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Abstract—Energy based algorithms are powerful techniques
for laying out graphs. They tend to generate aesthetically
pleasing graph embeddings, exhibiting symmetries and commu-
nity structures. When dealing with large graphs, an important
drawback of these algorithms is to produce embeddings where
many nodes overlap, leading to cluttering issues. While several
approaches have been proposed for node overlap removal on
2D graph layouts, to the best of our knowledge, there is no
work dedicated to 1D graph layouts. In this paper, we first
define 4 requirements for 1D graph node overlap removal.
Then, we propose a O(|V|log(|V|)) time algorithm meeting these
requirements. We illustrate our approach with two case studies
based on arc diagrams where nodes are positioned by applying
a MDS technique to highlight community structures. Finally,
we compare our technique with alternatives from 2D graph
techniques, and a discussion highlights some properties of the
results.

I. INTRODUCTION

1D graph layout is often performed by positioning nodes
evenly along an axis and drawing edges as curves above or
below the axis. This type of diagram is known as an Arc
Diagram [1]. So far, the main concern has been to find an
ordering among the nodes that minimizes edge lengths. This
problem is called Minimum Linear Arrangement [2], [3].

An alternative to positioning the nodes evenly along an
axis is to use Multidimensional Scaling (MDS) [4]. For graph
drawing, the input dissimilarity matrix usually corresponds to
the path lengths between nodes and the algorithms tend to
position the nodes in such a way that the distances in the
embedding reflect the path lengths in the graph. The main
advantage of this type of techniques is to group the nodes of
dense portions of the graph, highlighting path lengths between
nodes, symmetries and community structures. Bibliography
on MDS for graph drawing includes [5], [6], [7], [8] for 2D
embeddings, and [9], [10] for 1D embeddings. When dealing
with large graphs, an important drawback of MDS techniques
is that it produces embeddings where many nodes overlap,
leading to cluttering issues. Several algorithms have been
proposed to deal with this issue for 2D graph layout [11], [12],
[13], [14], [15], [16], [17]. The purpose of these works is to
avoid overlapping and try to preserve the initial configuration
of the nodes as much as possible. To our knowledge, no
algorithm has been proposed for 1D graph layout exclusively.

Our contribution comes in two forms. (1) We give a formal
definition of the node overlap problem for 1D layout. It is
composed by 4 requirements. While some of them have been
addressed by 2D approaches, and could be adapted to 1D, the

4th requirement is new and holds very interesting properties
on the layout. (2) We propose a method meeting these require-
ments and illustrate the results with two case studies. This case
study shows that it is interesting to specifically address the 1D
graph layout overlapping problem.

This paper is organized as follows. We first define the 4
requirements for 1D graph node overlap removal in Section
II. Then, we propose a O(|V|log(|V|)) time algorithm meeting
these requirements in Section III. We illustrate our approach
with two case studies in Section IV. We discuss some inter-
esting properties held by the 4 requirements in Section V, and
we compare our technique with alternatives in Section VI. We
conclude in Section VII.

II. PROBLEM STATEMENT

Let V be a set of nodes {v1, v2, . . . , v|V |} and p a function
V → R+ ∪ {0} denoting the initial 1D layout of the nodes.
We define an ordering function σ : V → {1, . . . , |V |} w.r.t
the initial layout. More formally, for any pair (u, v) ∈ V 2

with σ(u) + 1 = σ(v), @w ∈ V |p(u) < p(w) < p(v). If
there exists (u, v) ∈ V 2 such that p(u) = p(v), we consider
an arbitrary strict total order over the nodes V to satisfy the
following constraint: ∀(u, v) ∈ V 2, u 6= v ⇒ σ(u) 6= σ(v).
σ−1 is the inverse function σ−1 : {1, . . . , |V |} → V such
that σ−1(i) = v ∈ V ⇔ σ(v) = i. A function s : V → R+

denotes the sizes of the nodes.
We need to find a function f : V → [0, l] that removes

overlap between nodes. l is the length of the segment on which
we want to position the nodes. This rearrangement allows (i)
to improve the visualization of the elements in a 1D graph
embedding, and (ii) to preserve the main characteristics of the
initial layout (e.g. order and size of nodes). We define a set
of requirements for f to preserve the global configuration of
the initial layout:

Requirement 1. The final layout should optimally use the
length of the segment:

• f(σ−1(1)) = 0 + s(σ−1(1))/2;
• f(σ−1(|V |)) = l − s(σ−1(|V |))/2.

Requirement 2. The final layout should not have nodes
overlapping:

∀(u, v) ∈ V 2, |f(v)− f(u)| ≥ s(u)/2 + s(v)/2



Requirement 3. The final layout should preserve the initial
ordering. As nodes should not overlap, the requirement can
be formalized as:

∀(u, v) ∈ V 2, σ(u) < σ(v)⇒ f(u) < f(v)

Requirement 4. The final layout should preserve the
relative distances between consecutive pairs of nodes:
∀((u, v), (u′, v′)) ∈ V 2 × V 2 such that σ(u) + 1 = σ(v)
and σ(u′) + 1 = σ(v′),

p(v)− p(u) ≥ p(v′)− p(u′)⇒

f(v)− s(v)

2
− f(u)− s(u)

2
≥ f(v′)− s(v′)

2
− f(u′)− s(u′)

2

We assume that
∑
v∈V s(v) ≤ l, otherwise, the problem has

no solution because the length of the segment on which the
nodes are mapped is not long enough to contain all the nodes
without overlapping. In the case where

∑
v∈V s(v) = l, nodes

will be positioned evenly and side by side along the segment
according to the ordering function σ.

It is essential to notice that Requirement 4 defines the dis-
tance between two consecutive nodes u and v as the distance
between their respective borders, while it could be defined as
the distance between their centers. The consequences of this
choice are further discussed in Section V.

III. OUR PROPOSAL

We propose a function satisfying each of the requirements
listed in Section II. To this end, we first define p′ as a function
scaling the values of p(v), for v ∈ V , into the interval [0, l−∑
x∈V s(x)] as follows, with pmin = p(σ−1(1)) and pmax =

p(σ−1(|V |)):

p′(v) =
p(v)− pmin
pmax − pmin

× (l −
∑
x∈V

s(x))

From an intuitive point of view, this modified positioning
function considers only the length of the segment that is still
available once all nodes have been placed on the segment
without overlapping, i.e., l −

∑
x∈V s(x). In addition, the

function p′ ensures that this available length is used optimally,
in the sense of Requirement 1.

Since p(v) − pmin and pmax − pmin are positive, then
p′(v) ≥ p′(u) ⇔ p(v) ≥ p(u). Therefore, p′ conserves the
order provided by p. Moreover, ∀(u, v) ∈ V 2, σ(u) < σ(v)⇒
p′(u) ≤ p′(v) and if p(u) = p(v), then p′(u) = p′(v).

The proposed node overlap removal function f uses the
p′ function and considers the size of each node, so that the
position of the center of a node v is given by p′(v) to which
is added the radius of v and the size of each node positioned
before v. To define formally:

f(v) = p′(v)− s(v)

2
+

σ(v)∑
i=1

s(σ−1(i))

We have already seen that p(u) = p(v) ⇒ p′(u) = p′(v).
We also mentioned that if p(u) = p(v), we consider an
arbitrary strict total order over the nodes V to define σ. For

instance, let’s consider u and v such that p(u) = p(v) and
σ(v) = σ(u)+1. In this case, f(v) = f(u)+s(u)/2+s(v)/2,
i.e. nodes are positioned side by side without overlap.

Theorem 1. Function f meets the four above-defined require-
ments.

Proof. Please see the online report [18] for a complete proof.
Note to the reviewers: if the paper is accepted, we will provide
the proof in a technical report.

Theorem 2. Given an initial 1D embedding of a graph, an
overlapping-free layout can be computed in O(|V|log(|V|))
time.

Proof. Given the function p, the order σ is computed in
O(|V|log(|V|)) time. The value of f for all nodes is computed
in O(|V|), by processing nodes w.r.t. the order σ and storing
the cumulative sizes of previously processed nodes in a
variable.

IV. CASE STUDIES

A. Les Misérables

This first case study is performed on the dataset Les
Misérables [19]. Each node stands for one character of the
Victor Hugo’s novel. An edge connecting a pair of nodes
describes that these two characters co-occur in at least one
chapter. The size of each node is obtained by summing the
number of co-occurrences of the corresponding character. It
corresponds to the degree of the node.

Figure 1 shows two distinct 1D representations of this
dataset. Figure 1(a) stands for the initial layout, obtained by
applying an MDS approach [20]. This layout contains node
overlapping. Figure 1(b) shows the same data without node
overlapping, obtained by applying our method for the same
segment length. From this global views, one can already notice
some additional information due to the proposed method. For
instance, the left-most part of the initial layout seems to be
composed of only one node from which one edge leaves and
is then split into 4 distinct edges linking this element to the 4
closest nodes. The second layout, obtained by removing node
overlapping, shows that the left-most node of the initial layout
is in fact composed of multiple small nodes, and allows the
user to identify how each individual node (i.e., character) is
connected to other elements.

(a)

(b)

Fig. 1. Two distinct 1D layouts of Les Misérables dataset, the above one (a)
is an initial layout containing some node overlap, while the bottom one (b)
has been constructed by our proposed node overlap removing method.



For the sake of readability, Figure 2 proposes a closer
look into a subpart of the previous visualizations. Figure 2(a)
and Figure 2(b) correspond to the same subset of nodes,
respectively with the initial layout and the proposed one (edges
have been removed to allow a better focus on node placement).

Fig. 2. Subpart of Les Misérables dataset from the initial layout (a) and our
proposed method (b). The correspondences between the main clusters in both
layouts are highlighted in light gray.

One first observation focuses on the importance of node
overlapping removal. In Figure 2(a), nodes are often overlap-
ping to the extent where the visualization allows one to see
some clusters in the data, but prevents any analysis at the node
(i.e., character) level. From this point of view, the proposed
method plays its role as expected, by showing next to each
other all the nodes that were initially part of the same set
of overlapping nodes, hence providing a better readability of
the data at the finest granularity. As an example, one may
consider the right-most cluster from the top visualization, that
is composed of many more nodes than one may expect by
simply considering the initial layout.

In addition, the proposed layout also has the advantage
of showing that some nodes such as Favourite, that initially
seemed very close to the other nodes, clearly appears distinctly
from the rest.

We are convinced that the proposed layout gives a more
natural way of analysing the distances between consecutive
pairs of nodes. As an example, one may more easily observe
in the proposed layout that the distance between characters
Valjean and Marguerite (represented as the empty space be-
tween the two nodes) is approximately 1/3 of the distance
between Marguerite and Madame de R. This observation is
more difficult to obtain from the initial layout, in particular
when nodes have different sizes, as it requires the user to
consider the distance between node’s centers (see section V
for more details about the benefits of requirement 4).

We additionnally notice that nodes that were initially ap-
pearing alone, such as Marguerite, also appear alone in the
final layout.

B. PacificVis co-authorship network

The second case study is performed on a PacificVis co-
authorship network extracted from DBLP. Each node of the
graph stands for an author having published at least 3 papers
in the Asia Pacific Symposium on Information Visualization
(PacificVis) between 2008 and 2016. There is an edge between
two nodes if the corresponding authors have published at
least one paper together. We also extracted, for each author,

a vector containing the number of papers they have published
in PacificVis by year. The size of each node is obtained by
summing the values of an author’s vector. It corresponds to
the total number of papers published by the author at PacificVis
during this period.

Fig. 3. PacificVis co-authorship network extracted from DBLP, with overlaps
(left), no overlap (center) and corresponding silhouette graphs (right).

Rufiange and McGuffin [21] propose a taxonomy of 5
strategies for visualizing dynamic graphs (see Figure 2 of their
article). It is important to notice that the concept of dynamic
graph such as developed in the article covers both (i) topo-
logical changes and (ii) numerical attribute changes. The 4th
strategy consists in visualizing the time axis perpendicularly to
an arc diagram. In their example, the time axis represents the
evolution of a numerical attribute, and authors cite 4 papers
exclusively dealing with graphs having topological changes.

In this section, we focus on the 4th strategy when dealing
with a numerical attribute changes, as in the example of
Rufiange and McGuffin’s paper. The co-authorship network
is represented as a vertical diagram (see Figure 3). Nodes are



positioned by applying an MDS approach [20] followed by our
method to remove node overlapping. The vector containing the
number of papers published each year by an author is repre-
sented by an horizontal silhouette graph [22] beside each node.
The height of the silhouette graph bounding box represents
the total number of papers published by the corresponding
author and is is equivalent to the node size. This uniform
vertical scale for silhouette graphs, in addition to the vertical
alignment of years, ensures that publication numbers are easy
to compare from one author to another. Vertical grey lines
represent years. Each connected component of the network
has been processed separately, and the corresponding results
have been placed vertically on the same layout, in an arbitrary
order. Colors are provided by the default configuration of the
D3 library [23].

Figure 3 shows that the network consists of 8 connected
components. The first one (from the top) contains a very large
fraction of the node set. It is followed by one 2-elements
connected component, two 3-elements connected components
and 4 singletons.

Fig. 4. Subpart of the PacificVis co-authorship network.

The graph layout (MDS + node overlap removal method)
naturally allows to highlight the relative importance of nodes,
which is here related to the number of publications during the
2008-2016 period, as well as some communities within the
data with a clear readability at the node level. In addition,
the right part of the visualization allows one to easily obtain
more information about each node w.r.t. the time dimension.
In the following, we discuss the advantages of the proposed
1D graph layout in such a setting.

(a)

(b)

(c)

(d)

Fig. 5. Various authors from the PacificVis co-authorship network exhibiting
different publication profiles over the years.

Figure 4 focuses on a subpart of the co-authorship network,
in which three subsets of authors (denoted as S1, S2 and
S3) interact with each other in interesting ways. The distance
between the elements of each subset shows that they are part
of distinct small communities in the network. It is interesting
to notice that S2 plays a role of pivot regarding communities

S1 and S3. Indeed, authors in S1 and S3 have no direct
connections (i.e., co-authored publications) but almost all of
them are connected to one or two authors of S2. It is also
interesting to observe that authors of a same community often
share a similar publication silhouette graph.

One relevant aspect of this visualization strategy is that it
also allows a very readable analysis of publication distribution
profiles of authors, as well as an easy way to compare them.
Figure 5 provides a selection of authors with close total
numbers of publications (i.e., node sizes), whose respective
publication silhouette graphs however expose different no-
ticeable profiles. As an example, Figure 5(a) corresponds to
an author whose publication record in PacificVis exhibits a
particular regularity during most of the considered period.
This publication distribution profile contrasts with the more
sporadic one provided by Figure 5(b), where the total amount
of publications is shared among two conference editions. The
third author from Figure 5(c), shows a progression profile,
where the publication count started and grew during the last
two years. Figure 5(d) shows a particular case where all the
publications occurred during the same year. This case is easily
noticeable as the silhouette graph value reaches the border of
the bounding box.

From a more general point of view, it can be noticed that the
obtained visualization, by vertically aligning silhouette graphs,
makes it considerably easy to compare publication profiles
over time, as well as to compare numbers of publications
for a given year. This aid in comparing elements of the
network would be much more difficult to obtain with the other
4 visual representation strategies proposed by Rufiange and
McGuffin [21], which are all based on a 2D graph layout. It
is interesting to notice that none of them allows such an ease of
analysis when the user needs to visually compare the count of
publications over the years. This case study shows how a 1D
graph layout can be a relevant alternative to 2D graph layout,
or even a superior one for some tasks, for instance comparing
nodes with associated timeseries data [24].

This advantage is mainly due to the fact that using a 1D
graph layout for positioning the nodes allows the visual rep-
resentation to fully exploit an additional available dimension
for representing the dynamic feature of the graph (i.e., the
publication distribution over time in our use case). Usually,
the use of a 1D graph layout rather than a 2D one implies an
important cost at the data structure visualization level, due to:
(1) the lack of readability, this is for instance the case when
using an MDS approach for placing the nodes, resulting in
node overlapping ; (2) the lack of information, this is the case
when exploiting a Minimum Linear Arrangement approach
that results in nodes being placed uniformly along the segment,
hence providing no information about the similarity between
nodes. This case study shows that the cost of using a 1D graph
layout rather than a 2D one is reduced when exploiting the
proposed approach, as it both removes node overlapping and
conserves the properties of the initial data in terms of node
similarity.



V. DISCUSSION

A. Node Proximity.

Existing techniques for removing node overlapping in 2D
graphs (e.g., [14], [16]) move nodes from the initial embedding
until no more overlapping exist in the layout (see Section VI
for more details). As a result, distances between pairs of nodes
in the final layout depend on how nodes were overlapping in
the initial layout and the Requirement 4 is not always met. It
is different with our method. Figure 6 shows an example of a
graph composed of three nodes u, v and w, with two layouts
obtained by decreasing the length of the segment l to l′. In this
case, the distance between consecutive nodes (i.e., the length
between their closest borders) linearly decreases while the
segment length decreases. In other terms, the distance ratios
remain identical: d1/d2 = d′1/d

′
2. While 2D approaches have

the advantage of highlighting clusters, they do not allow the
user to precisely assess the real similarity between two nodes.
On the contrary, the method that we propose always retains
the exact relative distances w.r.t. the initial layout.

Fig. 6. Two layouts obtained by decreasing the length of the segment l to l′.

B. Distance Perception.

The initial layout, referred as function p in Section II, in
addition to allowing node overlapping, can also have the draw-
back of leading users to wrongly interpret distances between
nodes. Let us consider the example provided in Figure 7. Three
nodes u, v and w are thereby presented following two distinct
1D layouts: the initial one provided by function p and the one
proposed in this paper.

In the initial layout, one may notice that one node being
included in another makes these nodes perceived as similar
whereas they are not. It is noticeably the case with nodes u
and v that seem to appear closer than v and w. However, if
looking more carefully at the distances between the center of
nodes without considering their size, one may easily observe
that this is a perception error: v and w are actually at the
same distance than u and v. This well-known perception bias
is directly related to the Gestalt law of continuity.

Our approach aims at providing a simple and effective so-
lution to this problem, by defining a layout where the distance
between two nodes is mapped onto the distance between their
closest borders. Our layout illustrates this claim as nodes v and
w appear to be as close as u and v, which correctly reflects
the data. This principle is at the core of the proposed layout
and provides the end-user with a visualization that reflects the
way his/her perception works. Requirement 4 hence seems to
allow a quicker and more relevant understanding of the data,
which can help identifying underlying clusters.

Fig. 7. Initial layout (left) and our proposed layout (right).

VI. ALTERNATIVE TECHNIQUES

Many approaches have been proposed to remove node
overlapping in 2D graph embeddings. Most of them [11], [12],
[13], [25], [14], [15], [17] can be applied to 1D embeddings.
They all fall into two main categories: Force Scan Algorithms
(FSA) and Constraint Optimization based Approaches (COA).
While their 1D versions meet the 2nd requirement (no over-
lapping), it is not obvious that they meet the other ones. In
this section, we give a brief description of these algorithms
and their requirement satisfaction and time complexity.

FSA, introduced by Misue et al. in [11], is a major approach
of the first category. The idea is to apply a force function f
on overlapping nodes: if a node u overlaps a node v, then
f(u, v) pushes v away from u. Authors propose a “pushing”
force model and an algorithm to apply this model for removing
node overlapping (Push Force Scan Algorithm). Forces for
all nodes are first applied horizontally, then vertically, so the
algorithm can be applied on a 1D embedding. Authors also
propose a second force model allowing “pulling” forces as
well as “pushing” forces: (Push-Pull Force Scan Algorithm).
The embedding is thus more compact. In [12], Hayashi et al.
prove that finding the minimum area layout of the nodes that
avoids intersections of the shapes and preserves the orthogonal
order is NP-complete. In addition, they propose a heuristic
algorithm based on the same idea as FSA that positions the
nodes into a smaller area. Another work of Li et al. [25]
also presents two other variants of FSA giving a smaller area.
Huang et al. introduce the Force-Transfer Algorithm (FTA)
in [15]. The algorithm starts with a seed node and finds
the cluster of overlapping nodes containing the seed node
among one dimension (horizontal or vertical). Then, a force
model is applied to remove overlaps in the cluster. Some
nodes might newly overlap with nodes outside the cluster,
so a new cluster is formed dynamically. The process ends
when each nodes’ cluster is empty. The same process is
then applied to the other dimension. Abe et al. refine the
algorithm in [17]. The output of FTA is more compact than
the one provided by FSA. FSA and FTA algorithms preserve
orthogonal ordering, except one presented in [25]. Thus, the
1D version meets the 3rd requirement. The area devoted to
the final embedding is not bounded so the algorithm does not
meet the 1st requirement. As the sizes of the nodes are not
considered, the 4th requirement is not met either. They have a
complexity of O(|V |2), for both horizontal and vertical scans.
Applying them in one dimension gives the same complexity.

COA focuses on minimizing an objective function while
preserving a set of constraints. The objective function rep-
resents node movements. The constraints ensure that nodes



don’t overlap each other. Removing the node overlaps is
thus addressed as a constraint optimization problem. In [14],
Dwyer et al. propose an algorithm for finding separation
constraints between nodes, and another one to solve the
corresponding optimization problem. This algorithm can be
applied to 1D graph layout. It doesn’t meet requirements 1
and 4. Even if the objective function ensures small changes of
nodes’ positions, it doesn’t guarantee that the initial orthogonal
ordering is preserved (requirement 3 in 1D layout). Another
work proposed by Marriott et al. [13] describes four different
COA approaches. None of them meets requirements 1, 3 and 4.
COA approaches require to first find the constraints and then
remove overlaps. In [14], the complexity for finding the sep-
aration constraint is O(|V |log|V |). The constraint satisfying
algorithm runs in O((|V | · |C|)log|C|) where C is the set
of constraints (the number of these contraints is O(|V |)) [26].
In [13], the complexity of finding an overlapping-free solution
is O(|V |2 · log(|V |)) for the first approach based on uniform
scaling. Other approaches described in the paper are more time
consuming.

Table I sums up the properties of the different alternatives
as well as their time complexities. One can observe that
our algorithm is the fastest and the only one to meet the 4
requirements. This is due to the fact that it is the only one
exclusively devoted to solve the 1D version of the problem.
We did not include the approach proposed by [16] because its
adaptation to the 1D case is not trivial.

References R1 R2 R3 R4 Time complexities
Misue et al. [11] N Y Y N O(|V |2)
Hayashi et al. [12] N Y Y N O(|V |2)
Marriott et al. [13] N Y N N ≥ O(|V |2 · log(|V |))
Li et al. [25] N Y Y N O(|V |2)
Dwyer et al. [14] N Y N N O(|V |log|V |) and

O((|V | · |C|)log|C|)
Huang et al. [15] N Y Y N O(|V |2)
Abe et al. [17] N Y Y N O(|V |2)
Our approach Y Y Y Y O(|V |log(|V |))

TABLE I
COMPARISON OF THE DIFFERENT APPROACHES FOR REMOVING NODE
OVERLAPS IN 1D LAYOUT: “N” STANDS FOR “NO”, “Y” FOR “YES”.

VII. CONCLUSION

In this paper, we have first proposed 4 requirements to re-
move overlapping of 1D graph layout. We then have proposed
a O(|V|log(|V|)) time algorithm meeting these requirements
and illustrated it with two case studies based on arc diagrams
where nodes are positioned by applying a MDS technique to
highlight community structures. A discussion highlights nice
properties of the requirements, and shows that the 4th one is
essential to reflect correctly the data structures. Finally, we
have also shown that current state-of-the-art alternatives do
not meet the 4 requirements. As a future work, we will study
the possibility to extend our approach to 2D graph layouts.
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