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Abstract. Sequential pattern mining is an approach to extract corre-
lations among temporal data. Many different methods were proposed to
either enumerate sequences of set valued data (i.e., itemsets) or sequences
containing multidimensional items. However, in many real-world scenar-
ios, data sequences are described as events of both multi-dimensional
and set valued informations. These rich heterogeneous descriptions can-
not be exploited by traditional approaches. For example, in healthcare
domain, hospitalizations are defined as sequences of multi-dimensional
attributes (e.g. Hospital or Diagnosis) associated with sets of medical
procedures (e.g. { Radiography, Appendectomy }). In this paper we pro-
pose a new approach called MMISP (Mining Multi-dimensional-Itemset
Sequential Patterns) to extract patterns from sequences including both
multi-dimensional and set valued data. The novelties of the proposal
lies in: (i) the way in which the data can be efficiently compressed; (ii)
the ability to reuse a state-of-the-art sequential pattern mining algo-
rithm and (iii) the extraction of new kind of patterns. We introduce as a
case-study, experiments on real data aggregated from a regional health-
care system and we point out the usefulness of the extracted patterns.
Additional experiments on synthetic data highlights the efficiency and
scalability of our approach.

Keywords: Sequential Patterns, Multi-dimensional Sequential Patterns,
Data Mining

1 Introduction

Data warehouses are constituting a large source of informations that are used
and exploited to extract useful knowledge for expert analysis and decision mak-
ers [3]. In temporal data warehouses, every bit of information is associated with
a timeline describing a total order over events. This particular ordering intro-
duces more complexity to the extraction process and more precisely to mining



processes that enumerate patterns that encompass interesting transient events.
Many efficient approaches were developed to mine these patterns (i.e., sequential
patterns) like PrefixSpan [5], SPADE [12], SPAM [1], PSP [4], DISC [2], PAID
[10], FAST [8]. However, all these techniques and algorithms, without any ex-
ception, focus solely on sequences of set valued data (i.e., itemsets) and contrast
with real-world data that have multiple dimensions. To overcome this problem,
Pinto et al. [6] introduced the notion of multi-dimensionality in sequences and
proposed an efficient algorithm. Later works, like Zhang et al. [13] or Yu et al.
[11] extended the initial Pinto’s approach for different scenarios and use-cases.
While in set valued approaches the events are represented by itemsets, in multi-
dimensional temporal databases the events are defined over a fixed schema in
which all the attributes are mandatory in the extracted patterns. Furthermore,
and this is particularly true in the data warehouse environment, background
knowledge is usually available and can be represented as a hierarchy over the
values of the attributes. Following this logic, Plantevit et al. introduced M3SP

[7], an efficient algorithm that is able to incorporate different dimensions and
their ordering (organization) in the sequential pattern mining process. The ben-
efit of this approach is to extract patterns with the most appropriate level of
granularity. Still, this idyllic representation of uniform data is very uncommon in
real-world applications where heterogeneity is usually elevated to a foundational
concept. In this study, we focus on extracting knowledge from medical data
warehouse representing information about patients in different hospitals. The
successive hospitalizations of a patient can be expressed as a sequence of multi-
dimensional attributes associated with a set of medical procedures. Our goal is
to be able to extract patterns that express patients stays along with combina-
tions of procedures over time. This type of pattern is very useful to healthcare
professionals to better understand the global behavior of patients over time.
Unfortunately this full richness and complexity of the data cannot be exploited
by any of the traditional sequential pattern mining techniques. In this paper,
we propose a new approach to extract patterns from sequences which include
multi-dimensional and set valued data at the same time. In addition, the pro-
posed approach incorporates background knowledge in the form of hierarchies
over attributes.

The remainder of this paper is organized as follows, Section 2 introduces the
problem statement as well as a running example. The method for extracting
multi-dimensional-itemset frequent patterns is described in Section 3. Section
4 presents experimental results from both quantitative and qualitative point of
views and Section 5 concludes the paper.

2 Problem Statement

In this section we list some preliminary definitions needed to formalize and
present our problem. First of all, we introduce a motivating example from a
real data set related to the PMSI (Program of medical information systems).
This French nationwide information system describes hospital activities from



both economical and medical points of view. In this system, each hospitalization
is related to the recording of administrative, demographical and medical data.

Patients Trajectories

P1 �((UHParis, C1), {p1, p2}), ((UHParis, C1), {p1}), ((GHLyon, R1), {p2})�
P2 �((UHParis, C1), {p1}), ((UHParis, C1), {p1, p2}), ((GHLyon, R1), {p2})�
P3 �((UHParis, C1), {p1, p2}), ((GHLyon, R1), {p2})�
P4 �((UHParis, C1), {p2}), ((UHParis, R2), {p3}), ((GHLyon, R2), {p2})�

Table 1. An example of a database of patient trajectories

Let SDB be a database of multi-dimensional-itemset data sequences. Table 1
illustrates such a database.

Definition 1. (Dimensions and specialization down(d)) A dimension (D,�) is
a partially ordered set. For a given d in D, down(d) (resp. up(d)) denotes the

set of all specializations {x ∈ D|x � d} (resp. generalizations {x ∈ D|d � x}) of
d.

Example 1. Figure 1 shows two hierarchical taxonomies characterizing both the
hospital and diagnosis dimensions. For hospital dimension, UHParis ∈ down(UH)
as UHParis is a direct descendant of UH.
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Fig. 1. Hospital and diagnoses taxonomies

By taking into account taxonomies, we define a multi-dimensional component
as follows:

Definition 2. (Multi-dimensional component) Given a dimension (D,�), a multi-

dimensional component over D, denoted (mdc,�mdc), is a tuple (d1, ..., dm)
where di ∈ D, i = 1, · · · ,m. For two given multidimensional components mdc =
(d1, ..., dm) and mdc

� = (d�
1
, ..., d

�
m
), mdc

� �mdc mdc denotes that mdc
�
is more

specific than mdc, if for every i = 1, ...,m, d
�
i
∈ down(di).

Example 2. Let (UHParis, Lung Cancer) and (UH, Cancer) be two multidi-
mensional components. (UHParis, Lung Cancer) �mdc (UH, Cancer) because
UHParis ∈ down(UH) and Lung Cancer ∈down( Cancer).



Definition 3. (Event) An event e = ((d1, ..., dm), {p1, ..., pn}) is a pair includ-

ing a multidimensional component and an associated itemset. Given two events

e = ((d1, ..., dm), {p1, ..., pn}) and e
� = ((d

�

1
, ..., d

�

m
), {p�

1
, ..., p

�

n
� }), e is included

in e
�
, denoted by e ⊆e e

�
, if and only if (d1, ..., dm) �mdc (d

�

1
, ..., d

�

m
) and

{p1, ..., pn} ⊆ {p�

1
, ..., p

�

n
� }.

Example 3. e = ((UH, Tdisease), {p1, p2, p3}) is an event, where (UH, Tdisease) is
a multidimensional component with two dimensions representing hospital and
diagnosis. {p1, p2, p3} denotes the set of medical procedures. An event e

� =
((UHParis, C1), {p1, p2}) is included in e, e� ⊆e e, because (UHParis, C1) �mdc

(UH, Tdisease) and {p1, p2} ⊆ {p1, p2, p3}.

A multi-dimensional-itemset data sequence is composed of events.

Definition 4. (Multi-dimensional-itemset Sequence) A multi-dimensional-itemset

sequence s =< e1, e2, ..., el > is an ordered list of events ei. Given two Multi-

dimensional-itemset Sequences s =< e1, e2, ..., el > and s
� =< e

�
1
, e

�
2
, ..., e

�
l� >, s

is included in s
�
, denoted by s ⊆s s

�
, if there exist indices 1 ≤ i1 < i2 < ... <

il ≤ l
�
such that ej ⊆e e

�
ij

for all j = 1 . . . l and l � l
�
.

Example 4. The sequence s = �((UHParis, Cancer), {p1, p2}), ((GHLyon, R1),
{p2})� is a sequence of two events. It expresses the fact that a patient was ad-
mitted to the University Hospital of Paris UHParis for a cancer disease Cancer

and underwent procedures p1 and p2, then he went to the General Hospital of
Lyon GHLyon for pneumonitis R1 and underwent procedure p2. A sequence s =
�((UHParis, C1), {p1})� is included in s, s� ⊆s s, because ((UHParis, C1), {p1}) ⊆e

((UHParis, Cancer), {p1, p2}).

Definition 5. (Patient Trajectory) A patient trajectory is defined as a multi-
dimensional-itemset sequence.

Example 5. In Table 1, the sequence s = �((UHParis, C1), {p1, p2}), ((UHParis, C1),
{p1}), ((GHLyon, R1), {p2})� represents the trajectory for the patient P1.

Let supp(s) be the number of sequences that includes s in SDB . Furthermore
σ be a minimum support threshold specified by the end-user.

Definition 6. (Most Specific Frequent Sequence) Let s be multi-dimensional-

itemset sequences, we can say that, s is the most specific frequent sequences in

SDB, if and onl if: supp(s) ≥ σ and �s� ∈ SDB, where supp(s) = supp(s�) and

s
� ⊆s s.

Problem 1. The problem of mining multi-dimensional-itemset sequences is to
extract the set of all most specific frequent sequences in SDB such as supp(s) ≥ σ.
By using the taxonomies we can extract more or less general or specific patterns
and overcome problems of excessive granularity and low support.

Example 6. Let σ = 0.75 (i.e. a sequence is frequent if it appears at least three
times in SDB). The sequence s1 = �(UHParis, C1), {p1, p2}), ((GHLyon, R1), {p2}�
is frequent. s2 = �(UH,Cancer), {p1, p2}), ((GH,Respiratory), {p2}}� is also
frequent. Nevertheless, s2 is not kept since it is too general compared to s1.



3 Mining Multi-dimensional-Itemset Sequential Patterns

In this section, we present the MMISP (Mining Multi-dimensional-Itemset Se-

quential Patterns) algorithm for extracting multi-dimensional-Itemset sequential
patterns with different levels of granularity over each dimension. MMISP follows
a bottom-up approach by first focusing on extracting mdc that can exist at dif-
ferent level of granularity, then it considers the itemset part of the events and
compute the support of every item is SDB . After these two steps, frequent multi-
dimensional components and frequent items are combined to generate events. In
the final step, the frequent events are mapped to a new representation and a
standard sequential mining algorithm is applied to enumerate multi-dimensional
itemset sequential patterns.

In the next subections, we provide the details of each step of our work and
discuss the different challenges.

3.1 Generating Multi-dimensional Components

MMISP starts by processing the multi-dimensional components of the sequences.
Basically it considers three types of dimensions: a temporal dimension Dt, a set
of analysis dimensions DA and a set of reference dimensions DR. MMISP splits
SDB into blocks according to reference dimension DR. Then, MMISP sorts each
block according to the temporal dimension Dt. The tuples of multi-dimensional
component appearing in an event are defined w.r.t. analysis dimensions DA.
The support of the multi-dimensional component is computed according to di-
mensions of DR. It is the ratio of the number of blocks supporting the multi-
dimensional component over the total number of blocks. This a classic way of
partitioning the database and was introduced in [7].

Date Hospital Diagnosis

1 UHParis C1

2 UHParis C1

3 GHLyon R1

Block: Patient1

Date Hospital Diagnosis

1 UHParis C1

2 UHParis C1

3 GHLyon R1

Block: Patient2

Date Hospital Diagnosis

1 UHParis C1

2 GHLyon R1

Block: Patient3

Date Hospital Diagnosis

1 UHParis C1

2 UHParis R2

3 GHLyon R2

Block: Patient4

Fig. 2. Block partition of the database according to DR={Patient}

Example 7. In our example, H (hospitals) and D (diseases) are the analysis
dimensions, Date is the temporal dimension, and P (patients) is the reference
dimension. By using P (patients) to split the dataset, we obtain four blocks
defined by Patient1, Patient2, Patient3 and Patient4 as shown in Figure 2.



Following this partitioning step, MMISP generates all the frequent multi-
dimensional components. Firstly, we generate the most general multi-dimensional
component, that is (T1, ..., Tm). In our running example, we have two dimen-
sions (hospital and disease), so the most general multi-dimensional component
is (Thospital, Tdisease). Then, our approach generates all multi-dimensional com-
ponents of the form (T1, ...Ti−1, di, Ti+1, ..., Tm) where di ∈ down(Ti). We
take only the frequent multi-dimensional component which has support greater
than σ. In our running example and for σ = 75% (3 blocks from 4), we have
four new frequent multidimensional components: (UH, Tdisease), (GH,Tdisease),
(Thospital, Respiratory) and (Thospital, Cancer).

We continue the recursive generation of the new multidimensional compo-
nents by using each previously generated frequent multidimensional compo-
nent (a). This is done with a pivot method that identifies an integer z which
is the position of the last dimension in a and is not top T . For example if
a=(UH, TDisease), z is the first dimension (hospital) because the value for the
hospital dimension (UH) and the second dimension (disease) has the value
Tdisease.

For each dimension dk in a, where k ∈ [z,m], we replace dk with one of its
specialization from the set down(dk). For example, if a=(UH, TDisease), we have
z=1 and we can generate four newmdcs: {(UHParis, TDisease), (UHNancy, TDisease),
(UH, Respiratory), (UH,Cancer)}. The first and the second multidimensional
components are generated by replacing UH by down(UH) = {UHParis, UHNancy},
the third and the forth multidimensional components are generated by replacing
TDisease by down(TDisease) = {Respiratory, Cancer}.

We select only the frequent multidimensional components. For our previ-
ously example with σ = 75%, {(UHParis, TDisease), (UH,Cancer)} are the new
frequent multidimensional components generated by (UH, TDisease).

Finally, from all frequent multi-dimensional components generated, we select
only the most specific multi-dimensional component.

Definition 7. (Most Specific Multi-dimensional Component) Let a be multi-

dimensional component, we can say that, a is the most specific multi-dimensional

component, if and only if � a
�
multi-dimensional component, where supp(a) =

supp(a�) and a
� �mdc a.

Frequent multi-dimensional component

(UHParis,C1)

(GHLyon,R1)

Table 2. The most specific frequent multi-dimensional components

Example 8. Fiqure 3 illustrates the mechanism work of generation all frequent
multi-dimensional components on our running example with σ = 0.75. We can
notice that the most specific components are (UHParis,C1) and (GHLyon,R1).
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Fig. 3. Frequent multi-dimensional components generation

3.2 Generating Frequent Itemset

In this step, MMISP focuses on the itemset part of the sequences. Basically, this
step aims at extracting the set of all items that are frequent in a sequence of
length 1. Let us remind that usually, in level-wise approaches, either itemset-
extension or sequence-extension can be considered. For example, if we have a
sequence s1 = �{1, 2, 3}�, then s2 = �{1, 2, 3}{4}� is a sequence-extended se-
quence of s1 and s3 = �{1, 2, 3, 4}� is an itemset-extended sequence of s1. In our
context focusing on sequence of length 1 we will only consider itemset-extension.
Such an operation can be easily done by using any standard sequential pattern
algorithm.

Patients Sequences of procedures

P1 �{p1, p2}{p1}{p2}�
P2 �{p1}{p1, p2}{p2}�
P3 �{p1, p2}{p2}�
P4 �{p2}{p3}{p2}�

Sequences of procedures

Frequent Itemset Candidates

{p1}
{p2}

{p1, p2}

The frequent itemset

Fig. 4. The frequent itemset generated

Example 9. Figure 4 shows the sequence of medical procedures for patients and
the frequent itemset candidates for σ = 0.75.

3.3 Generating Frequent Events

Generating frequent events is achieved by combining frequent multi-dimensional
components with frequent itemsets. This task is achieved by building a prefix
tree such that the first level in this tree is composed of the frequent multidimen-
sional components and the second level is composed the frequent itemsets. More
precisely, each branch in the tree represents an event. Then a scan is performed



over the database to prune irrelevant events from the tree. For example, Figure
5 illustrates the tree before and after pruning infrequent events for σ = 0.75.

!"#$%&'()*+,-*

./,0*

!1#2345)*6,-*

7* 8* 7* 9* 7* 9*

:;//4&<*

T 

./=0* ./,)/=0* ./,0* ./=0* ./,)/=0*

!"#$%&'()*+,-*

./,0*

!1#2345)*6,-*

7* 8* 7* 7*

./90* ./,)/90* ./90*

event	
T 

Combination tree before pruning Combination tree after pruning

Fig. 5. An example of the tree for generating frequent events before and after the
pruning

3.4 Extracting Frequent Multi-dimensional Itemset Patterns

Frequent sequences can then be mined by using any standard sequential pattern
mining algorithm. As these algorithms require that the dataset to be mined is
composed of pairs in the form (id, seq), where id is a sequence identifier and seq

is a sequence of itemsets, we transform the initial dataset as follows:

– Each branch in the combination tree after pruning is assigned a unique id
which will be used during the mining operation. This is illustrated in Table
3 .

– Each block (patient) is assigned a unique id of the form Pi.
– Every block b is transformed into a pair (Pi, S(pi)), where S(Pi) is built ac-

cording to the date and the content of the blocks. The final result is reported
in Table 4.

A standard sequence mining algorithm can be applied on the transformed database.

event-id Frequent Event

e1 (UHParis,C1), {p1}
e2 (UHParis,C1), {p2}
e3 (UHParis,C1), {p1, p2}
e4 (GHLyon,R1), {p2}

Table 3. Identification each branch (Event) in T

id Sequence data

P1 �{e1, e2, e3}{e1}{e4}�
P2 �{e1}{e1, e2, e3}{e4}�
P3 �{e1, e2, e3}{e4}�
P4 �{e2}�

Table 4. Transformed database

Then, the extraction of frequent sequences can be carried out. With σ = 0.75,
the pattern �{e3}{e2}� is frequent. This sequence transforms to �((UHParis, C1),
{p1, p2}), ((GHLyon, R1), {p2})� by using the identification in Table 3.



4 Experiments

We conduct experiments on both real and synthetic datasets. The algorithms
is implemented in Java and the experiments are carried out on a MacBook
Pro with a 2.5GHz Intel Core i5, 4GB of RAM Memory running OS X 10.6.8.
The extraction of sequential patterns is based on the public implementation of
CloSpan algorithm [9]. We use the implementation supplied by the IlliMine5

toolkit.
In order to assess the effectiveness of our approach, we run several experi-

ments on the PMSI dataset. This database includes the following informations:
Patients (id, gender . . . ), Stays (id, hospital, principal diagnosis, . . . ) and Med-

ical Procedures (id, date,. . . ). Our dataset contains 486 patients suffering from
lung cancer and living in the eastern region of France. The average length of data
sequences is 27. The data is encoded using controlled vocabularies. In particular,
diagnoses are encoded with the International Classification of Diseases (ICD10)6.
This classification is used as an input taxonomy for MMISP. The ICD10 can be
seen as a tree with two levels. As illustrated in Figure 6, 3-characters codes such
as C34 (Lung cancer) have specializations: C340 is cancer of the main bronchus,
C341 is cancer of upper lobe etc.
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Fig. 6. Examples of taxonomies used in multilevel sequential pattern mining

Patients Trajectories

P1 �((C341, 750712184), {ZBQK002}), ((Z452, 580780138), {ZZQK002}), . . .�
P2 �((C770, 100000017), {ZBQK002}), ((C770, 210780581), {ZZQK002, Y Y Y Y 030}), . . .�
P3 �((H259, 210780110), {Y Y Y Y 030}), ((H259, 210780110), {ZZQK002}), . . .�
P4 �((R91, 210780136), {Y Y Y Y 030}), ((C07, 210780136), {ZBQK002}), . . .�

Table 5. Care trajectories of 4 patients

Table 5 is an example of care trajectories described over two dimensions
(diagnosis, hospital ID) coupled with a set of medical procedures. For example
(C341, 750712184), {ZBQK002} represents the stay of a patient in the Univer-

5 http://illimine.cs.uiuc.edu/
6 http://apps.who.int/classifications/apps/icd/icd10online/



sity Hospital of Dijon (coded as 210780581) treated for a lung cancer (C341),
where the patient underwent chest radiography (coded as ZBQK002).

The experiments are designed to extract some multi-dimensional sequential
patterns for helping the medical experts to describe some healthcare patients
trajectories. For this experiment the support value is set to 15 (i.e. σ = 0.03).
MMISP generates 121 different patients trajectories. Table 6 shows some patients
trajectories obtained by our approach. Pattern 2 can be interpreted as follows:
42% of patients have a hospitalization in the University Hospital of Dijon for
a lung cancer (210780581,C341), where they underwent supplement procedures
(coded as YYYY030) for passing the chest radiography (coded as ZBQK002).
Then, the same patients go to any university hospital for doing chemotherapy
(CHU/CHR,Z511), where they underwent only the chest radiography (coded as
ZBQK002).

id Support Trajectory Patterns

1 70% �((CH,Z515), {ZBQK002, Y Y Y Y 030})�
2 42% �((210780581, C341), {ZBQK002, Y Y Y Y 030}), ((CHU/CHR,Z511), {ZBQK002})�
3 38% �((210780581, Z511), {ZBQK002, Y Y Y Y 030}), ((210780581, Z511), {ZBQK002, Y Y Y Y 030})�

Table 6. Some healthcare patients trajectories obtained by MMISP
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Fig. 7. Running Time (left) and Number of extracted pattern (right) obtained by
MMISP with varying in the number of dimension

In the second experiments, we study the scalability of our approach. We
consider the number of extracted patterns and the running time with respect to
two different parameters, the number of the dimension in the multidimensional



components and the average length of the itemsets in the data sequences. The
first batch of synthetic data generated contains 10 000 sequences defined over (2,
3, 4 and 5) analysis’ dimensions. Each sequence contains 30 events and each event
is described, in average, by 15 items in the itemset. Hierarchical relations are
defined over 5 levels of granularity between elements of each analysis dimension.
Figure 7 reports the results according to different values of support threshold for
different number of analysis dimension in multidimensional component. We can
notice that the running time increases for each newly added analysis dimension.
The second batch of synthetic data generated contains 10 000 sequences with
varying number of items 5, 10, 15 and 20. The sequences in the four generated
data sets have an average cardinality of 30 events,by 3 analysis dimensions.
Hierarchical relations are defined over 5 levels of granularity between elements
of each analysis dimension. Figure 8 reports the results according to different
values of support threshold for different lengths of itemsets.
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Fig. 8. Running Time (left) and Number of extracted pattern (right) obtained by
MMISP with varying itemsets’ cardinalities

5 Conclusion

In this paper, we propose a new approach to mine multi-dimensional itemset
sequential patterns. Our approach is able to capture knowledge from dataset
represented over both multi-dimensional component and itemsets. We provide
formal definitions and propose a new algorithm MMISP to mine this new kind
of pattern. We conduct experiments on both real and synthetic datasets. The
method was applied on real-world data where the problem was to mine healthcare
patients trajectories. According to medical experts, new patterns are easier to
understand.
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