayedInsert). If there
exist more than one subsequence, then we insert all
these subsequences on the corresponding region and
also store withS on DelayedInsertthem in order to
delay their insertion for a new region. IfLatticeMergeis
empty we know that it does not exist any subsequence
of S included on sequences oftreereg and then we
can directly insertS in a new region. Otherwise, we
insert the subsequence intreereg for the region of
LatticeMerge. If the cardinality ofLatticeMerge is
greater than 1, we are provided with a sequence which
will be a new root of region and then we insert it. For
the both last case, we insert all the set of subsequences
embedded and we update their tilted-time windows
(INSERTANDUPDATEALL).

Property 3: Let treereg be the structure at the end
of the process. LetS andS′ be two sequences such as
S′ ¹ S, then:

1) If S′ does not exist intreereg then S also does
not exist intreereg.

2) If S′ exists intreereg, let Sup′0, . . . , Sup′n (resp.
Sup0, . . . , Supm for S) be the supports ofS′2 in
all of its tilted-time windows then:
n ≥ m andSup′i ≥ Supi ,∀i such as0 ≤ i ≤ m

Proof:
1) The first part is proved by induction on N, i.e. the

number of batches.
For N = 0 (the oldest batch), ifS ∈ treereg
thenSupport0(S) ≥ ǫf |B

0
0 |. Let us consider that

S′ /∈ treereg, asS′ 6⊆ S we haveSupport0(S) ≤

2whereSup′

0 is the support in the most recent window.

ǫf |B
0
0 |. So we haveS /∈ treereg.

For N > 0, let us considerS′ /∈ treereg after
processing theN th batch. We have to consider the
two following cases: (i)S′ /∈ treereg after the
processing of the(N−1)th batch then by induction
we also haveS /∈ treereg by extending in the
same way the caseN = 0. (ii) S′ ∈ treereg after
the (N − 1)th batch and the sequence was pruned
when processing the batchN . As S′ 6⊆ S, it exists
S1, . . . , Sp such asS1 = S′ andSp = S, whereSi

is the subsequence ofSi+1 for 1 ≤ i ≤ p. With the
pruning condition, we know thatS1, . . . , Sp were
already pruned during the processing of the batch
N thusS /∈ treereg.

2) As S′ ≤ S, we haveS1, . . . , Sp (cf previous part).
By using the pruning condition, we know that the
table of tilted-time windows ofSi has much more
windows thanSi+1 with 1 ≤ i ≤ p, thus S′ has
much more windows thatS (m ≥ n).
By definition, we know thatSup0, . . . , Supn−1

and Sup′0, . . . , Sup′n−1 are the support ofS
and S′ for each batch. These windows have
the same structure, we can thus apply the anti-
monotonic property:Suppi(S

′) ≥ Suppi(S) for
1 ≤ i ≤ n − 1.
Let us assumeWs (resp. Ws′), the set of
sequences having incrementedS (resp. S′) for
the batchN , i.e Suppn(S) = |Ws|. We thus have
Ws ⊆ Ws′ and by the antimonotonic property:
Suppq(S

′) = |Ws′ | ≥ Suppq(S) = |Ws|.

Maintaining all the data streams in the main memory
requires too much space. So we have to store only
relevant sequences and drop sequences when the tail-
dropping condition holds. When all the tilted-time win-
dows of the sequence are dropped the entire sequence is
dropped fromtreereg. As a result of the tail-dropping
we no longer have an exact frequency overL, rather
an approximate frequency. Now let us denoteFS(L)
the frequency of the sequence in all batches andF̃S(L)
the approximate frequency. Withε ≪ minsupp this
approximation is assured to be less than the actual
frequency according to the following inequality [6]:
FS(L) − ǫ|L| ≤ F̃S(L) ≤ FS(L).

Due to lack of space we do not present the entire
PRUNE algorithm we rather explain how it performs.
First all sequences verifying the pruning constraint are
stored in a temporary set (ToPrune). We then consider
items inITEMS data structure. If an item is unfrequent,
then we navigate throughtreereg in order: (i) to prune

this item in sequences; (ii) to prune sequences intreereg
also appearing inToPrune. This function takes advan-
tage of the anti-monotonic property as well as the order
of stored sequences. It performs as follows, nodes in
treereg, i.e. sequences, are pruned until a node occurring
in the path and having siblings is found. Otherwise, each
sequence is updated by pruning the unfrequent item.
When an item remains frequent, we only have to prune
sequences inToPrune by navigating intotreereg.

V. EXPERIMENTS

In this section, we report our experiments results.
We describe our experimental procedures and then our
results.

A. Experimental Procedures

The stream data was generated by the IBM
synthetic market-basket data generator, available at
http://www.almaden.ibm.com/cs/quest. In all the exper-
iments we used 1K distinct items and generated 1M
of transactions. Furthermore, we have fixed minsupp
at 10%. We conducted two sets of experiments, in the
first, we set the frequency error threshold at0.1 with
an average sequence length of 3 or 5 itemsets and
in the second we set the frequency error threshold at
0.2 with the same sequence lengths. The stream was
broken in batches of 20 seconds for the 3-sequences
and 90 seconds for the 5-sequences. Furthermore, all the
transactions can be fed to our program through standard
input. Finally, our algorithm was written in C++ and
compiled using gcc without any optimizations flags. All
the experiments were performed on an AMD Athlon XP-
2200 running Linux with 512 MB of RAM.

B. Results

At each processing of a batch the following informa-
tions were collected: the size of the SPEED data structure
at the end of each batch in bytes, the total number of
seconds required per batch, the total number of maximal
sequences generated for this batch and the number of
valuations present on the data stream sequences. The x
axis represents the batch number.

Figure 12 show time results for 3 and 5-sequences.
Every two batches the algorithm needs more time to
process sequences, this is in fact due to the merge
operation of the tilted-time windows which is done in
our experiments every 2 batches on the finest granularity
level. The jump in the algorithm is thus the result of
extra computation cycles needed to merge the tilted-time
windows values for all the nodes in thetreereg structure.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

S
ec

on
de

s

Temps de calcul pour les sequences de taille 3

epsilon=0.2
epsilon=0.1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

S
ec

on
de

s

Temps de calcul pour les sequences de taille 5

epsilon=0.2
epsilon=0.1

Fig. 12. Speed Time requirements for{3,5}-sequences

The time requirements of the algorithm tend to grow very
slowly as the stream progresses and do not excess the
20 or the 90 seconds computation time limit for every
batch. Figure 13 show memory needs for the processing
of our sequences. Space requirements is bounded for 3-
sequences by 35M and 78M for the 5-sequences, this
requirement is however acceptable as this can easily fit
in main memory. Experiments show that the SPEED
algorithm can handle sequences in data streams without
falling behind the stream as long as we choose correct
batch duration values. However, development is not over
yet and we still feel that improvements and optimizations
can still be made to the current implementation.

VI. CONCLUSION

In this paper we addressed the problem of mining
sequential patterns in streaming data and proposed the
first approach, called SPEED, for mining such patterns.
SPEED is based on a new efficient structure and on strict
valuation of edges. Such a valuation is very useful either
when considering the pruning phase or when comparing
sequences since we only have to consider sequences
embedded into the tree sharing same valuations. Thanks
to the anti-monotonic property and the order of stored
sequences in our structure, the pruning phase is also
improved. Conducted experiments have shown that our
approach is efficient for mining sequential patterns in
data stream. Furthermore, with SPEED, users can, at
any time, issue requests for frequent sequences over an
arbitrary time interval.

There are various avenues for future work. First, we
are investigating how the tilted-time windows could be
improved in order to store both the time interval and the
distribution of items during a period. With such a func-
tionality we expect that the approximation of the returned

result from a request with a large time interval could
be improved. Secondly, we are currently studying how
long sequences, i.e. sequences embedded in different
consecutive batches, can be considered in SPEED. Finally
we would like to develop query answering techniques
adapted to our approach.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association
rules between sets of items in large database. InProceedings
of the International Conference on Management of Data (ACM
SIGMOD 93), pages 207–216, 1993.

[2] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern
mining using bitmap representation. InProceedings of the 8th
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD 02), pages 439–435, Alberta, Canada,
2002.

[3] Y. Chen, G. Dong, J. Han, B. Wah, and J. Wang. Multi-
dimensional regression analysis of time-series data streams. In
Proceedings of the 28th International Conference on Very Large
Databases (VLDB 02), pages 322–334, Hong Kong, China,
2002.

[4] Y. Chi, H. Wang, P.S. Yu, and R.R. Muntz. Moment: Maintain-
ing closed frequent itemsets over a stream sliding window. In
Proceedings of the 4th IEEE International Conference on Data
Mining (ICDM 04), pages 59–66, Brighton, UK, 2004.

[5] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and
P.-N. Tan. Data mining for network intrusion detection. In
Proceedings of the 2002 National Science Foundation Workshop
on Data Mining, pages 21–30, 2002.

[6] G. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining frequent
patterns in data streams at multiple time granularities. InIn H.
Kargupta, A. Joshi, K. Sivakumar and Y. Yesha (Eds.), Next
Generation Data Mining, MIT Press, 2003.

[7] J. Han, J. Pei, B. Mortazavi-asl, Q. Chen, U. Dayal, and
M. Hsu. Freespan: Frequent pattern-projected sequential pattern
mining. In Proceedings of the 6th International Conference on
Knowledge Discovery and Data Mining (KDD 00), pages 355–
359, Boston, USA, 2000.

[8] C. Jin, W. Qian, C. Sha, J.-X. Yu, and A. Zhou. Dynamically
maintaining frequent items over a data stream. InProceedings

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 10 20 30 40 50 60 70 80 90 100

K
B

yt
es

Batches

Utilisation memoire de SPEED avec des sequences de taille 3

Epsilon=0.2
Epsilon=0.1

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

K
B

yt
es

Batches

Utilisation memoire de SPEED avec des sequences de taille 5

Epsilon=0.2
Epsilon=0.1

Fig. 13. Speed Memory requirements for{3-5}-sequences

of the 12th International Conference on Information and Knowl-
edge Management (CIKM 04), pages 287–294, New Orleans,
Louisiana, 2003.

[9] R.-M. Karp, S. Shenker, and C.-H. Papadimitriou. A simple
algorithm for finding frequent elements in streams and bags.
ACM Transactions on Database Systems, 28(1):51–55, 2003.

[10] H.-F. Li, S.Y. Lee, and M.-K. Shan. An efficient algorithm for
mining frequent itemsets over the entire history of data streams.
In Proceedings of the 1st International Workshop on Knowledge
Discovery in Data Streams, Pisa, Italy, 2004.

[11] M. Lin and S. Lee. Improving the efficiency of interactive
sequential pattern mining by incremental pattern discovery. In
Proceedings of the 36th Annual Hawaii International Confer-
ence on System Sciences - CDROM, Big Island, USA, 2003.

[12] G. Manku and R. Motwani. Approximate frequency counts
over data streams. InProceedings of the 28th International
Conference on Very Large Data Bases (VLDB 02), pages 346–
357, Hong Kong, China, 2002.

[13] F. Masseglia, F. Cathala, and P. Poncelet. The PSP approach for
mining sequential patterns. InProceedings of the 2nd European
Symposium on Principles of Data Mining and Knowledge
Discovery (PKDD 98), pages 176–184, Nantes, France, 1998.

[14] F. Masseglia, P. Poncelet, and M. Teisseire. Incremental mining
of sequential patterns in large databases.Data and Knowledge
Engineering, 46(1):97–121, 2003.

[15] Yajima Shuzo Nakatsu Narao, Kambayashi Yahiko. A longest
common subsequence suitable for similar text strings.Acta
Informatica, 18(1):171–179, 1982.

[16] S. Parthasarathy, M. Zaki, M. Orihara, and S. Dwarkadas. Incre-
mental and interactive sequence mining. InProceedings of the
8th International Conference on Information and Knowledge
Management (CIKM 99), pages 251–258, Kansas City, MO,
USA, 1999.

[17] J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen, and
U. Dayal. Prefixspan: Mining sequential patterns efficiently
by prefix-projected pattern growth. InProceedings of 17th
International Conference on Data Engineering (ICDE 01),
pages 215–224, Heidelberg, Germany, 2001.

[18] J. Pei, J. Han, and W. Wang. Mining sequential patterns
with constraints in large databases. InProceedings of the
10th International Conference on Information and Knowledge
Management (CIKM 02), pages 18–25, MCLean, USA, 2002.

[19] C. Räıssi. Mining sequential patterns on data streams (in
french). Master’s thesis, University Montpellier II, June 2005.

[20] R. Srikant and R. Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. InProceedings
of the 5th International Conference on Extending Database
Technology (EDBT 96), pages 3–17, Avignon, France, 1996.

[21] R. Agrawal R. Srikant. Mining sequential patterns. InProceed-
ings of the 11th International Conference on Data Engineering
(ICDE 95), pages 3–14, Tapei, Taiwan, 1995.

[22] W.-G. Teng, M.-S. Chen, and P.S. Yu. A regression-based tem-
poral patterns mining schema for data streams. InProceedings
of the 29th International Conference on Very Large Data Bases
(VLDB 03), pages 93–104, Berlin, Germany, 2003.

[23] M.J. Zaki. SPADE: An efficient algorithm for mining frequent
sequences.Machine Learning Journal, 42(1):31–60, February
2001.

