
Data Mining for Intrusion Detection: from
Outliers to True Intrusions

Goverdhan Singh1, Florent Masseglia1, Cline Fiot1, Alice Marascu1, and
Pascal Poncelet2

1 INRIA Sophia Antipolis, 2004 route des lucioles - BP 93, FR-06902 Sophia
Antipolis, France

Email: First.Last@sophia.inria.fr
2 LIRMM UMR CNRS 5506,161 Rue Ada, 34392 Montpellier Cedex 5, France

Email: poncelet@lirmm.fr

Abstract. Data mining for intrusion detection can be divided into sev-
eral sub-topics, among which unsupervised clustering has controversial
properties. Unsupervised clustering for intrusion detection aims to i)
group behaviors together depending on their similarity and ii) detect
groups containing only one (or very few) behaviour. Such isolated be-
haviours are then considered as deviating from a model of normality and
are therefore considered as malicious. Obviously, all atypical behaviours
are not attacks or intrusion attempts. Hence, this is the limits of unsu-
pervised clustering for intrusion detection. In this paper, we consider to
add a new feature to such isolated behaviours before they can be consid-
ered as malicious. This feature is based on their possible repetition from
one information system to another.

1 Introduction

Intrusion detection is a very important topic of network security that has received
much attention [5, 9, 4, 7] since potential cyber threats are making the organi-
zations vulnerable. Intrusion Detection Systems (IDS) are intended to protect
information systems against intrusions and attacks and are traditionally based
on signatures of known attacks [8, 1]. Therefore, new kinds of attacks regularly
have to be added to the signature list. The main drawback is that in case of
an emerging attack, based on the recent discovery of a new security hole for
instance, the IDS will ignore it since this new attack has not yet been listed in
the base of signatures.

Protecting a system against new attacks, while keeping an automatic and
adaptive framework is an important topic in this domain. One answer to that
problem could rely on data mining. Data mining tools have been used to pro-
vide IDS with more adaptive detection of cyber threats [2, 10]. Among those data
mining approaches, anomaly detection tries to deduce intrusions from atypical
records [4, 3]. The overall principle is generally to build clusters, or classes, of
usage and find outliers (i.e. events that do not belong to any class or group
identifying normal usage). However, the main drawback of detecting intrusions



2

by means of anomaly (outliers) detection is the high rate of false alarms since an
alarm can be triggered because of a new kind of usages that has never been seen
before (and is thus considered as abnormal). Considering the large amount of
new usage patterns emerging in the Information Systems, even a weak percent of
false positive will give a very large amount of spurious alarms that would be over-
whelming for the analyst. Therefore, the goal of this paper is to propose an intru-
sion detection algorithm that is based on the analysis of usage data coming from
multiple partners in order to reduce the number of false alarms. Our main idea is
that a new usage is likely to be related to the context of the information system
on which it occurs (so it should only occur on this system). On the other hand,
when a new security hole has been found on a system, the hackers will want to use
it in as many information systems as possible. Thus a new anomaly that occurs
on two (or more) information systems is probably not a new kind of usage, but
rather an intrusion attempt. Let us consider Ax, an anomaly detected in the us-
age of web site S1 corresponding to a php request on the staff directory for a new
employee: John Doe, who works in room 204, floor 2, in the R&D department.
The request will have the following form: staff.php?FName=John\&LName=Doe
\&room=204\&floor=2\&Dpt=RD. This new request, due to the recent recruit-
ment of John Due in this department, should not be considered as an attack. On
the other hand, let us consider Ay, an anomaly that corresponds to a true intru-
sion. Ay will be based on a security hole of the system (for instance a php vulner-
ability) and might, for instance, look like: staff.php?path=../etc/passwd%00.
One can see in this request that the parameters are not related to the data ac-
cessed by the php script, but rather to a security hole that has been discovered
on the staff script. If two or more firms use the same script (say, a directory
resquesting script bought to the same software company) then the usage of this
security hole will certainly be repeated from one system to another and the re-
quest having parameter ../etc/passwd%00 will be the same for all the victims.
In this paper, we propose to provide the end-user with a method that takes only
one parameter: n, the number of desired alarms. Then, based on the analysis of
the usage data coming from the different partners, our algorithm will detect n
common outliers they share. Such common outliers are likely to be true attacks
and will trigger an alarm.

The paper is organized as follows. In Section 2 we present the motivation of
this approach and our general framework. Section 3 presents Cod, our method
for detecting outliers and triggering true alarms. Eventually, our method is tested
through a set of experiments in Section 4 and Section 5 gives the conclusion.

2 Motivation and General Principle

In this paper we present Cod (Common Outlier Detection) a framework and
algorithm intended to detect the outliers shared by at least two partners in
a collaborative IDS. Outliers are usually small clusters and our goal is to use
outlier lists from different systems (based on a similar clustering, involving the
same similarity measure). If an outlier occurs for at least two systems, then



3

it is considered as an attack. Cod is indeed based on the assumption that an
intrusion attempt trying to find a weakness of a script will look similar for all
the victims of this attack. For clarity of presentation we present our framework
on the collaboration of two Web sites, S1 and S2 and we consider the requests
that have been received by the scripts of each site (cgi, php, sql, etc). Our goal is
to perform a clustering on the usage patterns of each site and find the common
outliers. However, that would not be enough to meet the second constraint of our
objective: to require only one parameter, n, the number of alarms to return. Our
similarity measure (presented in section 3.1) will allow normal usage patterns
to be grouped together rather than grouped with intrusion patterns. On the
other hand, our similarity measure also has to ensure distinguishing an intrusion
pattern from normal usage patterns and from other intrusion patterns (since
different intrusion patterns will be based on a different security hole and will
have very different characteristics). Our algorithm performs successive clustering
steps for each site. At each step we check the potentially matching outliers
between both sites. The clustering algorithm is agglomerative and depends on
the maximum dissimilarity (MD) that has to be respected between two objects.

This work is intended to explore the solutions for monitoring a network in real
time. Then, the potential alarms will be triggered at each step of the monitoring
(for instance with a frequency of one hour). Depending on the number of true or
false alarms, the user might want to adjust n for the next step, until no (or very
few) false alarm is returned. Our assumption is that common outliers, sorted by
similarity from one site to another, will give the intrusions at the beginning of
the list.

3 COD: Common Outlier Detection

The principle of Cod is to perform successive clustering steps on usage patterns
of different partners sites, until the number of common outliers meets the number
of alarms desired by the user. We present in this section an algorithm designed for
two information systems. Extending this work to more than two systems would
require a central node coordinating the comparisons and triggering the alarms,
or a peer-to-peer communication protocol. This is not the goal of this paper.
Our objects are the parameters given to script files in the requests received on
a Web site. In other words, the access log file is filtered and we only keep lines
corresponding to requests with parameters to a script. For each such line, we
separate the parameters and for each parameter we create an object. Let us con-
sider, for instance, the following request: staff.php?FName=John&LName=Doe.
The corresponding objects are o1 =John and o2 =Doe. Once the objects are
obtained from the usage data of multiple Web sites, Cod is applied and gives
their common outliers.

3.1 Main Algorithm

As explained in section 2, Cod algorithm will process the usage patterns of both
sites step by step. For each step, a clustering result is provided and analyzed for



4

intrusion detection. First, MD is set to obtain very tight and numerous clusters
(very short similarity is allowed between two objects in a cluster). Then, MD
is relaxed by an amount of 0.05 step after step in order to increase the size of
resulting clusters, decrease their number and lower the number of alarms. When
the number of alarms desired by the user is reached, then Cod ends.

Algorithm Cod
Input: U1 and U2 the usage patterns of sites S1 and S2

and n the number of alarms.
Output: I the set of clusters corresponding

to malicious patterns.

1. Build M , the distance matrix between each pattern ;
2. ∀p ∈ M, Neighboursp ← sorted list of neighbours for p (the first usage

pattern in the list of p is the closest to p).
3. DensityList← sorted list of patterns by density ;
4. MD ← 0 ;
5. MD ←MD + 0.05 ;
6. C1 ← Clustering(U1,MD) ;

C2 ← Clustering(U2,MD) ;
7. O1 ← Outliers(C1) ; O2 ← Outliers(C2) ;
8. I ← CommonOutliers(O1, O2, MD) ;
9. If |I| ≤ n then return I ;

10. If MD = 1 then return I ; // No common outlier
11. Else return to step 5 ;

End algorithm Cod

3.2 Clustering

Cod Clustering algorithm is based on an agglomerative principle. The goal is to
increase the volume of clusters by adding candidate objects, until the Maximum
Dissimilarity (MD) is broken (i.e. there is one object oi in the cluster such that
the similarity between oi and the candidate object oc is greater than MD).
Similarity between objects. We consider each object as a sequence of char-
acters. Our similarity is then based on the longest common subsequence (LCS),
as described in definition 1.

Definition 1. Let s1 and s2 be two sequences. Let LCS(s1, s2) be the length of
the longest common subsequences between s1 and s2. The dissimilarity d(s1, s2)
between s1 and s2 is defined as follows: d(s1, s2) = 1− 2×LCS(s1,s2)

|s1|+|s2|

Example 1. Let us consider two parameters p1=intrusion and p2=induction.
The LCS between p1 and p2 is L=inuion. L has length 6 and the similarity
between p1 and p2 is d = 1− 2×L

|p1|+|p2| = 33.33%. Which also means a similarity
of 66.66% between both parameters.



5

Centre of clusters. When an object is inserted into a cluster we maintain the
centre of this cluster, since it will be used in the CommonOutliers algorithm.
The centre of a cluster C is the LCS between all the objects in C. When object oi

is added to C, its center Cc is updated. The new value of Cc is the LCS between
the current value of Cc and oi.

Algorithm Clustering
Input: U , the usage patterns

and MD, the Maximum Dissimilarity.
Output: C, the set of as large clusters as possible,

respecting MD.

1. i← 0 ; C ← ∅ ;
2. p← next unclassified pattern in DensityList ;
3. i + + ; ci ← p ;
4. C ← C + ci ;
5. q ← next unclassified pattern in Neighboursp ;
6. ∀o ∈ ci If d(o, q) > MD then return to step 2 ;
7. add q to ci ;
8. Cc ← LCS(Cc, q) ; //Cc is the center of C
9. return to step 5 ;

10. If unclassified patterns remain then return to step 2 ;
11. return C ;

End algorithm Clustering

3.3 Detecting Common Outliers

Our outlier detection principle is described in [6]. Since we want our global algo-
rithm to require only one parameter (the number of alarms), we want to avoid
introducing a similarity degree for comparing two lists of outliers. For this com-
parison, our algorithm uses the centre of outliers. For each pair of outliers, it
calculates the similarity between centers of these outliers. If this similarity is
below the current MD, then we consider those outliers as similar and add them
to the alarm list.

4 Experiments

The goal of this section is to analyze our results (i.e. the number of outliers
and true intrusions and the kind of intrusions we have detected). Our datasets
come from two different research organizations; (anonymized for submission).
We have analyzed their Web access log files from March 1 to March 31. The
first log file represents 1.8 Gb of rough data. In this file, the total number of
objects (parameters given to scripts) is 30,454. The second log file represents



6

1.2 Gb of rough data and the total number of objects is 72,381. Cod has been
written in Java and C++ on a PC (2.33GHz i686) running Linux with 4Gb of
main memory. Parameters that are automatically generated by the scripts have
been removed from the datasets since they cannot correspond to attacks (for
instance “publications.php?Category=Books”). This can be done by listing
all the possible generation of parameters in the scripts of a Web site.

4.1 Detection of common outliers

As described in Section 2, Cod proceeds by steps and slowly increases the value
of MD, which stands for a tolerance value when grouping objects during the
clustering process. In our experiments, MD has been increased by steps of 0.05
from 0.05 to 0.5. For each step, we report our measures in table 1. The meaning
of each measure is as follows. O1 (resp. O2) is the number of outlying objects
in site 1 (resp. site 2). %1 (resp %2) is the fraction of outlying objects on the
number of objects in site 1 (resp. site 2). For instance, when MD is set to 0.3,
for site 1 we have 5,607 outlying objects, which represents 18.4% of the total
number of objects (i.e. 30,454) in site 1. COD is the number of common outliers
between both sites and %FA is the percentage of false alarms within the common
outliers. For instance, when MD is set to 0.05, we find 101 alarms among which
5 are false (which represents 4.9%). One first observation is that outliers cannot
be directly used to trigger alarms. Obviously, a number as high as 5,607 alarms
to check, even for one month, is not realistic. On the other hand, the results of
Cod show its ability to separate malicious behaviour from normal usage. Our
false alarms correspond to normal requests that are common to both sites but
rarely occur. For instance, on the references interrogation script of anonym lab1,
a user might request papers of “John Doe” and the request will be
publications.php?FName=John\&LName=Doe. If another user requests papers
of “John Rare” on the Web site of anonym lab2), the request will be
biblio.php?FName=John\&LName=Rare and the parameter “John” will be given
as a common outlier and trigger an alarm. As we can see, %FA is very low
(usually we have at most 5 false alarms in our experiments for both Web sites)
compared to the thousands of outliers that have been filtered by Cod. Another
lesson from these experiments is that a low MD implies very small clusters
and numerous outliers. These outliers are shared between both sites, among
which some are false alarms due to rare but common normal usage. When MD
increases, the clustering process gets more agglomerative and alarms are grouped
together. Then one alarm can cover several ones of the same kind (e.g. the
case of easter eggs explained further). At the same time, the number of outliers
corresponding to normal usage decreases (since they are also grouped together).
Eventually, a too large value of MD implies building clusters that do not really
make sense. In this case, outliers will get larger, and the matching criteria will
get too tolerant, leading to a large number of matching outliers capturing normal
usage. In a streaming environment involving the real data of these experiments,
one could decide to keep 70 as the number of desired alarms and watch the



7

ratio of false alarms. If this ratio decreases, then the end-user should consider
increasing the number of desired alarms.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

O1 13197 10860 8839 7714 6547 5607 5184 4410 3945 3532

%1 43.3% 35.6% 29% 25.3% 21.5% 18.4% 17% 14.4% 12.9% 11.6%

O2 35983 27519 24032 20948 18152 14664 12738 11680 10179 8734

%2 49.6% 37.9% 33.1% 28.9% 25% 20.2% 17.5% 16.1% 14% 12.1%

COD 101 78 74 70 67 71 71 85 89 90

%FA 4.9% 5.12% 4% 2.85% 1.5% 2.8% 2.8% 10.6% 11.2% 16.6%

Table 1. Results on real data

4.2 A sample of our results

None of the attacks found in our experiments have been successful on the consid-
ered Web sites. However, our security services and our own investigations allow
us to confirm the intrusion attempts that have been discovered by our method:

– Code Injection: a recent kind of attack aims to inject code in PHP scripts
by giving a URL in the parameters. Here is a samle of such URLs detected
by Cod:
• http://myweddingphotos.by.ru/images?
• http://levispotparty.eclub.lv/images?
• http://0xg3458.hub.io/pb.php?

Depending on the PHP settings on the victim’s Web server, the injected
code allows modifying the site. These URLs are directly, automatically and
massively given as parameters to scripts through batches of instructions.

– Passwords: another kind of (naive and basic) attack aims to retrieve the
password file. This results in outliers containing parameters like
../etc/password with a varying number of ../ at the beginning of the
parameter. This is probably the most frequent attempt. It is generally not
dangerous but shows the effectiveness of our method.

– Easter Eggs: this is not really an intrusion but if one adds the code
?=PHPE9568F36-D428-11d2-A769-00AA001ACF42 to the end of any URL
that is a PHP page, he will see a (funny) picture on most servers. Also on
April 1st (April Fool’s Day), the picture will replace the PHP logo on any
phpinfo() page. This code (as well as two other ones, grouped into the same
outlier) has been detected as a common outlier by Cod.

5 Conclusion

In this paper, we have proposed i) an unsupervised clustering scheme for isolat-
ing atypical behaviours, ii) a parameterless outlier detection method based on



8

wavelets and iii) a new feature for characterizing intrusions. This new feature is
based on the repetition of an intrusion attempt from one system to another. Ac-
tually, our experiments show that atypical behaviours cannot be directly used to
trigger alarms since most of them correspond to normal requests. On the other
hand, this very large number of outliers can be effectively filtered (reducing the
amount of atypical behaviours up to 0.21%) in order to find true intrusion at-
tempts (or attacks) if we consider more than one site. Eventually, our method
guarantees a very low ratio of false alarms, thus making unsupervised clustering
for intrusion detection effective, realistic and feasible.

Acknowledgement

The authors want to thank Laurent Mirtain, the responsible for intrusion de-
tection of Inria Sophia-Antipolis, for his assistance in identifying attacks in our
access log files.

References

1. D. Barbara, N. Wu, and S. Jajodia. Detecting novel network intrusions using bayes
estimators. In 1st SIAM Conference on Data Mining, 2001.

2. E. Bloedorn, A. D. Christiansen, W. Hill, C. Skorupka, and L. M. Talbot. Data
mining for network intrusion detection: How to get started. Technical report,
MITRE, 2001.

3. E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S Stolfo. A geometric frame-
work for unsupervised anomaly detection: Detecting intrusions in unlabeled data.
Applications of Data Mining in Computer Security, 2002.

4. A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava. A comparative
study of anomaly detection schemes in network intrusion detection. In 3rd SIAM
DM, 2003.

5. W. Lee and S. J. Stolfo. Data mining approaches for intrusion detection. In 7th
conference on USENIX Security Symposium, 1998.

6. A. Marascu and F. Masseglia. A multi-resolution approach for atypical behaviour
mining. In The 13th Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD’09), Bangkok, Thailand, 2009.

7. A. Patcha and J.-M. Park. An overview of anomaly detection techniques: Existing
solutions and latest technological trends. Comput. Networks, 51, 2007.

8. M. Roesch. SNORT, 1998.
9. A. Valdes and K. Skinner. Probabilistic alert correlation. In Recent Advances in

Intrusion Detection, pages 54–68, 2001.
10. N. Wu and J. Zhang. Factor analysis based anomaly detection. In IEEE Workshop

on Information Assurance, 2003.


