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Abstract

The use of XML in data exchanges
has extensively grown for the last
few years. Furthermore, huge vo-
lumes of data are sent through the
Internet. Today data mining tools
are required in order to provide users
with automatic tools to deal with
the heterogeneity of the data in or-
der to query it. Some approaches
have been proposed in order to
mine sub-structures (subtrees) from
such XML databases. However, they
are usually based on crisp methods.
Here we propose to soften these ap-
proaches to extract more understan-
dable and relevant knowledge.

Keywords : Fuzzy Data Mi-
ning, Semi-structured Data, XML,
Schema Mining.

1 Introduction

As they play an increasing role in data ex-
changes, the volume of XML resources is ex-
tensively growing. In order to deal with both
large amount and heterogeneity of data, users
must be provided with automatic tools. These
tools are particularly important when the user
wants to query several heterogeneous data-
bases without knowing their associated struc-
tures. Recent advances in distributed and he-
terogeneous databases provide the end-user
with mediator schemas. These mediator sche-
mas allow users to access transparently docu-
ments in digital form residing in one or more

possibly independent repositories.

Usually mediator schemas are manually defi-
ned but it is now irrelevant to manage them in
such a way. There is a need for tools focusing
on the following problem : how to automa-
tically define a mediator schema ? This pro-
blem has been recognized as one of the main
problems in the Semantic Web framework,
and one of the main difficult ones [2, 3, 6].
In such a context, schema mining approaches
have been recently proposed to extract in an
efficient way the commonly occurring sche-
mas from a collection [14, 2]. Nevertheless,
such approaches suffer from different draw-
backs since they only explore crisp methods,
which are too poor according to the seman-
tic point of view compared to the user needs.
We thus argue that fuzzy methods must be
considered in this framework [4, 7].

In this paper, we show that methods must be
softened in order to mine relevant knowledge,
which will be understandable and usefull for
the user. We propose a method based on a bi-
nary representation of XML data and we show
the good behaviour of our method through ex-
periments.

The rest of the paper is organized as follows :
Section 2 proposes basic definitions and Sec-
tion 3 goes deeper into presenting the pro-
blem. Section 4 introduces our proposition.
We first introduce our data representation
and then the fuzzy algorithm we defined. Sec-
tion 5 presents performed experiments. Fi-
nally, in Section 6 we conclude the paper with
future avenues.



2 Basic Concepts

Definition 1 A rooted labelled tree T =
(V, E) is a direct, acyclic, connected graph
with V = {0, 1, . . . , n} as the set of vertices
(nodes) and E = {(x, y)|x, y ∈ V } stands for
the set of edges. We assume that there is a
special vertex r ∈ V designated as a root and
for all x ∈ V , there is a unique path from r

to x. Then if x, y ∈ V and if there is a path
from x to y then x is called an ancestor of y

(i.e. y is a descendant of x). If the length of
the path from two vertices x, y is reduced to
one, then the ancestor relationship is consi-
dered as a parent relationship. For an inter-
nal node x ∈ V , we assume that its children
x1, x2, . . . , xn (n ≥ 0) are ordered from left to
right (i.e. there is a sibling relationship bet-
ween children).

Considering a tree T , the set of nodes from T

is denoted by NT , and the root is denoted by
rT .

Several kinds of tree inclusion can be defined
[5], depending on the way ancestors and si-
blings are considered. In this paper, we consi-
der that a tree is embedded in another one if
the nodes and the links can be retrieved. Ho-
wever, we do not consider that the tree being
included must be found exactly in the data-
base tree since the ancestor-descendant rela-
tionship is soft (there must exist a path from
the ancestor to the descendant but it is not
necessary that this path contains only one ver-
tice). Considering the example from fig. 1, the
4 sub-trees S1, S2, S3, S4 are embedded in T .
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Fig. 1 – Example of tree inclusion

Definition 2 A tree S is embedded into a
tree T if there exists an injective and total
function φ : NS → NT such as :

– φ keeps the labels : LS(nx) = LT (φ(nx)) ;
– φ keeps the relations ancestor-descendant :

(nx, ny)
i⇐⇒ (φ(nx), φ(ny)) ;

– φ keeps the indirect order relations :
(nx �S ny)

i⇐⇒ (φ(nx) �T φ(ny)).

Given a database D, the support of a tree S

is the proportion of trees from the database
where S is embedded :

Support(S) =
# of trees where S is embedded

# of trees in D

S is said to be frequent if Support(S) ≥ σ

where σ is a user-defined minimal support
threshold.

The tree mining problem consists in mining all
frequent sub-trees from a tree database. For
this purpose, levelwise approaches are mostly
proposed. In these approaches, algorithms run
as follows : in a first step, 1-node trees are
built and for each of them, we check in how
many trees from the database are they embed-
ded. The ones appearing enough times in the
database trees are said to be frequent. Those
1-node frequent trees are then combined to-
gether in order to build 2-node candidates
which are thus checked over the database.
From these 2-node frequent trees, 3-node trees
are built and it is checked if they are (or not)
frequent. This process goes on until no more
frequent subtree is found. Note that the trees
being built are called candidates before they
are checked to be (or not) frequent.

3 Fuzzy Data Mining

As highlighted in [10], fuzzy data mining can
help when mining frequent subtrees from a
tree database. In this article, four ways to sof-
ten classical approaches are proposed :
– ancestor-descendant degree : in classical ap-

proaches, a node is or is not an ancestor
of another one. In our approach, we pro-
pose to indicate by a degree between 0 and
1 to which extent a node is an ancestor of
another one, meaning that if there are too
many nodes between them, then this degree
will decrease, as shown on Fig. 3.

– sibling ordering degree : in classical ap-
proaches, nodes are or are not searched in
the initial order. In our approach, we pro-



pose to indicate by a degree the sibling di-
sorder.

– partial inclusion : in classical approaches,
all the nodes from the candidate must be
in the tree. In our approach, we propose to
soften this rule by considering the degree to
which the nodes are embedded in the tree.

– Node similarity : in classical methods, a
node label is or is not the same as another
one. In our approach, we propose to sof-
ten this by indicating by a degree to which
extent two nodes are similar (e.g. based on
a taxonomy).

Let us now examine how the classical binary
inclusion (is/is not included) can be transfor-
med into a gradual inclusion when considering
the ancestor-descendant relation. As shown
on Fig. 2, some nodes may be positioned bet-
ween an ancestor and a descendant.
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Fig. 2 – Inter-Node Interval

In existing approaches, if some nodes are po-
sitioned between a node and another one,
either these nodes are considered as being
ancestor-descendant, or they are not. Howe-
ver, we argue that if the number of nodes
between an ancestor and a descendant is too
important, then the relation between these
two nodes may not be considered. In order to
convey the idea of important number of nodes,
we thus consider a fuzzy membership func-
tion. Such a function is shown in Figure 3.
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Fig. 3 – Ancestor-Descendant : A Fuzzy De-
finition

4 Our proposal

In this section, we first present the FuzBT
structure we use to deal with the data. Se-
cond, we describe the associated mining algo-
rithm.

4.1 Representing Data

In order to manage trees as efficiently as pos-
sible, each tree T is transformed into a bi-
nary representation denoted by TB where each
node cannot have more than two children [9].
For this purpose, we propose the following
transformation : the first child of a node is put
as the left-hand child while the other childs
are put in the right-hand path, as illustrated
in Fig. 4.
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Fig. 4 – Example of a Binary Tree Transfor-
mation

Encoding Binary Trees

Once the tree has been transformed into a bi-
nary tree, nodes must be encoded in order to
be retrieved. The encoding is then used first
in order to identify each node and second in
order to determine whether a node is a child
or a brother. In order to do so, we consider the
Huffman algorithm [8] which we slightly mo-
dify in order to fit our needs. The root has ad-
dress 1. The other node addresses are compu-
ted by concatenating the father address with :
1 if it is a child (left-hand path) and 0 other-
wise (right-hand path), as shown on Fig. 5.

Data Structure

The data structure being considered here is
used in order to represent the trees and the
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Fig. 5 – Node Addressing

candidates. In order to deal with huge amount
of data, we aim at developping methods that
are not memory-consuming. For this reason,
considering a tree having |2T | nodes, T must
not be stored in more than |2T | places.We
consider here the tree representation presen-
ted in [11]. A tree is stored as two vectors
[13]. The first vector, Adr, stores the unique
address of each node in the tree. Note that the
nodes are numbered in a depth-first numbe-
ring. The root T corresponds to the position 0
with s[0] = −1 since the root has no ancestor.
The values Adr[i], i = 0, 2, ..., k−1 correspond
to the positions considered for each node from
the tree as proposed in [11].

Tab. 4.1 shows how the binary tree TBC is
managed in data structure ST .

Adr 1 11 110 1101 1100 11010

Lb A B C A D E

Tab. 1 – Data structure ST

This structure allows us to compute very qui-
ckly if a node n is within the scope1 of ano-
ther one. Considering the address of a node,
the binary address of each child node is ob-
tained in the following way : the first child
is encoded by the concatenation of the father
address and 1. All the brother nodes are en-
coded using the binary code of the father to
which a 0 is concatenated.

As in [14], each node is associated with the
interval of the positions from its descendants

1The scope of a node is constituted by the nodes
for which n is an ancestor of another one.

(the subtree having this node as a root). Ho-
wever, contrary to the Zaki’s approach which
keep this interval in memory, we do not need
to keep it anymore. We rather retrieve it by
using our data represention structure since,
by using binary operations, its computation
is very efficient. In order to decide whether a
node is a descendant of another one, we consi-
der the binary code of the potential father
and the binary code of the second node. In
a first step, the address of the second node
is substracted from the first digits of the fa-
ther address. Then we consider the following
digit from the father address. If this digit is 0
then the second node is not a descendant. If
this digit is 1 then the second node is a des-
cendant. Note that if the digits of the second
node are not the first digits of the potential
ancestor, then these nodes cannot be related
as an ancestor and a descendant.

As illustration, let us consider the potential
ancestor node 1101. When considering the
node 11011001, we retrieve the digits of the
first node in the first digits of the second one.
Then the next digit is a 1 so the second node
is one of the descendant, as shown in Tab. 4.1.

A 1 1 0 1

B 1 1 0 1 1 0 0 1

Indice 0 1 2 3 4 5 6 7

Tab. 2 – Evaluating two nodes uzing FuzBT

Moreover, our method is also very efficient
to compute the number of nodes between an
ancestor and one of its descendants. Indeed,
this number of nodes is given by the num-
ber of 1 digits in the descendant node star-
ting from the ancestor node. Let us consider
the example from Tab. 4.1, there are two 1
digits in B starting from the end of the code
of A (indice=4) which are found for indices
4 and 7, meaning that two nodes appear bet-
ween A and B. Fig. 6 illustrates the ancestor-
descendant relation and its binary represen-
tation.
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Fig. 6 – Ancestor-Descendant Relation

4.2 Mining Subtrees

Like traditional approaches, we also adopt
a levelwise algorithm [1]. As our generation
phase is performed in a classical way, i.e. sub-
tree candidates are built from existing sub-
trees, we rather focus on the process of che-
cking whether a candidate is embedded or not
within a tree from the database.

Let T be a tree from the database DB, C be a
candidate to be tested and G be the solution
graph. The algorithm is given in Algorithm
1. In a first step, all the possible nodes which
can be a starting node to anchor the candidate
C in the tree T are generated. In fact, these
nodes correspond to the nodes from T which
label is the label of the root of C. These nodes
are put in the graph solution as the head of
each solution being considered.

Algorithm 1: FuzBT, Anchoring

Algorithm: Fuzzy Anchoring

Data: T ,C

Result: G
foreach node ∈ T do

if node.lb == C.root.lb then

G.add(node);

return G;

The second step consists in finding all the so-
lutions for each of these anchoring nodes, as
described in Algorithm 2.

Algorithm 2: FuzBT, Fuzzy Path

Algorithm: Fuzzy Path

Data: T ,C,G,NodeC

Result: G
FatherID ← NodeC.ID;
NodeId ← NodeC.ID;
foreach ChildC ∈ NodeC do

foreach Solution ∈ G do

Continue ← true;
if Solution is open then

TempSol ← Copy(Solution);
//Looking for the next position;
Pos ← NextPos(T, ChildC.label,
Solution[NodeID], Solu-
tion[FatherID], False);
while Pos != Null do

if Continue then

Solution.add(T[Pos]);
Continue ← False;

else

G.add(TempSol);
G.back.add(T[Pos]);

//Looking for the next posi-
tion;
Pos ← NextPos(T,
ChildC.label, Pos, Solu-
tion[FatherID], True);

if Continue then

Solution.Close;

PruneAllSolutionClosed(G);
NodeID++;
Poursuite(T ,C,G,ChildC);

return G;

In this algorithm, the NextPos function aims
at finding the next position from the tree T

that has the same label as the node being
considered in C.

Note that we are looking for the best way to
embed C in T which leads to consider each
possibility. This is the main difference bet-
ween our approach and the propositions from
the literature, since we aim at computing to
which extent C is embedded in T .

At the end of this process, the solution graph
contains all the ways a subtree is included wi-



thin a tree from the database. For each of
these inclusion ways, a degree ranging from
0 to 1 has been computed by calculating the
mean value of all the membership degrees of
the ancestor-descendant degrees. The degree
to which a subtree is included within a tree
from the database is then computed as the
maximal solution degree.

In order to compute the support of a candi-
date, we consider a thresholded Σ-count by
suming all the maximal solution degrees if
they are greater than a user-defined threshold.

5 Experiments

Experiments have been performed on synthe-
tical data from the Termier data generator
[12]. These experiments aim at highlighting
the scalability of our approach.

The problem being considered is indeed hard.
Although most of the approaches propose to
simplify the problem by considering less com-
plex inclusion definitions [14], we here consi-
der a complete definition of inclusion. Moreo-
ver, we validate our candidates more precisely
by considering the degree to which they are
embedded.

We compare here our method to the vTreemi-
ner one in terms of runtime. Fig. 7 (resp. Fig.
8) displays the results for a database contai-
ning 10, 000 (resp. 20, 000) trees in function of
the minimum support being considered (ran-
ging from 1% to 80%).

 0.1

 1

 10

 100

 1000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Ti
m

e 
(s

)

Validation support

vTreeMiner
FuzBT embedded

FuzBT Fuzzy (1,12,.1)

Fig. 7 – Runtime over 10, 000 trees

Fig. 9 (resp. Fig. 10) reports the me-

 0.1

 1

 10

 100

 1000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Ti
m

e 
(s

)

Validation support

vTreeMiner
FuzBT embedded

FuzBT Fuzzy(1,12,.1)

Fig. 8 – Runtime over 20, 000 trees

mory consumed for a 10, 000 (resp. 20, 000)
tree database, highlighting how low-memory-
consuming is our approach.
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Fig. 11 (resp. Fig. 12) reports the number of
frequent subtrees discovered compared to the
number of solutions having been processed in
function of the minimal support for a minimal
ancestor-descendant distance equal to 1 and
a maximal distance equal to 12 (resp. mini-
mal ancestor-descendant distance = 3, maxi-
mal ancestor-descendant distance = 3).
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a 1 to 12 ancestor-descendant distance
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6 Conclusion and perspectives

In the Semantic Web framework, many works
deal with the querying of heteregoneous da-
tabases. In order to do so, the user (or the
system) must be provided with an idea of a
common schema of the data. For several years,
this common schema has been manually defi-
ned. However, it is now impossible to manage
this manually, it is thus necessay to consi-
der algorithms for automatically extract these
common structures. However, proposed ap-
proaches [14] do not allow to soften the rules
making that a tree is embedded into another
one and are thus less appropriate for Web Se-
mantic. Here, we propose to consider gradual
inclusion of a tree in another one by conside-
ring a soft ancestor-descendant relation.

Many perspectives are associated with this
work. First, we would like to experiment our
approach on real datasets instead of genera-
ted ones. Second we plan to optimize our al-
gorithm by automatically stop the database
scans as soon as possible. Finally, we plan to
consider all the other ways fuzzy logic can be
applied in the framework of data integration
and schema matching.
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