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Abstract

Security of web servers has become a sensitive sub-
ject today. Prediction of normal and abnormal re-
quest is problematic due to large number of false
alarms in many anomaly based Intrusion Detection
Systems(IDS). SS-IDS derives automatically the pa-
rameter profiles from the analyzed data thereby gener-
ating the Statistical Signatures. Statistical Signatures
are based on modeling of normal requests and their dis-
tribution value without explicit intervention. Several
attributes are used to calculate the behavior of the legit-
imate request on the web server. SS-IDS is best suited
for the newly installed web servers which doesn’t have
large number of requests in the data set to train the
IDS and can be used on top of currently used signature
based IDS like SNORT. Experiments conducted on real
data sets have shown high accuracy up to 99.98% for
predicting valid request as valid and false positive rate
ranges from 3.82-7.84%.

1. Introduction

The deployment of computer systems and networks
has greatly increased the risk of attacks on information
system. For example, a recent study by the National
Institute of Standards and Technology has shown that
the damage to US companies, were estimated at more
than 59.6 million dollars per Annum. Web servers are
also very much prone to these attacks, as they are re-
motely accessible, often not properly configured and
sometimes not updated.

Recently, many research groups have focused on gen-
eration of patterns automatically [2, 13]. Some IDS
were built to detect intrusion to some extent in real
time, but cannot be updated as many of them are con-
structed by manual encoding or some expert knowl-
edge, changes to them are slow and expensive [1]. So
there is an urgent and desperate need of a system which
can learn automatically. Some of the recent researches
show that they have started building up mechanisms
for updating the IDS frequently and reducing the false
alarms [10].

Our mechanism aims to build up the IDS based on
Statistical Signature which can characterize and model
the typical behavior on the web server [9]. The main
motivation to build SS-IDS is to deal with the modified
string of the old attacks which cannot be detected by
the currently used IDS. As every web server has some
characteristic feature about the kind of requests it re-
ceive, the central theme of our approach is to model
those requests in some attributes and then automati-
cally generate statistical signatures of the same which
could be used to detect abnormal activities on the web
server. Also, from few experiments this has been shown
that SS-IDS is best suited for freshly installed web
servers, which doesn’t have a large number of requests
in the data set for modeling the IDS.

The remainder of this article is organized as follows.
Section 3 gives an overview of the framework. Section 4
discusses the algorithm behind the approach. The re-
sults obtained during different experiments are shown
in Section 5. In Section 6 we conclude the paper and
propose some future work.
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2. Related Work

Many currently used IDS, like Snort works on mis-
use detection approach, but unfortunately it is hard
to keep the sets of updated signatures with respect to
continuously increasing vulnerabilities. So, anomaly
detection method was used in building of many IDS.
Our work has also a strong liaison with anomaly intru-
sion detection method used by [6]. The first anomaly
based IDS was introduced in 1987, by D.E. Denning
[3]. Some interest have already been expressed in this
field. There are, however, differences in the approaches
taken in the use of modeling the data.

In a paper by Wagner and DeanWe [12], which shows
how the static analysis may be used to automatically
derive a model of application behavior, this improved
the approach [3] with high degree of automation, pro-
tection against a broad class of attacks based on cor-
rupted code, and the elimination of false alarms. The
first work on web based anomaly detection approach
was done by extracting some parameters like length of
the input data and then analyzing the behavior of the
same [5]. But for doing the analysis, the system re-
quires a high volume of data set for generating all pos-
sible grammar for testing, which clearly differentiate
SS-IDS with their approach. A more recent work has
investigated the potential of characterizing the normal
requests in some attributes by Kruegel [6], used some
models to distinguish valid requests from the invalid
ones, but assumed the learning data set to be valid
and contains no attacks. The limitations of anomaly-
based intrusion detection system have been addressed
by using both generalization and characterization tech-
niques [11].

Researchers have also proposed solutions to deal
with the problem of generating the real time IDS, but
produce a high rate of false alarms [8]. Here we intro-
duced a novel approach to mitigate the effect of false
alarms produced in the anomaly detection method. SS-
IDS is different in two ways i.e. firstly, it doesn’t re-
quire a large no of request to model the system and
secondly, it concentrate on the modified string of the
old attacks i.e. the attack string is modified to bypass
the currently deployed Web Server IDSs.

3. SS-IDS Description

Every web server has its own characteristics and in-
herently this may vary from one web server to another.
Using this characteristic feature of the web server, our
approach is based on the analysis of the HTTP requests
(e.g. [4],RFC 1738 [7]) and model these requests in
various attributes which could eventually generate sig-

natures from it. The following example illustrates an
entry in a simplified web server log. The /access.cgi
is the path and the other part of the request is the
query which is composed of < (user, jean) >. We will
use thereafter, the terms Query for the Query part
of the request, Uri path(U) to describe the path (e.g.
/access.cgi) and Query argument value(Q) (e.g. jean)
for the application portion.

192.233.57.105 - jean [15/Sep/2007:23:59:59 - 0800]

“GET /access.cgi?user=jean” 200 2123

3.1. Extraction of U and Q

From legitimate real data sets, each request is sep-
arated in Uri & Query part. We had assumed that all
the requests in the training data set are valid requests
and so, no matter whether it is a Uri or Query, all
part of a request has to be valid. Therefore, calculat-
ing separately the values of each part shouldn’t affect
our final results and signatures as both parts are valid
and contains no attack. The attribute values are cal-
culated on the extracted Uri path(U). However for the
Query part of the request the values are calculated on
each Query argument(Q). Since the attack could occur
on different parts of the request, therefore our goal is
to separate each element to mitigate the effect of one
by another. As in the parameterization phase, there is
no liaison between U and Q of the request therefore
they could be considered separately.

3.2. Classification of Attributes

The attributes i.e. the typical feature of a request
are used to determine the activity on the web server. In
fact, a selection of a particular attribute is important
because it allows us to differentiate legitimate request
and an attack request. Some attribute values are cal-
culated on the original string and some on the decoded
string. The string is decoded recursively until it is not
fully decoded.

The attributes are specific to the characteristics of
the web server and different tests were needed to retain
the relevant ones. Below are the list and the reasons
for our choice of some of the attributes chosen for the
final experiments (the selection has been made with
the assistance of an expert in the field of computer and
network security).

1. Number of %00 (NULL) characters - is cal-
culated on the fundamental string extracted from
the U or Q of the request. This attribute is very ef-
ficient in detecting those attacks which use NULL
character to ignore the pursuance of the rest of the
string after the NULL character.
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2. Number of coded characters

3. Number of coded characters which wasn’t
requiring any encoding but was encoded

4. Number of coded characters which are en-
coded twice

Attributes 2-4 are calculated on the original
string extracted from the U or Q. These attributes
are very imperative as they characterize the en-
coding mechanism used by the user. In a normal
scenario, the frequency of the number of encoded
characters is very less in a request, unless there are
some regional characters like (è, â, é, õ etc.). Also,
normally a user or web browser won’t encode the
characters which doesn’t require any encoding like
(a-z, A-Z, 0-9) or they will not encode the charac-
ter twice. This help us in detecting those attacks
which encodes the attack part of the string and
pass it as a parameter to the web server to bypass
the IDS.

The other attributes are used primarily to count
the numbers of special characters, space, letters,
numbers . . . in the string. These attributes are cal-
culated on the decoded string. For example, for the
following URI /%63alendrier%27%3B%2A/../../ the
number of coded characters in the U is 4.

3.3. Signature Generation and Analysis

After calculating the attributes’ values, it was no-
ticed that these values follow a normal probability dis-
tribution model with some standard deviation. So for
each part of the request, the Mean (µ) and Standard
Deviation (σ) for all the attributes were calculated sep-
arately for U and Q. Then for each of these, the value
for the 1st Standard Deviation is calculated.

After generating the distribution values for the real
valid data sets, the same data set is taken and checked
whether the attributes’ values of each request lay in its
own distribution or not. If the values of that attribute
lies in its own interval, it is coded as 1 otherwise 0.
This form the vector bit signature for that valid re-
quest and this procedure is applied to all the requests
in the data set. The unique signatures out of the all
signatures are then used for the final testing. For ef-
ficiency reasons, we do not accept the final signatures
obtained as the only unique encoded form of signatures
as vectors bits, but we also have the provision for up-
dating these signatures. With the help of these signa-
tures, new requests on the web server could be tested
to find misconduct, i.e. which do not match to all the
signatures.

Signature generation is a very important step as it
model the legitimate request into vector bits. It shows
that some attributes’ values of few requests didn’t lie in
its own interval of distribution, and they are coded as
0, but it doesn’t imply that the request is the invalid re-
quest. It is not necessary for the values of all attributes
of a valid request to lay completely in its own interval
i.e. the values which are outside the distribution are
also important to us. These values cannot be ignored.
The reason for generating signatures is very much im-
portant and distinguishes our approach with [6]. In
[6], the approach generates an alarm only based on one
parameter model and didn’t take care of the correla-
tion between the models, however we do take care of
the correlation between the models by generating the
statistical signatures which gives more flexibility and
generates less false positives. The following example
highlights it. Let us suppose that for a Query, the 1st
attribute’s value lie in the interim distribution and 2nd
doesn’t, so the signature generated by SS-IDS will be
‘1 0’. However the query is still valid and character-
izes the behavior of the web server by showing that
it can receive some queries whose 1st attribute’s value
lie in the distribution and value of the 2nd attribute
don’t. The approach by [6], will give an alarm gener-
ating false positive. SS-IDS also give importance and
weight to those values which are outside the interval.

4. Proposed Algorithm

The general process is partitioned into two phases.
In the parameterization phase, the IDS process valid
requests and correspondingly generate signatures. The
testing phase of the IDS examines the new request com-
ing to the web server and separates the normal traffic
from the anomalous. An alarm is triggered whenever
it detects the new request as an attack.

4.1. Parametrization Phase

Performance of the IDS in the test phase is based
on how the model of the IDS is constructed and the
kind of the data sets used. The algorithm currently
deals with only two fields i.e. U and Q but it could
also be extended to all the fields of the header part of
the request. Assuming the all petitions L of valid set of
requests R. µi and σi are the averages (µ) and standard
deviations (σ) for ith attribute of all the queries of the
stage setting phase. To adapt to a principle of setting
on-line/real-time, the values µi and σi are obtained
incrementally, using Equations 1 & 2.

µ1 = x1, µk+1 =
k

k + 1
µk +

1
k + 1

xk+1 (1)
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σ1 = 0, σk+1 =

√
k

k + 1
σ2

k +
k

(k + 1)2
(µk − xk+1)2

(2)
Every time a new request is processed the correspond-
ing attributes’ values are calculated which further leads
to change in µ and σ. After calculating the new µ, σ
and the attributes’ values for all the requests R in the
valid data set L, the signatures for both U and Q are
generated separately.

4.2. Testing Phase

In the learning phase, the U and the Query part
of the same request were processed separately but in
the testing phase, the whole request is processed as
one. In this phase Function 1 will extract U and Q
from the new request and then calculate the attributes’
values. If the attributes’ values lie in its own interval
i.e. (µ-σ ≤ val ≤ µ+σ) which is calculated in the stage
setting phase of the IDS, the attribute’s value is coded
as 1 otherwise 0. This process is repeated for all the
attributes, and this forms the signature for both U and
Q.

Function 1 Testing Phase

Data: Testing of Request R.
Result: Alert for queries attacks OR disabled
begin

compute att. values for U and Q
if ∃ U then

compute sig. NR signature for U
wmin ←− 1
while ∀ sig. S ∈ U signature file do

w ←− NR signature && S
if (w/no of attributes) < wmin then

wmin ←− w/no of attributes

if w = 0 then break
wmax ←− 0; wmin ←− 1
if ∃ Q then

compute signature NR sig for Q
while ∀ Q do

while ∀ sig. S ∈ Q signature file do
w ←− NR signature && S
if (w/no of attributes) < wmin then

wmin ←− w/no of attributes

if w = 0 then break
if wmax < wmin then wmax ←− wmin

if wmin of U 6= 0 OR wmax of Query 6= 0 then
alert Attack

else
V alid

end

In both U and Q, the new signature is matched with
other signatures of U and Q respectively which were
obtained in the parametrization phase. For each signa-
ture the numbers of non-matching bits are counted, and
the total sum is divided by the number of attributes of
U . It is called the weight (0 ≤ weight ≤1) given to the
new request by one signature. The process is repeated
with all the signatures present in their corresponding
files, and finally the minimum of all the weights is cal-
culated. In case of U , this minimum weight shows how
much the new signature of U is different from the maxi-
mum matching statistical signature. However in case of
Query part of the request, this procedure is repeated
for each Q and in each case the maximum of all the
minimum weights calculated, shows how much the new
query is different from the maximum matching statis-
tical signature.

To illustrate why we use the maximum of all mini-
mum weight in the Query component, let us consider
the following case, suppose that there are three Query
arguments in the new request, where the first two
arguments are valid and the latter constitute an at-
tack. Then for each of the arguments, we look for the
most nearest match with other signatures and calcu-
late their corresponding weight. Therefore, for the first
two arguments it would weigh weight=0 (for the ex-
act match) and for the third argument, it would weigh
some weight〉0. Now the maximum of all the weights
will give us the idea of the exact part where the attack
had actually taken place. So weight of the query will
become the maximum of all the weights of Q. If the
request doesn’t consitute any query part then there is
no weight given for it and is left blank. For each re-
quest if there is some weight〉0, then it reviewed that
the complete request didn’t match with the signatures
which were generated in the stage-setting phase of IDS
and it could possibly be an attack.

5. Experimental Results

To evaluate the performance of IDS in terms of de-
tection accuracy, certain experiments were performed.
Our purpose is to show the novelty of this methodol-
ogy, more specifically its accuracy of detecting modified
string of the old attacks. Experiments were conducted
on a collected 6 months of real data log from the web
server of the Company Beeware and École des Mines
d’Alès.

5.1. Detecting Accuracy of the IDS

1700000 requests from the valid data set of Bee-
ware company was used. A total of Q=504497 &
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U=1700000 from the data set were obtained. After
processing each request from the data set signatures
were calculated. Experiments were performed with the
several different testing data sets from Beeware com-
pany and fig. 1 was generated. From Fig. 1 it could
be easily reviewed that range of False Acceptance Rate
(FAR) ranges from 3.25% - 7.66% and False Rejection
Rate (FRR) ranges from .0034% - .008%.

Figure 1. FAR vs FRR (Beeware Comp.)

The results were obtained without updating the sig-
nature set of IDS throughout the detection phase. The
real data sets used during the testing phase of the sys-
tem also contained some queries which could be eas-
ily detected by the currently used IDS (when searched
manually). So integrating our approach with the tra-
ditional approaches can cover the entire set of attacks.
As compared to other approaches our approach has a
very high amount of accuracy of about 99.98% in true
detection but not in terms of false negatives. This was
due the fact that our approach is not good for detecting
attacks like /etc/passwd, because the structure is same
as /abc/defghi. Our approach aims on the behavioral
analysis rather than the semantic analysis. As in the
previous example, the request is syntactically same, so
it leads to false alarm. But this could be easily han-
dled by some currently used signature based IDS like
SNORT. SS-IDS is resilient for those attacks which
try to modify the attack string and evade into the sys-
tem like /%65%74%63/%70%61%73%73%77%64 which
is just the hex encoding of the attack string.

The results were obtained without updating the sig-
nature set of IDS and the testing data set also con-
tained some queries which could be easily detected by
the currently available IDS.

5.2. Total requests required for training?

The motivation for this experiment was to calcu-
late the number of requests to model a system. We
have conducted this experiment because for a freshly
installed web server there won’t be many requests in
the log for modeling the system/web server, but all

anomaly based IDS requires a fair amount of web re-
quest for the feature extraction process. However by
this experiment we have shown that, SS-IDS doesn’t
require the large data set for modeling the system.

In this experiment, randomly 20000 requests were
chosen, i.e. about 2% of the entire data set for the
training of the system. After learning one request, the
IDS was tested with 3550 invalid requests and 7500
valid requests. Whenever a new request was learned
by the system, the current signatures were updated
and replaced by new set of signatures. Some graphs
were obtained during this procedure as shown in Fig.
2. From the graphs it could be easily reviewed that
the number of false alarms (i.e. the attacks which were
detected as valid requests) after learning ≈ 7500 re-
quests became constant. Nevertheless, the valid re-
quests which were detected as attack/illegitimate
traffic were ranging between from 18-38 requests af-
ter learning ≈ 12200 requests, which is acceptable in
our case as our model is based on behavioral analysis.
The experience with this experiment was very useful
as it shows that in fact it is not mandatory to have the
large amount of requests for apprenticeship. This ap-
proach is best for the freshly installed web servers, as it
doesn’t require many valid requests to model the sys-
tem as compared to previous approaches which cannot
be implemented without having the large data set of re-
quests. The update procedure i.e. to update the entire
database of the signatures requires just 6.52 seconds
after learning 20000 requests. This can be improved
by using high end processors. The experiment was con-
ducted on Intel Pentium 4 with 512 MB RAM. SS-IDS
could be very efficiently implemented in real time with
some modifications in the system.

6. Conclusion

In this article, SS-IDS a new approach for detecting
intrusion attempts on web servers was introduced using
the log information generated by the web application.
The proposed approach models each request based on
some attributes and generates Statistical Signatures
which are used to detect intrusion attempts. The nov-
elty of this approach is its incremental way of updat-
ing the signatures, which doesn’t require any specified
value of threshold for attributes to classify attacks and
non attacks. The approach has been developed to de-
tect the modified string of the old attacks very effi-
ciently. Some experiments have been conducted on the
real data sets which clearly show the high accuracy
of SS-IDS. Also, this has been shown from few exper-
iments that SS-IDS is best suited for the freshly in-
stalled web servers, which doesn’t have many requests
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Figure 2. Updating the signatures after learning each requests

in the log for modeling the Intrusion detection system.
SS-IDS can be used to make good classification by in-
troducing structural information also.
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