
Mining Conjunctive Sequential Patterns

Chedy Räıssi1, Toon Calders2, and Pascal Poncelet3

1 LIRMM, University of Montpellier, France
raissi@lirmm.fr

2 Eindhoven University of Technology, Netherlands
t.calders@tue.nl

3 LGI2P, Ecole des Mines d’Alès, France
pascal.poncelet@ema.fr

Abstract. In this paper we aim at extending the non-derivable con-
densed representation in frequent itemset mining to sequential pattern
mining. We start by showing a negative example: in the context of fre-
quent sequences, the notion of non-derivability is meaningless. Therefore,
we extend our focus to the mining of conjunctions of sequences. Besides
of being of practical importance, this class of patterns has some nice
theoretical properties. Based on a new unexploited theoretical definition
of equivalence classes for sequential patterns, we are able to extend the
notion of a non-derivable itemset to the sequence domain. We present
a new depth-first approach to mine non-derivable conjunctive sequential
patterns and show its use in mining association rules for sequences. This
approach is based on a well known combinatorial theorem: the Möbius
inversion. A performance study using both synthetic and real datasets
illustrates the efficiency of our mining algorithm. These new introduced
patterns have a high-potential for real-life applications, especially for net-
work monitoring and biomedical fields with the ability to get sequential
association rules with all the classical statistical metrics such as confi-
dence, conviction, lift etc.

1 Introduction

In this paper we study the discovery of frequent sequences. Many algorithms have
been proposed for mining all frequent sequences, such as SPAM [1], SPADE [15].
Even more than in the frequent itemset domain, however, frequent sequence min-
ing is suffering from the huge amount of patterns a mining operation produces.
It is not uncommon that mining a rather modest database results in a gigan-
tic number of frequent patterns. Given that the original aim of data mining is
to discover those precious little nuggets of knowledge hidden in a huge pile of
data, this situation is a contradictio in terminis. In this respect, for the frequent
itemset domain [7], many studies have been conducted which aim at reducing
the redundancy in the output set. A logical approach is to see to what extent
condensed representations and deduction in the context of frequent itemsets can
be extended to the sequential pattern domain. Up to now, only closed sequential

patterns have already been studied as a condensed representation for the sequen-
tial pattern domain [13]. In this paper, we look at non-derivable itemsets as a
candidate to extend. Loosely speaking, a derivable itemset is one of which the
support is perfectly determined by the support of its subsets. A derivable itemset
can thus be considered as redundant and be removed from the output set. This
seemingly straightforward exercise, however, turns out to be slightly harder than
expected. We start our paper with a negative result for non-derivable sequences:
unlike in the frequent itemset domain, the notion of non-derivability is mean-
ingless in the sequential pattern domain; except for some extremely degenerated
cases, every sequence is non-derivable.

This negative result motivated us to look at a slightly different problem:
the mining of conjunctions of sequential patterns. This extended class of pat-
terns turns out to have much nicer mathematical properties. For example, for
this class of patterns we are able to extend the notion of non-derivable item-
sets in a non-trivial way, based on a new unexploited theoretical definition of
equivalence classes for sequential patterns. As a side-effect of considering con-
junctions of sequences as the pattern type, we can easily form association rules
between sequences. Compared to the unordered structure of an itemset pattern,
only few works [2] focus on the association rule mining problem for sequential
pattern. This is largely due to the difficult formalization needed for these pat-
terns compared to the set-theory based formalization used in itemset mining.
Furthermore, and as highlighted by the authors in [14], sequences are helpful
in real-world critical applications like medical diagnoses and disaster prediction
by proposing sequence rules associated with statistical metrics in order to build
classifiers that efficiently takes into account temporal order. We believe that
building a theoretical framework and an efficient approach for sequence asso-
ciation rules extraction problem is the first step toward the generalization of
association rules to all complex and ordered patterns.

Our contributions in this article are twofold:

1. We present a new equivalence relation and extend it to equivalence classes for
sequential patterns. We discuss the role of these classes in sequential patterns
concise representations and we exhibit a strong result for sequential pattern
concise representations that are based on frequency bounds.

2. We introduce a new mining task with a new type of pattern: the Conjunc-
tive Sequence Pattern based on the equivalence classes and investigate the
algorithmic aspects along with the possibility of computing a set of frequent
non-redundant conjunctive sequence patterns by using the combinatorial
theorem of Möbius inversion [10].

The rest of the paper is presented as follows. In Section 2, the basic concepts
of sequential pattern mining are introduced. Section 3 presents the equivalences
classes for sequential patterns along with their related properties. Section 4 in-
troduces the Conjunctive Sequence Pattern mining problem and discusses the
computation of a non-redundant set of frequent conjunctive sequence patterns.
Section 5 introduces CSPminer, our depth-first algorithm for mining conjunc-

tive sequence patterns. An experimental study is reported in section 6 and we
conclude our work in Section 7.

2 Preliminary concepts and definitions

2.1 Frequent Sequence Mining

In this section we define the sequential pattern mining problem in large databases
and give an illustration. This description of sequence datasets was first intro-
duced in [12] and extended in [11]. Let I = {i1, i2 . . . im} be the finite set of
items. An itemset is a non-empty set of items. A sequence S over I is an ordered
list 〈it1, . . . , itk〉, with itj an itemsets over I, j = 1 . . . k.

T(I) will denote the (infinite) set of all possible sequences over I. A sequence
database D over I is a finite set of pairs (SID, T), called transactions, with
SID ∈ {1, 2, . . .} an identifier and T ∈ T(I) a sequence over I. For any two
transaction (SID1, T1) 6= (SID2, T2) ∈ D, it must be that SID1 6= SID2.

Definition 1 (Inclusion). A sequence S′ = 〈is′1 is′2 . . . is′n〉 is a subsequence
of another sequence S = 〈is1 is2 . . . ism〉, denoted S′ � S, if there exist i1 <
i2 < . . . ij . . . < in such that is′1 ⊆ isi1 , is′2 ⊆ isi2 . . . is′n ⊆ isin

.

Example 1. Sequence 〈(a)(c)(d)〉 is included in 〈(ab)(c)(ab)(de)〉. We say that
sequence 〈(ab)(c)(ab)(de)〉 supports 〈(a)(c)(d)〉. However, 〈(a)(c)〉 is not included
in 〈(c)(a)〉.

Definition 2 (Support). The support of a sequence S in a transaction database
D, denoted Support(S,D), is defined as: Support(S,D) = |{(SID, T) ∈ D|S �

T }|. The frequency of S in D, denoted fD
S , is fD

S = Support(S,D)
|D| .

Given a user-defined minimal frequency threshold σ, the problem of sequential
pattern mining is the extraction of all the sequences S in D such that fS ≥ σ.
The set of all frequent sequences for a threshold σ in a database D is denoted
FSeqs(D, σ).

FSeqs(D, σ) := {S | fD
S ≥ σ} .

Example 2. Consider the following database over the items I = {a, b, c, d}. There
are 3 transactions, with identifiers 1, 2, and 3. Let the minimal frequency thresh-
old be σ = 2

3 , the frequent sequences in D are: 〈(a)〉, 〈(b)〉, 〈(c)〉, 〈(d)〉, 〈(ab)〉,
〈(ad)〉, 〈(a)(c)〉 and 〈(d)(c)〉. Notice that we use brackets to separate the different
itemsets in the sequences from each other.

D =

S1 (a, b, c, d)(a, c)
S2 (a, b)
S3 (a, d)(c)

2.2 Problem Statement

The problem studied in this paper now is as follows: for many datasets D and
thresholds σ, the size of the set of frequent sequences FSeqs(D, σ) is extremely
large and contains a lot of redundancies. It is the goal of this paper to study
how we can reduce this enormous set of frequent sequences using techniques of
pattern condensation from the frequent itemset domain. The closed itemsets have
already been adopted successfully in this domain, leading to the closed sequential
patterns [13]. A sequence S in a database D is called closed if there does not
exist a sequence S′ 6= S such that S � S′ and fS = fS′ . Only mining the closed
sequences results in a reduced set of patterns. In this paper we want to extend
another class of condensed representations, the k-free sets [5], to the frequent
sequence domain. This class includes the free sets, disjunction-free sets, and the
non-derivable itemsets. For an overview of condensed representations in the field
of frequent itemsets, see [7]. Central in the construction of these representation
is the deduction of frequencies. That is, for a given set of frequencies, we ask
ourselves the question: what can be derived for the frequency of other patterns?
This problem is formalized as follows: Let C = {fS1

, . . . , fSn
∈ [0, 1]} be the

respective frequencies of S1, . . . , Sn. A database is said to be consistent with C
if and only if, for i = 1 . . . n, fSi,D = fSi

. Typically, for given frequencies there
are many consistent databases. Let now S be another sequence. The best bounds
for fS given these n frequencies is then defined as

[LBC(S), UBC(S)] := [min{fS,D | D consistent with fS1
, . . . , fSn

},

max{fS,D | D consistent with fS1
, . . . , fSn

}]

In the frequent itemset domain deduction rules that allow to compute these
bounds under some assumptions of the set C have been studied. For example,
among others, there are the following reasoning rules for itemsets: fabc ≤ fab and
fabc ≥ fab + fac − fa. If now it happens that the lower bound fab equals the upper
bound fab + fac − fa, abc is redundant w.r.t. the itemsets a, ab, and ac. Hence, in
this situation we can remove abc from the output set of frequent itemset mining.
In general, this problem of deciding on the best bounds is NP-hard [4], but for
the special case where we consider only a downwardly closed set C with a single
top element, the problem becomes tractable and forms the basis of the frequent
non-derivable itemset mining representation. This representation turns out to be
quite successful in reducing the output set in frequent itemset mining [8, 6]. In
the next section we start with extending these results to the sequential domain.
An important notion is that of equivalence classes for sequences.

3 Equivalence Classes For Sequential Patterns

Previous works in sequential pattern mining [15] introduced sequential patterns
equivalence classes based on a prefix equivalence relation in order to decompose
the mining task in smaller easily-solvable problems. In this section, we introduce

the concept of sequential patterns equivalence classes based on a support equiv-
alence relation. We discuss complexity issues associated with these equivalence
classes and show that these equivalence classes definition can be used to prove
an important theorem on the lower bound of sequential patterns frequency.

3.1 Definitions

Definition 3. Let S be a set of sequences. Two sequences T1 and T2 are said
to be S-equivalent, denoted T1 ≡S T2, if, for all S ∈ S it holds that S � T1 if
and only if S � T2. The set of all sequences equivalent to T under ≡S is denoted
[T]S.

Let IN and OUT be sets of sequences. E(IN ,OUT) denotes the following
set of sequences:

E(IN ,OUT) := {T ∈ T | ∀S ∈ IN : S � T, ∀S ∈ OUT : S 6� T } .

Hence, E(IN ,OUT) denotes the set of all sequences that support all sequences
in IN , and none of the sequences in OUT .

Example 3. Let I = {a, b, c}, and let

S =







〈(a)(b)(c)〉
〈(b)(c)〉
〈(a)(b)〉







We then have: 〈(abc)(abc)(abc)〉 ≡S 〈(a)(bc)(abc)〉 and 〈(b)(c)〉 6≡S 〈(a)(bc)〉.

Consider now E(IN ,OUT) for:

– IN = {〈(a)(b)(c)〉 , 〈(ac)〉}, OUT = {〈(bc)〉}. E(IN ,OUT) contains, among
others, the sequences 〈(ac)(b)(c)〉, 〈(ac)(c)(ab)(c)〉, but not 〈(abc)〉.

– IN = {〈(ab)〉 , 〈(ac)〉}, OUT = {〈(c)〉}. E(IN ,OUT) is empty, as every
sequence that contains 〈(ac)〉 must also contain 〈(c)〉.

– IN = {〈(a)(c)〉 , 〈(b)〉}, OUT = {〈(a)(b)〉 , 〈(b)(c)〉}. E(IN ,OUT) is also
empty, as every sequence T that contains 〈(a)(c)〉 and 〈(b)〉 must also contain
either 〈(a)(b)〉 or 〈(b)(c)〉; since T contains 〈(a)(c)〉, the first occurrence of a
in T must come before the last occurrence of c. As such, the first occurrence
of (b) in T either comes after the first occurrence of a or before the last
occurrence of c.

The following lemma is immediate given the definition of equivalence of se-
quences.

Lemma 1. Let S be a set of sequences. ≡S is an equivalence relation on the set
of all sequences T. The number of equivalence classes |T/ ≡S | is at most 2|S|.

Proof. This follows easily from the fact that for every transaction T ∈ T,

[T]S = E({S ∈ S | S � T }, {S ∈ S | S 6� T }) .

Furthermore, equivalence classes can be written, without loss of generality,
by only using the top elements present in the sets IN and the bottom elements
in OUT . Semantically, E(IN ,OUT) = ∅ means that no sequences can be built
supporting all sequences from set IN and not supporting any sequence from
the set OUT . Here a first divergence with the itemset domain emerges; whereas
the structure of the equivalence classes is extremely simple in the itemset case,
for sequences this is not at all true. For itemsets, E(IN ,OUT) is non-empty if
and only if every set in OUT has at least one item that is not in any of the
sets in IN ; e.g., E({ab, ac}, {bc}) is empty as every transaction that contains
the itemsets ab and ac, also contains bc. As such, deciding non-emptyness of
an equivalence class is trivial for itemsets as this test can be performed in lin-
ear time. For sequences, this problem turns out to be much harder. Consider,
e.g., the example E({〈(a)(b)〉 , 〈(a)(c)〉}, {〈(b)(c)〉}). This class is non-empty, as
it contains, among others, the sequence 〈(a)(c)(b)〉. The following lemma states
exactly how much more complex this problem becomes. The importance of this
lemma will become apparent later on in the paper, where we introduce deduction
rules for the frequency of (conjunctions of) sequences.

Lemma 2. Let IN and OUT be sets of sequences. Deciding if E(IN ,OUT) is
nonempty is an NP-complete problem.

Proof. The inclusion in NP is straightforward; if E(IN ,OUT) is nonempty,
then it contains at least 1 sequence T with size(T) at most

∑

S∈IN size(S),

where size(〈is1, . . . , isk〉) denotes
∑k

j=1 |isj|. Indeed, let T be a sequence in
E(IN ,OUT). Then, for every S ∈ IN , there exists a set of indices i1 < i2 <
. . . < i|S|, such that the jth set in S is a subset of the ijth subset of T . Fix
for every S ∈ IN one such set of indices i[S]. Let now T ′ be the following
subsequence of T : let 1 ≤ t1 < . . . < tm ≤ |T | be the set of indices ∪S∈S′ i[S].

T ′ =

〈
⋃

S∈IN
tj=ik∈i[S]

S[k]

〉m

j=1

Since T ′ � T , for all S ∈ OUT , S 6� T ′. Furthermore T ′ is constructed in such a
way that for all S ∈ IN , S � T ′. size(T ′) ≤

∑

S∈IN size(S). Such a sequence
T ′ is a succinct certificate for the non-emptiness of E(IN ,OUT).

For the completeness, we reduce the following variant equal-3COL of the
3COL problem to the problem of deciding on the non-emptyness of E(IN ,OUT):
Given a graph G with 3k vertices, does there exist a coloring of the vertices that
uses only 3 colors, and every color exactly k times? This problem is equivalent
to the 3COL problem. On the one hand we can reduce 3COL to it as follows: a
graph G is three-colorable if and only if the graph consisting of 3 separate copies
of G is in equal-3COL. On the other hand, if a graph is in equal-3COL the
coloring itself is clearly a succinct certificate and thus equal-3COL is in NP.

So, let G be a graph with 3k edges. We show how we can reduce the 3COL

problem for a graph G with 3k vertices to a non-emptiness problem E(IN ,OUT).

Let V = {v1, . . . , v3k} be the set of vertices, and E be the set of edges of G.
The set of items is {i1, i2, . . . , in, i3k+1, R, G, B}. The sets IN and OUT will be
constructed in such a way that the only sequences in E(IN ,OUT) are of the
form 〈i1C1 . . . i3kC3ki3k+1〉 with Ci either R, G, or B, and such that C(vi) = Ci,
for all i = 1 . . . 3k is a valid coloring of G. We first describe the sequences in the
set IN :

1. 〈(i1)(i2) . . . (i3k)(i3k+1)〉, all markers must be present in the right order.

2.

〈 k×
︷ ︸︸ ︷

(C)(C) . . . (C)

〉

, for C = R, G, B every color occurs at least k times.

We now describe the sequences in OUT :

1. 〈(i, j)〉, ∀i 6= j ∈ I, all sets in the sequence are singletons.
2. 〈(ij)(ij)〉, j = 1 . . . 3k + 1, no marker occurs twice.

3.

〈 k+1×
︷ ︸︸ ︷

(C)(C) . . . (C)

〉

, for ∀C ∈ {R, G, B}, no color occurs k + 1 times.

4. 〈(ij)(C1)(C2)(ij+1)〉, j = 1 . . . 3k, ∀C1, C2 ∈ {R, G, B}. there are no two
colors between two subsequent markers.

5. 〈(ij)(C)(ij+1)(ik)(C)(ik+1)〉, ∀(vj , vk) ∈ E, ∀C ∈ {R, G, B}. no adjacent
vertices can have the same color C with C = R, G, B.

Every sequence in E(IN ,OUT) encodes a 3-coloring of G as described above.

Notice that the high complexity of this seemingly simple problem also indi-
cates that deducing bounds [LBC(S), UBC(S)] on the frequency of a sequence
S, given the frequencies of other sequences C, is at least as hard as NP. This
can be seen as follows: the equivalence class E(IN ,OUT) is empty if and only
if for any sequence S in IN , given the frequencies fS′ = 1 for all S′ ∈ IN \ {S},
and fS′ = 0 for all S ∈ OUT , the best bound is [0, 0]. Nevertheless, low com-
plexity for the equivalence class problem does not guarantee efficient algorithms
for computing bounds.

The NP-completeness of this problem motivates the study of special cases
that could be interesting from a practical point of view. The special case we
consider is the following: suppose that the set of given constraints C contains
the frequency fS′ of every strict subsequence S′ ≺ S. This is a useful subcase as
it reflects exactly the information we have in Apriori-like algorithms. However,
as shown in the next subsection, in this case, the lower bound will always be
trivial.

3.2 Lower bound on the frequency of sequential patterns

Based on the notion of equivalence classes, we can give a negative result effec-
tively eliminating all hope for an easy extension of the notion of non-derivable
itemsets to the sequential pattern domain.

Lemma 3. For any non-empty sequence S, the equivalence class E({S′ | S′ ≺
S}, {S}) is nonempty.

Theorem 1. Set S be a sequence, and let C be a set of given frequencies that
has the frequency for every S′ ≺ S. If there exists a database that is consistent
with C, the lower bound LBC(S) is 0.

Proof. Let D be a database consistent with C. As E({S′ | S′ ≺ S}, {S}) is non-
empty (Lemma 3), we can replace every transaction in D that supports S by
a transaction of E({S′ | S′ ≺ S}, {S}). This transformation does not affect the
frequency of any of the strict subsequences of S, hence the transformed database
still satisfies C. The frequency of S in the transformed database, however, is 0,
and hence LBC(S) is 0.

Example 4. Let D be a sequence database containing the sequence S = 〈(a)(b)(c)〉.
We can always exhibit a database D′ that gives the same frequency to every strict
subsequence of S but reduces the frequency of S itself to 0.

D =

S1 (a)(b)(c)
S2 (a)(b)(c)
S3 (c)(a)
S4 (b)(c)

D′ =

S1 (b)(c)(a)(c)(a)(b)
S2 (b)(c)(a)(c)(a)(b)
S3 (c)(a)
S4 (b)(c)

This theorem is very important from the concise representations point of view
as it clearly states that condensed representations based on support computa-
tions like non-derivable representation [8] and all the other k-free representations
like 0-free-sets or disjunct-free-sets [3, 5] are meaningless for sequential patterns;
only sequences with a frequency of 0 are derivable and thus requiring that a
sequence is non-derivable will not reduce the set of frequent sequences at all.

4 Conjunctive sequence patterns

In the previous section we introduced equivalence classes for sequential patterns
and discussed their theoretical usefulness. In this section we introduce a more
practical approach in order to mine a more specific subset of equivalence classes:
the downward closed equivalence classes regardless of their emptiness or not.

Definition 4. A conjunctive sequence pattern (CSP) is a subset C of T such
that all S 6= S′ ∈ C, S and S′ are incomparable; i.e., neither S 6� S′, nor neither
S′ 6� S. The set of all CSPs is denoted C.

A sequence T ∈ T is said to support a CSP C if for all S ∈ C, S � T . The
support of a CSP C in a database D, denoted SupportD(C), is defined as the
number of sequence transactions in D that satisfies C.

Let C1, C2 ∈ C. C1 is said to be a subpattern of C2, denoted C1 � C2 if and
only if for all S1 ∈ C1 there exists a S2 ∈ C2 such that S1 � S2.

Example 5. Let C1 = {〈(a)(b)〉 , 〈(a, c)〉} and C2 = {〈(b)〉 , 〈(c)〉} conjunctive
sequence patterns. And D defined as:

D =

S1 (a)(b)(a, c)
S2 (a, b)(c)
S3 (c)(a)

– C2 is a subpattern of C1 (C2 � C1) as 〈(b)〉 � 〈(a)(b)〉 and 〈(c)〉 � 〈(a, c)〉
– SupportD(C1) = 1 as only the sequence S1 = 〈(a)(b)(a, c)〉 supports C1.
– SupportD(C2) = 2 as S1 and S2 support C2.

The following lemma is immediate:

Lemma 4 (Anti-Monotonicity). Let C1, C2 be CSPs. If C1 � C2, then, for
all databases D, Support(C1) ≥ Support(C2).

Hence, for mining frequent CSPs we can exploit the anti-monotonicity for
pruning the search space. Next we show how we can generate all direct special-
izations of a pattern.

Let P ⊆ T. ⌈P ⌉ denotes the CSP {S ∈ P | 6 ∃S′ ∈ P : S′ ≺ S}. On the other
hand, ↓ P denotes the downward closure of P ; i.e., the set {S ∈ T | ∃S′ ∈ P :
S � S′}.

A CSP C2 is said to cover a CSP C1, denoted C1 → C2, if C1 ≺ C2, and
there does not exist a CSP C3 such that C1 ≺ C3 ≺ C2; i.e., C2 is a direct
specialization of C1, and C1 a direct generalization of C2. For the sequences
case, the computation of all direct specializations is straightforward: given a
sequence S = 〈I1, . . . , In〉. The direct generalizations of S, denoted dg(S), are
the sequences:

n⋃

j=1

|Ij |>1

{〈I1, . . . , Ij−1, Ij \ {i}, Ij+1, . . . , In〉 | i ∈ Ij} ∪

n⋃

j=1

|Ij |=1

{〈I1, . . . , Ij−1, Ij+1, . . . , In〉 | i ∈ Ij} .

Lemma 5 (Generalization and Specialization). Let C be a CSP. The set
of direct generalizations of C is:

{⌈(C \ S) ∪ dg(S)⌉ | S ∈ C}

and the set of direct specializations of C is:

{C ∪ {S} | S 6∈ C, dg(S) ⊆ C}

Proof. The proof is based on the simple fact that if C1 is a generalization of C2

if and only if ↓ C1 ⊆↓ C2 and that ↓ C1 =↓ C2 implies that C1 = C2. E.g.,
for the set of direct generalizations, it can easily be checked that for all S ∈ C,
↓ (C \ S) ∪ dg(S) ⊆↓ C, and that ↓ C\ ↓ (C \ S) ∪ dg(S) = {S}.

The generalization and specialization lemma allows for generating the set of
all patterns from general to specific, thus exploiting the anti-monotonicity of
support as much as possible.

4.1 Support Bounding and Möbius Inversion

The next theorem shows that the set of all CSPs equipped with the partial order
� forms a lattice. This in contrast to the set of sequences without conjunctions,
on which the structure is a partial order. E.g., the sequences 〈(a, b)(a)〉 and
〈(a)(a, b)〉 do not have a unique meet; both 〈(a), (a)〉 and 〈(a, b)〉 are meets. In
the set of all CSPs, the meet is unique: {〈(a), (a)〉 , 〈(a, b)〉}.

Theorem 2. The partial order (C,�) forms a lattice.

Proof. Let C1, C2 ∈ C. It is easy to see that the following two sets are respectively
the unique meet and the join of C1 and C2:

∧

⌈↓ C1∩ ↓ C2⌉ and
∧

⌈C1 ∪ C2⌉

The fact that (C,�) is a lattice opens up a whole mathematical toolbox of
useful properties that can be applied. Most importantly, we can use the tech-
nique of Möbius inversion to get rules bounding the support of sequences in
much the similar way as was done for the Non-Derivable Itemsets, as we will
explain next.

Let C be a CSP . With every element C′ ∈ ↓ C in the lattice, we can associate
two numbers: s(C′) = Support(C′,D), and a(C′) = A(C′), with

A(C′) := |{T ∈ D | ∀C′′ ∈↓ C : T |= C′′ ⇔ C′′ � C′}|

Hence, s(C′) is the normal support in the database D, and a(C′) denotes the
number of transactions that support exactly C′, and nothing more. For all trans-
actions that are counted in a(C′), they support a pattern only if that pattern is
more general than C′.

Then, the following relation between a and s holds:

Lemma 6. For all C′ � C,

s(C′) =
∑

C′�C′′

a(C′′)

From this lemma the following theorem follows quite easily:

Theorem 3. Let, for all C′ � C, an integer sC be given. There exists a database
D with for all C′ � C, Support(C′,D) = sC if and only if the following system
of inequalities and equalities in the variables a(C′), C′ � C has a solution:







a(C′) = 0 ∀C′ : E(C′, ↓ C \ C′) = ∅
a(C′) ≥ 0 ∀C′ : E(C′, ↓ C \ C′) 6= ∅

∑

C′�C′′ a(C′′) = s′C ∀C′ � C

Moreover, for every database that satisfies for all C′ � C, Support(C′,D) = sC,
a(C′) = a(C′,D) is a solution to the system.

The theory on Möbius inversion, which can be thought of as a generalization
of the inclusion-exclusion principle, now learns us that under this condition there
always exists a function µ, the so-called Möbius inverse, that allows us to express
the a(C′) in function of the s(C′); i.e.:

Lemma 7. There exists a function µ(·, ·) that maps a pair of CSPs C′, C′′ � C
to a integer µ(C1, C2), such that for all databases D, the following holds:

a(C′) =
∑

C′�C′′

µ(C′, C′′)s(C′′)

Hence, a(C′) can be expressed as a simple linear combination of the supports of
the CSPs.

Combining the lemma with the theorem give us:

Theorem 4. Let, for all C′ � C, an integer sC be given. There exists a database
D with for all C′ � C, Support(C′,D) = sC if and only if:

{∑

C′�C′′ µ(C′, C′′)s(C′′) = 0 ∀C′ : E(C′, ↓ C \ C′) = ∅
∑

C′�C′′ µ(C′, C′′)s(C′′) ≥ 0 ∀C′ : E(C′, ↓ C \ C′) 6= ∅

Example 6. Let ǫ = 1 and let D be defined as:

D = S1 (a)(b)(c)

Suppose that we are trying to compute support bounds for the conjunctive
sequence pattern csp = {〈(a)〉 ; 〈(b)〉} and suppose that all frequencies are al-
ready known for the set of sub-conjunctions P = { {〈〉}, {〈a〉}, {〈b〉} } . The
lattice (L,�) based on the set P ∪{csp} can be represented as a matrix and the
inverse matrix µ contains the values needed to compute the bounds :

ζ =







1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1







, µ =







1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1







From µ, we get the 4 possible rules for support bounding:

1. s({〈〉}) − s({〈a〉}) − s({〈b〉}) + s({〈a〉 , 〈b〉}) ≥ 0

2. s({〈a〉}) − s({〈a〉 , 〈b〉}) ≥ 0

3. s({〈b〉}) − s({〈a〉 , 〈b〉}) ≥ 0

4. s({〈a〉 , 〈b〉}) ≥ 0

With this rules it is trivial to see that s(csp) ∈ [1, 1]. Thus, the support of
this conjunction can be derived from its subconjunctions.

Algorithm 1: CSP miner Algorithm

Data: Sequence Database: D; minimal frequency threshold ǫ

Result: The set of frequenct CSPs : C
begin1

k ← 1;2

C ← ∅;3

F1 ← mine sequence(k);4

C ← F1;5

while Fk not empty do6

foreach s ∈ Fk do7

foreach x <inv prefix s with x 6� s do8

generate CSP (x, s, C);9

k++;10

Fk ← mine sequence(k);11

return C;12

end13

5 Algorithm

In this section we give a depth-first algorithm for the conjunctive sequence pat-
tern mining problem. The basic idea of the algorithm is to alternate between a se-
quence mining task and a generation of all possible conjunctions. The algorithm
exploits two properties: (i) in order to compute the frequency of conjunctions, we
only need to compute the cardinal of the intersection set of the tidlists present in
every sequence contained in the conjunction, (ii) to compute frequency bounds
for a CSP Y , all frequencies for conjunction X such that {〈()〉} � X ≺ Y must
be known. Since we are using a depth-first algorithm, many of these frequencies
may be unavailable. In order to solve this problem we invert the order in wich
we traverse the research space as previously described in [9]. If the algorithm
runs with the derivability on, the bounds are computed for each candidate CSP.

The algorithm is illustrated with a toy database in Figure 1. Suppose ǫ = 1,
first all sequences of length 1 are mined, then CSPs are generated while traversing
in an inverted depth-first manner the research space. When there is no more
possible CSP generation, the algorithm generates level 2 sequences and restart
CSP generation with the newly added sequences. The algorithm returns when
there are no more frequent sequences to be mined.

6 Experimentations

We have performed tests using the CSP miner algorithm on synthetic and real-
world datasets. The goal of the experimentations are: (i) to verify the validity
and feasability of our CSP mining approach in the case of normal extraction and
non-derivability and (ii) to compare our algorithm results with a naive mining
approach.

〈〉
1

nn
nn

n
PP

PP
P

〈a〉
5

tt

〈b〉
3

〈c〉
2

〈b〉
7
〈c〉

6
〈c〉

4

〈c〉
8

〈〉

eeeeeeeeeeeeeeeeeeee

qqqqq

QQQQQQQQQ

UUUUUUUUUUUUU

WWWWWWWWWWWWWWWW

〈(a)(b)〉
6

NNN

VVVVVVVVVVV
〈(a)(c)〉

3

MMM

UUUUUUUUU
〈(b)(c)〉

1

QQ
QQQ

Q
〈1〉

;;
;

LLLLL
〈b〉

JJ
JJ

J
〈c〉

〈(a)(c)〉
9
〈(b)(c)〉

8
〈c〉

7
〈(b)(c)〉

5
〈b〉

4
〈a〉

2
〈b〉 〈c〉 〈c〉

〈(b)(c)〉
10

〈c〉

Fig. 1. Algorithm trace for database D = {(a)(b)(c)} The generations of CSPs is first
done for sequences of size 1 then for sequences of size 2.

6.1 Experimental method

All experiments were performed on a Core-Duo 2.16 Ghz MacBook Pro with 2Gb
of main memory, running Mac OS X 10.5.2. The conjunctive sequence pattern
miner is implemented in C++ and based on the DMTL library1 and the SPADE
algorithm. We used two data sets in our experiments: a synthetic data set that
was generated with QUEST2 software and a real-world dataset containing 8
UNIX computer users logs from Purdue University over the course of up to 2
years.

The synthetic data set C200T2.5S10I10K that was generated for our perfor-
mance studies contains 200000 sequences based on 10000 items.

The UNIX User Data data set contains 9 sets of sanitized user data drawn
from the command histories of 8 UNIX computer users at Purdue University.
For this data set, mining CSPs and then extracting sequential association rules
could be very helpful in this case for network intrusion systems. Details of the
data sets are given in Table 1.

Table 1. Details on data sets used in the different experiments. # it / trans: average
number of items per transaction; # trans. / sequence: average number of transactions
per sequence.

Data set # of sequences # of items # it / trans. # trans. / sequence

C200T2.5S10I10K 200K 10K 2.5 10

UNIX User Data 11116 2016 1 39

6.2 Results

Synthetic dataset, validity and feasability. We first studied the effects of support
values on the number of extracted CSPs, the overall runtime for our algorithm

1 http://sourceforge.net/projects/dmtl
2 http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data mining/

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

R
un

tim
e

(in
 s

ec
on

ds
)

Frequency threshold (in %)

Fig. 2. Runtime experiments carried out on the data set C200T2.5S10I10K .

 100

 1000

 10000

 100000

 1e+06

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
um

be
r

of
 fr

eq
ue

nt
 C

S
P

s

Frequency threshold (in %)

(a) Number of frequent CSPs

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
um

be
r

of
 fr

eq
ue

nt
 C

S
P

s
an

d
ru

le
s

(w
ith

 c
on

fid
en

ce
 =

 1
)

Frequency threshold (in %)

CSP
Rules

(b) Number of frequent CSPs and rules ex-
tracted

Fig. 3. Experiments carried out on the data set C200T2.5S10I10K .

and the number of extracted sequential association rules with confidence = 1.
The effects of low support values on the overall runtime are exposed in Figure
2. The runtime is still very acceptable: for a support of 1.15%, the CSP miner
algorithm needs 10 minutes to complete the extraction. Furthermore, our method
seems to be rather immune to small support values and is still able to mine CSP
until value 0.35% with acceptable overall runtime as 1 hour and 4 minutes are
needed to complete the task. Figure 3(a) illustrates the number of extracted
CSPs and show that our algorithm is capable of generating a very large set
of frequent CSPs. The number of extracted sequential association rules with
confidence = 1 w.r.t to the frequent CSPs is presented in Figure 3(b). There is
no rules until reaching support value 0.95%. The explanation is that until this
support values, the only frequent CSPs are of length 1 (simple sequences) which
cannot be used to generate sequential association rules.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 8.5 9 9.5 10 10.5 11 11.5 12

N
um

be
r

of
 fr

eq
ue

nt
 p

at
te

rn
s

Frequency threshold (in %)

CSPminer
Naive method

(a) Frequent patterns

 0

 500

 1000

 1500

 2000

 2500

 3000

 8.5 9 9.5 10 10.5 11 11.5 12

N
um

be
r

of
 fr

eq
ue

nt
 n

on
-d

er
iv

ab
le

 p
at

te
rn

s

Frequency threshold (in %)

CSPminer + Derivability
Naive method using NDI

(b) Frequent non-derivable patterns

Fig. 4. Experiments carried out on the data set UNIX User Data.

UNIX User Data set and non-derivability. We used the UNIX User Data in
these experiments to compare our approach with a naive method. The idea is to
make a post-processing step after classical sequence mining. Every frequent se-
quence is associated with an item value and the original data set is transformed
in order to keep only frequent sequences as items making the problem solvable
by itemset mining. We did 2 types of itemset mining, (i) plain frequent itemset
mining (using the Apriori algorithm) and (ii) Frequent Non-Derivable itemset
mining1. Figure 4(a) illustrate the difference between our mining approach and
the naive method. The worst case is when we are mining at a frequency of 8.54%,
the CSP miner extracts 5211 CSPs while the naive method extracts more than 17
million conjunctions. This is due to the fact that the naive method do not make
any comparison between every sequence in the conjunction sets extracted while
our CSP miner do this kind of comparison in order to cope with the definition 4.

1 The implementations were taken from http://www.adrem.ua.ac.be/∼goethals/software/

For example conjunction {〈(a)(b)〉 , 〈(a)〉} will be mined and considered valid by
the naive method while discarded by the CSP miner because 〈(a)〉 � 〈(a)(b)〉.
Non-derivability issues for this data set are presented in Figure 4(b) and in Table
2, comparing these derivability results with the mined CSPs from Figure 4(a)
nicely shows the improvements caused by the deduction rules and the high ra-
tio shows that the non-derivable CSP representaion is indeed a good condensed
representation. However, the derivability ratio stays higher for the naive method
for two reasons: first, this is mainly due to the high number of frequent con-
junctions mined by the naive method (more than 1 million conjunctions starting
from frequency 9%), second, the incompleteness of anti-monotonicity for deriv-
ability for CSPs, discussed in Section 4, make it very hard to compete with the
full anti-monotonicity of derivability for itemsets as used in the naive method.

Table 2. Details on UNIX User Data data set with derivability ratios for CSP miner
and the naive method. # CSP: number of frequent CSPs; # Conj.: number of frequent
conjunctions (naive method).# NDCSP: number of frequent non-derivable CSPs. #
NDconj.: number of frequent non-derivable conjunctions (naive method).

Frequency # CSP # Conj. # NDCSP # NDconj. CSP ratio Conj. ratio

11.69% 80 984 16 115 20% 88.31%

11.24% 108 2840 25 156 23.14% 94.50%

10.79% 174 4784 110 217 36.78% 95.46%

10.34% 282 16146 126 336 44.68% 97.91%

9.89% 466 68991 218 503 53.21% 99.27%

9.44% 858 385107 306 816 64.29% 99.78%

8.99% 1856 1677387 447 1435 75.92% 99.91%

8.54% 5211 17127924 690 2947 86.75% 99.98%

7 Conclusions

We have introduced a new definition of equivalence classes for Sequential Pat-
terns and investigated its computational complexity. We used these classes to
exhibit a theorem stating that the lower bound for the frequency of sequen-
tial patterns is always equal to 0. This result underly that any frequency-based
condensed representation is impossible for sequential patterns. Furthermore, we
used the equivalence classes definition to define a new mining problem: the Con-
junctive Sequence Pattern mining problem. We have also shown that unlike for
sequences, we can compute lower and upper bounds on the pattern frequency
leading to a concise representation close to the non-derivable itemsets represen-
tation. Furthermore, this new pattern is appealing as it can be used to exhibit
sequential association rules.

References

1. J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using
bitmap representation. In Proceedings of the 8th SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD 02), pages 439–435, Alberta,
Canada, 2002.

2. José L. Balcázar and Gemma C. Garriga. Horn axiomatizations for sequential
data. Theor. Comput. Sci., 371(3):247–264, 2007.

3. Jean-François Boulicaut, Artur Bykowski, and Christophe Rigotti. Free-sets: A
condensed representation of boolean data for the approximation of frequency
queries. Data Min. Knowl. Discov., 7(1):5–22, 2003.

4. T. Calders. Itemset frequency satisfiability: Complexity and axiomatization. The-
oretical Computer Science, 2007.

5. T. Calders and B. Goethals. Minimal k-free representations of frequent sets. In
PKDD proceedings, pages 71–82, 2003.

6. T. Calders and B. Goethals. Non-derivable itemset mining. Data Mining and
Knowledge Discovery, 14(1):171–206, 2007.

7. T. Calders, C. Rigotti, and J.F. Boulicaut. A survey on condensed representations
for frequent sets. Constraint Based Mining, Springer-Verlag, LNAI, 3848:64–80,
2006.

8. Toon Calders and Bart Goethals. Mining all non-derivable frequent itemsets. In
Tapio Elomaa, Heikki Mannila, and Hannu Toivonen, editors, PKDD, volume 2431
of Lecture Notes in Computer Science, pages 74–85. Springer, 2002.

9. Toon Calders and Bart Goethals. Depth-first non-derivable itemset mining. In
SDM, 2005.

10. K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory.
Springer-Verlag, 1990.

11. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-
formance improvements. In Proceedings of the 5th International Conference on
Extending Database Technology (EDBT 96), pages 3–17, Avignon, France, 1996.

12. R. Agrawal R. Srikant. Mining sequential patterns. In Proceedings of the 11th
International Conference on Data Engineering (ICDE 95), pages 3–14, Tapei, Tai-
wan, 1995.

13. Xifeng Yan, Jiawei Han, and Ramin Afshar. Clospan: Mining closed sequential
patterns in large databases. In Daniel Barbará and Chandrika Kamath, editors,
SDM. SIAM, 2003.

14. G. Dong Z. Xing, J. Pei and P. S. Yu. Mining sequence classifiers for early predic-
tion. In Proceedings of the 2008 SIAM International Conference on Data Mining
(SDM’08), Atlanta, GA, April 24-26 2008.

15. Mohammed Javeed Zaki. Spade: An efficient algorithm for mining frequent se-
quences. Machine Learning, 42(1/2):31–60, 2001.

