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Abstract: The discovery of unexpected behaviors in databases
is an interesting problem for many real-world applications. In
previous studies, unexpected behaviors are primarily addressed
within the context of patterns, association rules, or sequences.
In this paper, we study the unexpectedness with respect to the
fuzzy recurrence behaviors contained in sequence databases.
We first propose the notion of fuzzy recurrence rule, and then
present the problem of mining unexpected sequences that con-
tradict prior fuzzy recurrence rules. We also develop, UFR,an
algorithm for discovering the sequences containing unexpected
recurrence behaviors. The proposed approach is evaluated with
Web access log data.
Keywords: Data mining, sequence database, fuzzy recurrence rule,
unexpectedness.

I. Introduction

During the past years, as very important models of data min-
ing, association rules (frequent patterns) [1] and sequential
patterns [2] have received much attention, such as the work
addressed in [5, 14, 15] and [3, 27, 32, 35, 40, 42].
Association rule mining finds the frequent correlations be-
tween attribute sets (a.k.a.patterns) as rules in the form “if
X then Y”, where X and Y are two patterns. An association
rule reflects the information typically like “60% of customers
who purchase Coca Cola also purchase potato chips (ifCoca
Cola thenpotato chips)”. Different from association rules,
the goal of mining sequential patterns is to find frequent cor-
relations in sequence data, where a sequential pattern is a
frequent sequence depicting that “A then B then C then . . . ”,
where A, B, C, . . . are patterns. A sequential pattern can help
interpreting the information typically like “60% of customers
purchase beers, then purchase Sci-Fi movies, and then pur-
chase rock music”.
On the other hand, the discovery of unexpected behaviors
[33] contradicting prior knowledge (which in general stands
for frequent or predefined behaviors) becomes more and
more interesting for many real-word applications. In previ-
ous studies of discovering unexpected behaviors, unexpect-
edness is mainly stated in the context of patterns [20, 25], as-

sociation rules [24, 29, 30, 31, 37, 36, 38, 39], or sequences
[22, 34].
In our previous work [22], we proposed a semantics based
framework of unexpected sequence mining. For instance,
according to the behavior “people purchase Sci-Fi movies,
and then purchase rock music”, the behavior “people pur-
chase Sci-Fi movies, and then purchase classical music” can
be considered as unexpected, if the classical music is consid-
ered as semantically opposite to the rock music. This work
has been extended with fuzzy methods in [23].
In this paper, we are interested in the unexpectedness stated
by fuzzy recurrence rule, in the form “if the sequencesα re-
peatedly occurs, then the sequencesβ repeatedly occurs”.
For instance, a fuzzy recurrence rule can be “60% of cus-
tomers whooftenpurchase Sci-Fi books then Sci-Fi movies
later, also purchase PC gamesoften”. This type of rules
reflects the associated correlations between repeatedly oc-
curred elements in sequential data. The unexpectedness on
recurrence behaviors is determined by the domain-expert-
defined semantic oppositions. For instance, if we consider
that the classical music is semantically opposite to PC games,
then the fact “1% customers whooftenpurchase Sci-Fi books
then Sci-Fi movies later,often purchase classical music”
stands for an unexpected recurrence behavior in a customer
transaction database. In this case, the unexpectedness can
also be determined from the description occurrence, such like
the consequence “rarely purchase PC games” is opposite to
“oftenpurchase PC games”.
Such unexpected recurrence behaviors can be interesting for
many application domains, including marketing analysis, fi-
nance fraud detection, DNA segment analysis, Web content
personalization, network intrusion detection, weather predic-
tion, and so on.
The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce the related work. In Section 3, we
propose the notions of fuzzy recurrence rules and present
a belief-driven approach to unexpected recurrence behavior
discovery. In Section 4, we develop an effective algorithm
UFR for discovering unexpected recurrence behaviors in a
sequence database. Finally, we conclude in Section 5.
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II. Related Work

In data mining, fuzzy set theory [41] have been many em-
ployed to change the domain of the attributes, employing
granules defined by fuzzy sets instead of precise values.
For instance, an association ruleX → Y depicts the relation
“if X thenY ” between patternsX andY . With fuzzy sets,
there is a very extended way of considering fuzzy association
rules as “ifX isA thenY isB” in considering various infor-
mation of attributes (mostlyquantitative attributes), such as
the type “if beer is lot thenpotato chips is lot ” or “if
age is old thensalary is high ” [6, 9, 11, 16, 21, 19].
In the same manner, the notion of fuzzy sequential patterns
[7, 17, 8, 12, 13] considers the model sequential patterns like
“60% of young people purchase alot of soft drinks ,
then purchasefew opera movies later, then purchase
many PC games”, where the sequence represents “people is
young , thensoft drinks is lot , thenopera movie is
few , and thenPC gameis many”.
Another application of fuzzy set theory is to discoverygrad-
ualpatterns and rules [18, 4, 10, 13]. In this form of fuzziness
in quantitative attributes considers the correlations within the
gradual trends of the values of attributes, such as the associa-
tion rule “if age increases thensalary increases ”, or
the sequential pattern “themore visits of search page, the
more visits ofKBarticles later, and at the same time theless

visits of question submitting page”.
Unexpected behaviors are generally considered within the
framework of subjective interestingness measure. The dis-
covery of unexpectedness depends on prior knowledge of
data that indicates what users expect. Thus, in comparison
with the data mining methods based on statistical frequency
of data, the methods to discoverunexpectednesscontained in
data can be viewed as a process using user-orientedsubjec-
tive measuresinstead of using data-orientedobjective mea-
sures.
The notions of objective measure and subjective measure
for finding potentially interesting patterns (and sequential
patterns) or rules are addressed in terms ofinterestingness
measuresfor data mining. McGarry systematically studied
the development of interestingness measures in [28], where
objective measures are considered as using the statistical
strength (such assupport) or structure (such asconfidence)
of discovered patterns or rules to assess their degree of inter-
estingness however subjective measures are considered as in-
corporating users subjective knowledge (such asbelief) into
the assessment.
In the past years, unexpectedness measure has been widely
studied in various approaches to pattern and rule discoveries.
Liu and Hsu studied the unexpected structures of discovered
rules in [24]. In the proposed approach, the existing rules
(denoted asE) from prior knowledge are regarded as fuzzy
rules by using fuzzy set theory and the newly discovered
rules (denoted asB) are matched against the existing fuzzy
rules in the post-analysis process. A rule consists of thecon-
dition and theconsequent, so that given two rulesBi and
Ej , if the conditional parts ofBi andEj are similar, but the
consequents of the two rules are quite different, then it is con-
sidered asunexpected consequent; the inverse is considered
asunexpected condition. The computation of the similarity
in the matching is based on the attribute name and value. The

same techniques are extended to find unexpected patterns in
[25]. Moreover, in [26], Liu et al. investigated the problem
of finding unexpected information in the context of Web con-
tent mining.
Suzuki et al. systematically studiedexception rulesin the
context of association rule mining [37, 36, 38]. An associ-
ation rule can be classified into two categories: acommon
sense rule, which is a description of a regularity for nu-
merous objects, and anexception rule, which represents, for
a relatively small number of objects, a different, regularity
from a common sense rule. The exception rules are consid-
ered with respect to the common sense rules within a rule
triplet

(Aµ ⇒ c, Aµ ∧Bν ⇒ c′, Bν 6⇒ c′),

whereAµ, Bν are itemsets andc, c′ are items. Such a rule
triplet can be interpreted as “ifAµ thenc, however ifAµ and
Bν thenc′, and ifBν then notc′”.
Padmanabhan and Tuzhilin proposed a semantics-based
belief-driven approach [29, 30, 31] to discover unexpected
patterns in the context of association rules, where a rule
A ⇒ B is unexpectedwith respect to a beliefX ⇒ Y in
a given databaseD if: (1) B ∧ Y |= FALSE, which means
that the two patternsB andY logically contradict each other
(i.e., ∄R in D such thatB ∪ Y ⊆ R); (2) A ∧ X holds on
a statistically large subset of tuples inD (e.g., with respect
to a given minimum support, the patternA ∪ X is frequent
in the databaseD); (3) the ruleA ∧ X ⇒ B holds and the
ruleA ∧ X ⇒ Y hoes not hold (e.g., the support and confi-
dence ofA ∧ X ⇒ B satisfy given minimum support and
minimum confidence but those ofA ∧ X ⇒ Y do not).
An example can be that given a beliefprofessional ⇒
weekend (professionals shopped on weekends), if the rule
(professional, December ) ⇒ weekday (profession-
als shopped on weekdays in December) holds but the rule
(professional, December ) ⇒ weekend (professionals
shopped on weekends in December) does not, then the rule
December ⇒ weekday is unexpected relative to the belief
professional ⇒ weekend . Notice that in this approach,
the logically contradiction between patterns is defined by do-
main experts.
In [34], Spiliopoulou proposed an approach for mining un-
expectedness with sequence rules transformed from frequent
sequences. The sequence rule is built by dividing a sequence
into two adjacent parts, which are determined by the support,
confidence and improvement from association rule mining.
A belief on sequences is constrained by the frequency of the
two parts of a rule, so that if a sequence respects a sequence
rule but the frequency constraints are broken, then this se-
quence is unexpected. Although this work considers the un-
expected sequences and rules, it is however very different
from our problem in the measure and the notion of unexpect-
edness contained in data.
In [39], Wang et al. studied unexpected association rules
with respect to the value of attributes. In [20], Jaroszewicz
and Scheffer proposed a Bayesian network based approach
to discover unexpected patterns, that is, to find the pat-
terns with the strongest discrepancies between the network
and the database. Therefore, this approach can be regarded
as frequency based, where unexpectedness is defined from
whether itemsets in the database are much more, or much
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less frequent than the background knowledge suggests.
In our recent work [23], we proposed a belief-driven ap-
proach for recognizing fuzzy unexpected sequences corre-
sponding to sequential implication rules. Asequential impli-
cation rule is a rule of the form “if the sequencesα occurs
then the sequencesβ occurs latter” so that the beliefs are cre-
ated with respect to (1) the distance betweensα andsβ ; (2)
the semantics of the implication betweensα andsβ , i.e.,sβ

cannot be replaced by another sequencesγ . The fuzzy sets
are considered on the distance between the two sequences.

III. Unexpected Recurrence Behaviors

In this section, we first introduce the data model and formal-
ize the fuzzy recurrence rules, and then we present a belief
system based on such fuzzy recurrence rules, with which the
unexpected recurrence behaviors are therefore proposed.

A. Data Model

We consider the sequence data that consist in binary-valued
attributes. Given a set of a limited number of attributesR =
{i1, i2, . . . , in}, each attribute is anitem. An itemsetis an un-
ordered collection of items, denoted asI = {i1, i2, . . . , im},
whereij ∈ R is an item. We have thatI ⊆ R. A sequenceis
an ordered list of itemsets, denoted ass = I1I2 · · · Ik, where
Ij ⊆ R is an itemset. Asequence databaseis usually a large
set of sequences, denoted asD.
Given two sequencess = I1I2 . . . Im and s′ =
I ′1I

′

2 . . . I
′

n, if there exist integers1 ≤ i1 < i2 < . . . <

im ≤ n such thatI1 ⊆ I ′i1 , I2 ⊆ I ′i2 , . . . , Im ⊆ I ′im
,

then the sequences is asubsequenceof the sequences′, de-
noted ass ⊑ s′. If s ⊑ s′, we say thats is contained in
s′, or s′ supportss. For example, the sequences1 = (a)(b)
is contained in the sequences2 = (a)(b)(c), but not con-
tained in the sequences3 = (ab)(c). In addition, we de-
note theconcatenationof n sequences ass1s2 · · · sn. For
example, lets1 = (a)(b) and s2 = (c)(d), then we have
s1s1 = (a)(b)(a)(b) ands1s2 = (a)(b)(c)(d).
Given a sequence databaseD, thesupportof a sequences is
the fraction of the total number of sequences inD that sup-
ports, denoted assupp(s,D). Given a user specified thresh-
old of support calledminimum support, denoted assuppmin,
a sequences is frequentif supp(s,D) ≥ suppmin.

B. Fuzzy Recurrence Rules

To study the repeatedly occurred elements in sequences, we
first propose the notion ofrecurrence sequencein the form
〈s, ψ〉, wheres is a sequence andψ is a positive integer. If a
sequences′ supportsa recurrence sequence〈s, ψ〉, then the
sequences occurs ins′ at leastψ times, denoted as〈s, ψ〉 ⊑
s′, that is,

(〈s, ψ〉 ⊑ s′) ⇐⇒ (s · · · s
︸ ︷︷ ︸

n

⊑ s′) ∧ (n ≥ ψ).

A recurrence sequence〈s, ψ〉 is also called aψ-recurrence
sequence. We use the wildcard “∗” for denoting the general
meaning of the support between sequences, that is,

(〈s, ∗〉 ⊑ s′) ≡ (s ⊑ s′).

In the remainder of this paper, we use the termsequenceto
describe the notion ofrecurrence sequence.
A recurrence rule is a rule on sequences with form
〈sα, ψ〉 → 〈sβ, θ〉, wheresα, sβ are two sequences, andψ,
θ are two integers for describing recurrence behaviors in se-
quence data. A recurrence rule indicates the association rela-
tion that given a sequences, if sα orderly occurs no less than
ψ times withins, then orderlysβ occurs ins no less thanθ
times, that is,

(sα · · · sα
︸ ︷︷ ︸

n

⊑ s) ∧ (n ≥ ψ) ⇒ (sβ · · · sβ
︸ ︷︷ ︸

k

⊑ s) ∧ (k ≥ θ).

Given a sequences and a recurrence ruler = 〈sα, ψ〉 →
〈sβ, θ〉, if 〈sα, ψ〉 ⊑ s and 〈sβ, θ〉 ⊑ s, then we say that
s supportsr, denoted ass |= r. For instance, the recur-
rence ruler = 〈(a)(b), 3〉 → 〈(c)(d), ∗〉 depicts that given
a sequences, if (a)(b) is contained repeatedly ins no less
3 times, then(c)(d) is contained ins; in other words, if
(a)(b)(a)(b)(a)(b) ⊑ s, then(c)(d) ⊑ s.
Notice that the occurrences ofsα must be ordered, that is,
for example, given a ruler1 = 〈(a)(b), 2〉 → 〈(c), ∗〉, the
sequences1 = 〈(a)(a)(c)(b)(b)〉 does not supportr1, but
the sequences2 = 〈(a)(b)(c)(a)(b)〉 supportsr1; however,
the sequences1 supports the rulesr2 = 〈(a), 2〉 → 〈(c), ∗〉
andr3 = 〈(b), 2〉 → 〈(c), ∗〉.
Considering the integerψ, a human-friendly interpretation
is more flexible and more relevant to described the recur-
rence in sequence data. For instance, in market basket anal-
ysis, to point out that “the customers who often purchase
action movie DVDs often purchasepop music CDs ” is
more relevant than the conclusion “the customers who pur-
chase at least 7 times ofaction movie DVDs purchase at
least 5 times ofpop music CDs ”.
We therefore extend the recurrence rule with fuzzy sets, so
called thefuzzy recurrence rule, in the form 〈sα, ζα〉 →
〈sβ, ζβ〉, whereζα andζβ are two fuzzy sets for describing
sα andsβ, and the sequences〈sα, ζα〉 and〈sβ , ζβ〉 are two
fuzzy recurrence sequences. Given a sequences′ and a fuzzy
recurrence rule〈s, ζ〉, thats′ supports〈s, ζ〉 is defined as

(〈s, ζ〉 ⊑ s′) ⇐⇒ (s · · · s
︸ ︷︷ ︸

n

⊑ s) ∧ (µζ(n) ≥ recumin),

(1)
where the fuzzy degree measured by the membership func-
tionµζ(n) must be superior or equal to a thresholdrecumin.
Let us consider the following example.

rarely

1 2 3 4 5 7 8 9 10 11 12 14 15 166 13

0.2

0.4

0.6

0.8

1.0

0

offten frequently always

Figure. 1: Fuzzy sets for describing recurrence rules.

Example 1. Given a set of distinct eventsa, b, c, d, . . ., an
ordered of events can be represented as the data model of
sequence. Assuming that given an event sequences, if s
supports the recurrence sequence〈(a)(b), 4〉, then s sup-
ports the subsequence(c)(d); if s supports the recurrence
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sequence〈(a)(b), 9〉, thens supports(c). These behaviors
can be described by recurrence rules, such as the ruler1 =
〈(a)(b), 4〉 → 〈(c)(d), ∗〉 and the ruler2 = 〈(a)(b), 9〉 →
〈(c), ∗〉. Given a sequences1 such that〈(a)(b), 3〉 ⊑ s1 and
〈(c)(d)〉 ⊑ s1, a sequences2 such that〈(a)(b), 8〉 ⊑ s2 and
〈(c)〉 ⊑ s2, we haves1 6|= r1 ands2 6|= r2. However, since
the recurrence sequences contained in these sequences and
rules are close, the sequencess1 ands2 can be still poten-
tially interesting. On the other hand, considering the fuzzy
recurrence rulesr1′ = 〈(a)(b), rarely〉 → 〈(c)(d), ∗〉 and
r2

′ = 〈(a)(b), often〉 → 〈(c), ∗〉, corresponding to the rules
r1 andr2 with respect to the fuzzy partitions shown in Figure
1, let the thresholdrecumin = 0.5, then we haves1 |= r1

′

ands2 |= r2
′. We can further define more partitions, such as

“always” or “rarely”.
In this paper, the fuzzy recurrence rules are considered as
having been predefined by domain experts, the discovery of
fuzzy recurrence rules will be covered in our future research
work.

C. Belief System

We now present thebelief systemon fuzzy recurrence rules
with integrating semantic contradiction between sequences.
A beliefspecifies that if a sequence〈sα, ζα〉 occurs, then a se-
quence〈sβ, ζβ〉 occurs; however a sequence〈sγ , ζγ〉 should
not occur at the occurrence position of the sequence〈sβ, ζβ〉.
Definition 1 (Semantic contradiction). Given two sequences
〈sβ, ζβ〉 and 〈sγ , ζγ〉, the semantic contradiction between
〈sβ, ζβ〉 and 〈sγ , ζγ〉 is a boolean value determined by a
predicateo(〈sβ , ζβ〉 , 〈sγ , ζγ〉): if 〈sβ, ζβ〉 semantically con-
tradicts〈sγ , ζγ〉, theno(〈sβ , ζβ〉 , 〈sγ , ζγ〉) returns 1; other-
wiseo(〈sβ, ζβ〉 , 〈sγ , ζγ〉) returns 0.
Given two sequences〈sβ, ζβ〉 and 〈sγ , ζγ〉, denote by
〈sβ, ζβ〉 6≃sem 〈sγ , ζγ〉 when o(〈sβ , ζβ〉 , 〈sγ , ζγ〉) = 1.
The semantic contradiction is symmetric but not transi-
tive. We have that〈sβ , ζβ〉 6≃sem 〈sγ , ζγ〉 is equivalent to
〈sγ , ζγ〉 6≃sem 〈sβ , ζβ〉, however〈sβ, ζβ〉 6≃sem 〈sγ , ζγ〉
and〈sγ , ζγ〉 6≃sem 〈sα, ζα〉 do not imply that〈sβ, ζβ〉 6≃sem

〈sα, ζα〉.
The predicateo(〈sβ , ζβ〉 , 〈sγ , ζγ〉) can be designed to
compute the semantic contradiction between the elements
〈sβ, ζβ〉 and〈sγ , ζγ〉 in various manners. For instance, given
a setS of sequences, we can build a projection tableT of pre-
defined relations onS × S, and then the semantic contradic-
tion between any(〈sβ, ζβ〉 , 〈sγ , ζγ〉) ∈ S can be returned by
o(〈sβ , ζβ〉 , 〈sγ , ζγ〉) with searching the tableT ; the seman-
tic contradiction can also be determined by the fuzzy sets of
the recurrence, i.e., ifζβ semantically contradictsζβ ′ (e.g.,
oftenv.s. rarely), theno(〈sβ , ζβ〉 , 〈sβ , ζβ

′〉) = 1.
Let 〈sα, ζα〉 → 〈sβ , ζβ〉 be a fuzzy recurrence rule and
〈sβ, ζβ〉 6≃sem 〈sγ , ζγ〉 be a semantic contradiction. The
fuzzy recurrence rule implies an association relation between
the sequences〈sα, ζα〉 and〈sβ , ζβ〉 that if the recurrence of
sα is ζα, then the recurrence ofsβ is ζβ . The semantic con-
tradiction then implies that the recurrence sequences〈sβ , ζβ〉
and〈sγ , ζγ〉 semantically contradict each other.
Definition 2 (Belief). A belief is a conjunction{〈sα, ζα〉 →
〈sβ, ζβ〉} ∧ {〈sβ , ζβ〉 6≃sem 〈sγ , ζγ〉}, where{〈sα, ζα〉 →
〈sβ, ζβ〉} is a fuzzy recurrence rule and〈sβ, ζβ〉 6≃sem

〈sγ , ζγ〉 is a semantic contradiction. A belief is denoted as

[〈sα, ζα〉 ; 〈sβ, ζβ〉 ; 〈sγ , ζγ〉].
A belief [〈sα, ζα〉 ; 〈sβ , ζβ〉 ; 〈sγ , ζγ〉] depicts that given a se-
quences, if s supports〈sα, ζα〉, thens supports〈sβ , ζβ〉;
howevers should not support〈sγ , ζγ〉, that is,

(〈sα, ζα〉 ⊑ s) ∧ (〈sβ , ζβ〉 ⊑ s) ∧ (〈sγ , ζγ〉 6⊑ s). (2)

Example 2. Assume that the customers who purchase
movies like to play games. If we consider thatgames

and books semantically contradict each other, where
the semantic contradiction can be〈(game), often〉 6≃sem

〈(book ), often〉, then a belief can be defined as

[〈(movie ), often〉 ; 〈(game), often〉 ; 〈(book ), often〉] .

The fuzzy sets for purchases can also be that shown in Figure
1. The above belief describes that the customers whooften

purchasemovies also purchasegames often, however do
notoften purchasebooks .
Given a beliefb, if a sequences satisfies Equation (2), then
we say that the sequences supportsthe beliefb, denoted as
s |= b. A sequences unexpectedto a beliefb is denoted as
s 3 b.

D. Unexpected Sequences

We are considering to discover the sequences contained in a
database those semantically contradict a given set of fuzzy
recurrence rules. In order to find such sequences, we con-
struct a belief system from given fuzzy recurrence rules
with semantic contradictions between fuzzy recurrence se-
quences, so that each sequence not respecting the belief base
is unexpected.
A sequences is unexpected if (1) the sequence〈sα, ζα〉 oc-
curs and the sequencesβ but the sequence〈sβ , ζβ〉 does not
occur; or (2) the sequence〈sα, ζα〉 and the sequence〈sγ , ζγ〉
occurs. Therefore, we consider two forms of unexpected-
ness in our approach with respect to the occurrence of the
sequences〈sβ , ζβ〉 and〈sγ , ζγ〉 contained in a belief.
Definition 3 (Occurrence-unexpectedness). Given a se-
quences and a beliefb = [〈sα, ζα〉 ; 〈sβ, ζβ〉 ; 〈sγ , ζγ〉], if
s supports〈sα, ζα〉 and there existsβ ⊑ s and〈sβ , ζβ〉 6⊑ s,
then the sequences is occurrence-unexpected, denoted as
s 3β b.
The primary factor of the occurrence-unexpectedness in a se-
quences is that the recurrence sequence〈sβ , ζβ〉 does not
occur as expected however at least the sequencesβ occurs
in s, so that we also called this form of unexpectedness as
β-unexpectedness.
For instance, considering the belief in Example 2, noted
as b, let s be a customer transaction sequence, if we have
that 〈(movie ), often〉 ⊑ s and 〈(game), often〉 ⊑ s,
thens is expected with respect to the fuzzy recurrence rule
〈(movie ), often〉 → 〈(game), often〉; however, if we have
〈(game)〉 ⊑ s but not〈(game), often〉 ⊑ s, for example, the
case〈(game), rarely〉 ⊑ s, since〈(game), rarely〉 ⊑ s im-
plies that〈(game)〉 ⊑ s, thens is aβ-unexpected sequence,
i.e.,s 3β b.
Definition 4 (Semantics-unexpectedness). Given a sequence
s and a beliefb = [〈sα, ζα〉 ; 〈sβ , ζβ〉 ; 〈sγ , ζγ〉], if s supports
〈sα, ζα〉 and there exists〈sγ , ζγ〉 ⊑ s, then the sequences is
semantics-unexpected, denoted ass 3γ b.
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Respectively, the primary factor of the semantics-
unexpectedness in a sequences is that the semantic
contradiction〈sβ , ζβ〉 6≃sem 〈sγ , ζγ〉 is broken because the
recurrence sequence〈sγ , ζγ〉 occurs ins, so that we also
called this form of unexpectedness asγ-unexpectedness.
Considering again the beliefb in Example 2, let s
be a customer transaction sequence, if we have that
〈(movie ), often〉 ⊑ s and〈(book ), often〉 6⊑ s, then the
sequences is not unexpected with respect to the seman-
tic contradiction〈(game), often〉 6≃sem 〈(book ), often〉;
however, if we have〈(book ), often〉 ⊑ s, thens is a γ-
unexpected sequence, i.e.,s 3γ b. Of course, it is not nec-
essary to forbid(book ) ⊑ s, for example, according to this
belief, the occurrence of〈(book ), rarely〉 does not imply the
γ-unexpectedness.
Now we discuss the coherence in a belief system. The coher-
ence in a belief system consists of fuzzy recurrence rules and
semantic contradictions on fuzzy recurrence sequences must
be considered in sequence inclusions and covers of the fuzzy
sets on recurrence. LetB be a set of beliefs, for any two be-
liefs (b, b′) ∈ B, whereb = [〈sα, ζα〉 ; 〈sβ , ζβ〉 ; 〈sγ , ζγ〉] and
b = [〈sα

′, ζα
′〉 ; 〈sβ

′, ζβ
′〉 ; 〈sγ

′, ζγ
′〉], the following condi-

tion must be satisfied if the beliefb is coherent:

(sβ 6⊑ sγ
′) ∨ (ζβ 6= ζγ

′)

For example, let us consider two fuzzy recurrence rulesr1
andr2. Let r1 = 〈(a), often〉 → 〈(c)(d), often〉 andr2 =
〈(a), often〉 → 〈(e), often〉 where〈(c)(d), often〉 6≃sem

〈(e)(f), often〉 and〈(e), often〉 6≃sem 〈(c), often〉. Then
r1 andr2 are in conflict because〈(e)(f), often〉 implies that
〈(e), often〉.
Given a beliefb = [〈sα, ζα〉 ; 〈sβ, ζβ〉 ; 〈sγ , ζγ〉], an con-
straintτ = [min..max] on the occurrence range of the se-
quences〈sβ, ζβ〉 or 〈sγ , ζγ〉 can be further applied, which
indicates that the we only take account of the occurrence of
〈sβ, ζβ〉 or 〈sγ , ζγ〉 within the range[min..max] after the
occurrence of〈sα, ζα〉. With the constraintτ , a belief can be
written as[〈sα, ζα〉 ; 〈sβ , ζβ〉 ; 〈sγ , ζγ〉 ;min..max]. In this
case, we noteτ = ∗ if the occurrence range is not specified.
Example 3. Let us consider the problem of “expiration” in
the instance addressed in Example 2. If we concentrate on
the short term customer behaviors, e.g., within 5 to 30 days,
the belief proposed in Example 2 can be written with an oc-
currence constraintτ = [5..30]

[〈(movie ), often〉 ; 〈(game), often〉 ; 〈(book ), often〉 ; 5..30] ,

if we count the days without purchase as an empty itemset in
customer purchase sequences.
Given a sequence databaseD and a belief baseB, the prob-
lem of discovering unexpected fuzzy recurrence sequences
is therefore to find all sequencess ∈ D that contain
β-unexpectedness and/orγ-unexpectedness with respect to
each beliefb ∈ B that consist of recurrence rules and seman-
tic contradictions on recurrence sequences.

IV. Approach U FR

In this section we develop the approach UFR, which stands
for mining Unexpected Fuzzy Recurrence behaviors.

A. Belief Tree Representation

In this section, we propose a tree representation of abelief
systemconsisting of a set of beliefs.
Before constructing the tree representation, we first propose
the notions ofpremise sequence, conclusion sequence set,
and contradiction setof a belief system. Given a belief
b = [〈sα, ζα〉 ; 〈sβ, ζβ〉 ; 〈sγ , ζγ〉], we call the sequencesα

thepremise sequenceand the sequencesβ theconclusion se-
quence. A belief system can be regrouped by each distinct
premise sequence, and each group with the same premise
sequence can be regrouped by each distinct conclusion se-
quence.
Definition 5 (Conclusion sequence set). Given a belief sys-
temB, the conclusion sequence set with respect to a premise
sequence〈sα, ζα〉, denoted as∆ 〈sα, ζα〉, is the set of the
conclusion sequences all beliefs having the premise sequence
〈sα, ζα〉.
Definition 6 (Contradiction sequence set). Given a belief
systemB and a premise sequence〈sα, ζα〉, let 〈sβ , ζβ〉 ∈
∆ 〈sα, ζα〉 be a conclusion sequence. The contradiction se-
quence set with respect to the sequence〈sα, ζα〉 and〈sβ , ζβ〉,
denoted asΘ 〈sα, ζα〉 | 〈sβ , ζβ〉, is the set of sequences such
that for each sequence〈sγ , ζγ〉 ∈ Θ 〈sα, ζα〉 | 〈sβ , ζβ〉, we
have that〈sβ , ζβ〉 6≃sem 〈sγ , ζγ〉.
Now we define the data structure of the belief tree represen-
tation. Abelief tree, denoted asT , is a tree representation of
a belief. According to the notions defined in above, a belief
tree is a tree structure defined as below1.

��������������

sα

τ1 τ2 τ3

sβ1
sβ2

sβ3

sγ1
sγ2

sγ3
sγ4

sγ5

Figure. 2: A belief tree example.

1. A belief treeT corresponding to a set of beliefsb con-
sists of one root nodesα-node for a premise sequence
〈sα, ζα〉, a set ofτ -nodes as the sub-nodes of the root,
and a set of sequence subtrees consisting ofs-nodes.

2. Theτ -node has two field:min andmax corresponding
to the occurrence range[min..max]. If the occurrence
range is not specified, we letmin = −1.

3. A s-node contains a recurrence sequence. In our im-
plementation, as-node is a reference (e.g., apointer in
C/C++, or originally areferencein JAVA ) to a sequence
stored external to the tree structure.

4. Eachτ -node possesses a sequence subtree. The sub-
root node of a sequence subtree corresponds to a con-

1To respect the space allowed in the figure, a notation likesα denotes a
recurrence sequence〈sα, ζα〉, etc.
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0

−1 0

2 5

0 0

−1 0

ROOT

−1

〈(e), often〉
〈(a)(ab), often〉
〈(c)(d), often〉
〈(a)(b), rarely〉
〈(d)(c), often〉
〈(a), always〉
〈(b), rarely〉
〈(d), often〉
〈(cd), always〉
〈(a)(c), often〉
〈(ab), rarely〉

Figure. 3: An example tree presentation of a belief base.

clusion sequence〈sβ , ζβ〉 ∈ ∆ 〈sα, ζα〉 and the sub-
nodes correspond to the set of sequences〈sγ , ζγ〉 ∈
Θ 〈sα, ζα〉 | 〈sβ , ζβ〉. Eachτ -node is linked by append-
ing order for optimizing the performance of traversal.

5. A τ -link connects a τ -node and eachs-node
corresponding to each sequence〈sγ , ζγ〉 ∈
Θ 〈sα, ζα〉 | 〈sβ , ζβ〉.

6. A s-link connects all (〈sβ , ζβ〉 , 〈sβ
′, ζβ

′〉) ∈
∆ 〈sα, ζα〉 such that 〈sβ, ζβ〉 = 〈sβ

′, ζβ
′〉, with

respect to the appending order. For instance, in Figure
2,

〈
sβ1

, ζβ1

〉
=

〈
sβ2

, ζβ2

〉
.

Example 4 shows a tree representation of a belief base with
6 different beliefs, which are shown in Figure 3.
Example 4. Given a belief base containing the following 6
beliefs:

b1 = [〈(e), often〉 ; 〈(a)(ab), often〉 ; 〈(c)(d), often〉 ; ∗] ;

b2 = [〈(a)(b), rarely〉 ; 〈(c)(d), often〉 ; 〈(d)(c), often〉 ; ∗] ;

b3 = [〈(a), always〉 ; 〈(b)(c), rarely〉 ; 〈(cd), always〉 ; 2..5] ;

b4 = [〈(a), always〉 ; 〈(d), often〉 ; 〈(cd), always〉 ; 0..0] ;

b5 = [〈(a)(c), often〉 ; 〈(cd), always〉 ; 〈(ab), rarely〉 ; ∗] ;

b6 = [〈(a)(c), often〉 ; 〈(cd), always〉 ; 〈(b), rarely〉 ; ∗] .

The corresponded belief base tree is shown in Figure 3.

B. Algorithms

First, we have the following belief tree construction algo-
rithm BeliefTree (Algorithm 1). Given an input be-
lief set B with all beliefs b having the same premise se-
quence〈sα, ζα〉, the algorithm first creates a belief treeT
with the root node〈sα, ζα〉. For each conclusion sequence
〈sβ, ζβ〉 ∈ ∆ 〈sα, ζα〉, the algorithm appends the occur-
rence constraintτ as aτ -node to the root node and ap-
pends the conclusion sequencesβ as as-node to the newly
appendedτ -node. Then, for each contradiction sequence
〈sγ , ζγ〉 ∈ Θ 〈sα, ζα〉 | 〈sβ, ζβ〉, the algorithm finds the loca-
tion of thes-node of〈sβ, ζβ〉 in the tree and appends〈sγ , ζγ〉
as as-node to〈sβ, ζβ〉. Finally, the algorithm outputs the be-
lief treeT for a belief group where all beliefs have the same
premise sequence.

Algorithm 1 : BeliefTree ( b) : Belief tree construc-
tion.

Input : A setB of beliefs having the same premise sequence.
Output : A belief treeT .
T := BeliefTree.Create(〈sα, ζα〉);1
foreach b ∈ B do2

nτ := T.appendTauNode(r.τ); /∗ do not create new3
τ -node if the sameτ exists∗/
ns := T.appendSeqNode(n,

˙

sβ , ζβ

¸

);4
n′

s := T.getLastSeqNode(ns); /∗ find lasts-node having5
the same sequence withns ∗/
T.linkSeqNode(n′

s, ns);6

foreach b ∈ B do7
ns := T.getSeqNode(

˙

sβ , ζβ

¸

);8
n′

s := T.appendSeqNode(ns, 〈sγ , ζγ〉);9
T.linkTauNode(ns.parent, n′

s);10

return T ;11

Algorithm 2 : SeqMatchUfr ( 〈s, ζ〉, s′, range) :
Matching fuzzy recurrence sequence.

Input : A fuzzy recurrence sequence〈s, ζ〉, a sequences′, and a
pairrange.

Output : The occurrence of〈s, ζ〉 in s′ with respect torange.
µζ := FuzzyMembershipFunction(ζ);1
pos := pair(0, 0);2
ran := range;3
rec := 0;4
ret := pair(−1,−1);5
while pos.first 6= −1 do6

pos := SeqMatchFirst(s, s′, ran);7
if pos.first = −1 then8

break;9

ran.first := pos.second + 1;10
rec := rec + 1;11
if ret.first = −1 then12

ret.first := pos.first;13

ret.seconf := pos.second;14

if µζ(rec) ≥ recumin then /∗ recumin is globally accessible∗/15
return ret;16

return pair(−1 − 1);17
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The fuzzy recurrence sequence matching routine is therefore
the core of the approach UFR, so that we develop the algo-
rithm SeqMatchUfr (Algorithm 2), which finds the occur-
rence of a fuzzy recurrence sequence in a sequence. The
algorithm accepts a fuzzy recurrence sequence〈s, ζ〉, a se-
quences′, and a pairrange for bounding the occurrence of
〈s, ζ〉 in s′ as inputs, and outputs the occurrence of〈s, ζ〉 in
s′, if s′ supports〈s, ζ〉 with respect to Equation (2). The sub-
routineSeqMatchFirst finds the first occurrence of the
sequences in the sequences′.
Base on the algorithmSeqMatchUfr , we develop
the β-unexpected fuzzy recurrences as the routine
UfrMatchBeta , listed in Algorithm 3.

Algorithm 3 : UfrMatchBeta ( T , s, pos) :
Matchingβ-unexpected fuzzy recurrences.

Input : A belief T , a sequences, and a pairpos indicating the
occurrence of the premise sequencesα contained in the
sα-node ofT in s.

Output : The set of allβ-unexpected fuzzy recurrences ins with
respect toT .

uxps := TupleSet.Create();1
nτ := T.firstTauNode();2
while nτ 6= null and nτ 6∈ N do3

if nτ .data.min 6= −1 then4
continue; /∗ recurrence rule is in sequence association5
rule form∗/

nsβ
:= nτ .firstSubNode();6

while nsβ
6= null do7

u := SeqMatchFirst(nsβ
.data, s, pair(pos.second +8

1, |s| − 1));
if u.first 6= −1 then9

u :=10

SeqMatchUfr(
D

nsβ
.data, nsβ

.ζ
E

, s, pair(pos.second+

1, |s| − 1));
if u 6= −1 then11

uxps.add(tuple(s.id, u.first, u.second));12
if options | FIRST UXPS ONLY then /∗ use the13
conclusion of Lemma??∗/

return uxps;14

nτ := T.nextTauNode(nτ );15

return uxps;16

The algorithm accepts a belief groupT , a sequences, and a
pair pos indicating the occurrence of the premise sequence
〈sα, ζα〉 contained in thesα-node ofT in the sequences as
inputs, and outputs all or the firstβ-unexpected fuzzy recur-
rence(s) ins. The argumentpos is specified with respect to
the constraint on occurrence range.
For each conclusion sequence〈sβ , ζβ〉 contained in the be-
lief of fuzzy recurrence rules, the algorithm verifies whether
sβ is contained ins by the subroutineSeqMatchFirst . If
sβ ⊑ s, the subroutineSeqMatchUfr matches whether
〈sβ, ζβ〉 6⊑ s. Thus, finally algorithm returns allβ-
unexpected fuzzy recurrences〈sβ, ζβ〉 6⊑ s.
We illustrate in Figure 4 the matching ofβ-unexpected fuzzy
recurrence in a given sequences with respect to the fuzzy
sets shown in Figure 1 and the belief

[〈(a)(ab), often〉 ; 〈(c)(d), rarely〉 ; 〈(ef)(g), rarely〉 ; ∗] ,

whererecumin = 0.6.

(b)(ab)(c)(ab)(d)(a)(abc)(d)(a)(ab)(a)(abc)(a)(d)(a)(abc)(ab)(a)(d)(abc)(d)

1©

1©

2©

2©

3©

3© 4©

4©

5©

5© 6©

s =

Figure. 4: Matchingβ-unexpected fuzzy recurrence.

We have that 〈(a)(ab), often〉 ⊑ s by calling
SeqMatchUfr before matchingβ-unexpected fuzzy recur-
rence (i.e., performed in the main routine of the framework
MUSE, whereSeqMatch is replaced bySeqMatchUfr ),
which is marked as 1© to 6© above the sequence shown
in Figure 4 and satisfies the minimum fuzzy membership
degreerecumin = 0.6. Then,〈(c)(d), rarely〉 ⊑ s will be
verified, where the recurrence of〈(c)(d)〉 is marked as1© to

5© under the sequence shown in Figure 4. According to the
fuzzy sets shown in Figure 1, we have thatµζ(5) = 0.5 for
“rarely”, so that we have that〈(c)(d), rarely〉 6⊑ s and the
sequences is β-unexpected.
With the illustration of matchingβ-unexpected fuzzy recur-
rence in a sequence, the matching ofγ-unexpected fuzzy re-
currencesUfrMatchGamma is not difficult to understand,
which is listed in Algorithm 4.
The algorithm accepts a belief groupT , a sequences, and a
pair pos indicating the occurrence of the premise sequence
sα contained in thesα-node ofT in the sequences as inputs,
and outputs all or the firstγ-unexpected fuzzy recurrence(s)
in s.

Algorithm 4 : UfrMatchGamma ( T , s, pos) :
Matchingγ-unexpected fuzzy recurrences.

Input : A belief T , a sequences, and a pairpos indicating the
occurrence of the premise sequencesα contained in the
sα-node ofT in s.

Output : The set of allγ-unexpected fuzzy recurrences ins with
respect toT .

uxps := TupleSet.Create();1
nτ := T.firstTauNode();2
while nτ 6= null and nτ 6∈ N do3

if nτ .data.min 6= −1 then4
continue; /∗ recurrence rule is in sequence association5
rule form∗/

nsγ := nτ .firstLinkedNode();6

while nsγ 6= null do7
u :=8

SeqMatchUfr(
˙

nsγ .data, nsγ .ζ
¸

, s, pair(pos.second+
1, |s| − 1));
if u 6= −1 then9

uxps.add(tuple(s.id, u.first, u.second));10
if options | FIRST UXPS ONLY then /∗ first11
occurrence ofγ-unexpectedness∗/

return uxps;12

nτ := T.nextTauNode(nτ );13

return uxps;14

C. Experiments

The approach UFR is evaluated with Web access record data.
Two types of Web access log are used in our experiments:
one is a large access log file of an online forum site (labeled
as BBS), and another is a large access log file of a mixed
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homepage hosting server (labeled asWWW).

Data Set Size Distinct Items Average Length

BBS 135,562 126,383 15.5591
WWW 53,325 85,810 8.3507

Table 1: Web access logs used for the evaluation.

The composition of the two data sets are listed in Table 1.
We first apply a sequential pattern mining algorithm to dis-
cover frequent sequences for studying the general behaviors
of the data sets. The frequent 4-recurrence sequences and
8-recurrence sequences are shown in Figure 5.
The recurrence sequences in the data sets show that the re-
currence behaviors depend on the semantic characteristicsof
data, for instance, in our experimental data sets, the recur-
rence behaviors in online forum site are more stronger than
those in mixed content Web site.
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Figure. 5: Number of frequent recurrence sequences.

We generate 15 beliefs for each data set after examining the
discovered sequential patterns, frequent 4-recurrence and 8-
recurrence sequences, which correspond to 3 groups of 5 be-
liefs: with “rarely”, “often” and “frequently”, with respect to
the fuzzy sets shown in Figure 1.
Table 2 lists several sample beliefs in our experiments. For
instance, the belief

BBS1 =

[〈(f=4 ), rarely〉 ; 〈(f=9 ), rarely〉 ; 〈(f=9 ), often〉 ; ∗]

depicts that the forum users who rarely visit the forum No.4
also rarely visit the forum No.9, and that they often visit the

forum No.9 is a contradiction; the belief

WWW2 =

[〈(/pub/ ), often〉 ; 〈(/ ), rarely〉 ; 〈(/doc/ ), often〉 ; ∗]

(for respecting the thesis layout, we trim the prefix/˜li of
the path) depicts that the homepage visitors who often ac-
cess the publications located in/˜li/pub/ rarely access the
homepage/˜li/ , so that they should not often access the
documents located in/˜li/doc/ .
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Figure. 6: Number of sequences with unexpected fuzzy re-
currences.

Figure 6 shows our experimental results. With the decrease
of the minimum fuzzy degree threshold, the number of un-
expected sequences increases. In Figure 6(a), we find that
in the “frequently” fuzzy set, the number of unexpected se-
quences is much less than those in the other two fuzzy sets,
because in the data set the number of long recurrence se-
quences, such as 8-recurrence sequences, is less. We can also
find that the unexpected behaviors focus on the recurrences
between “rarely” and “often”. In Figure 6(b), there is a sharp
increase of the number of unexpected sequences in the “of-
ten” fuzzy set when the minimum fuzzy membership degree
decreases from 0.6 to 0.4, because in the “often” fuzzy set,
the fuzzy degree 0.5 corresponds to 4-recurrence sequences,
so that a lot of unexpected sequences in the “rarely” fuzzy
set are counted as “often”.
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Belief Premise〈sα, ζα〉 Conclusion
˙

sβ , ζβ

¸

Contradiction〈sγ , ζγ〉

BBS1 (f=4 ), rarely (f=9 ), rarely (f=9 ), often
BBS2 (f=0 )(f=5 ), often (f=8 ), often (f=4 ), often
BBS3 (f=5 ), frequently (f=4 ), rarely (f=9 ), often
WWW1 (/˜li/ ), rarely (/˜li/pub/ ), often (/˜li/pub/ ), rarely
WWW2 (/˜li/pub/ ), often (/˜li/ ), rarely (/˜li/doc/ ), often
WWW3 (/˜li/ ), frequently (/˜li/doc/ ), rarely (/˜li/doc/ ), often

Table 2: Sample beliefs of fuzzy recurrence rules.

V. Conclusion

In this paper, we introduce the problem of discovering un-
expected recurrence behaviors in sequence databases. We
propose a novel notion, the fuzzy recurrence rules, for de-
picting the recurrence behaviors of the data, where fuzzy
set theory is applied to describe the recurrence of sequences.
We present a belief-driven approach for modeling two types
of unexpectedness in recurrence behaviors, where the be-
lief consists in a fuzzy recurrence rule and a semantic con-
straint on the rule. We also develop an effective algorithm
UFR, which discovers all unexpected sequences in a se-
quence database with respect to domain expert specified be-
lief base and minimum fuzzy degree threshold. The experi-
mental results on Web access logs show the usefulness of our
propositions.
Our future research includes the discovery of fuzzy recur-
rence rules in sequential data, we believe that our proposal
of this novel rule model on sequences can be interesting for
many real-word application domains.
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