
AUSMS: An environment for frequent sub-structures
extraction in a semi-structured object collection

P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2
1 LIRMM, 161 rue Ada, 34392 Montpellier cedex 5, France

{laur,teisseire}@lirmm.fr
2 EMA/LGI2P, Ecole des Mines d’Alès

Site EERIE, Parc Scientifique Georges Besse, 30035 Nîmes cedex 1, France
Pascal.Poncelet@ema.fr

Abstract. Mining knowledge from structured data has been extensively addres-
sed in the few past years. However, most proposed approaches are interested in
flat structures. With the growing popularity of the Web, the number of semi-
structured documents available is rapidly increasing. Structure of these objects
is irregular and it is judicious to assume that a query on documents structure is
almost as important as a query on data. Moreover, manipulated data is not static
because it is constantly being updated. The problem of maintaining such sub-
structures then becomes as much of a priority as researching them because, eve-
ry time data is updated, found sub-structures could become invalid. In this pa-
per we propose a system, called A.U.S.M.S. (Automatic Update Schema Mi-
ning System), which enables us to retrieve data, identify frequent sub-structures
and keep up-to-date extracted knowledge after the sources have evolved.

1. Introduction

The search for knowledge in structured data has been extensively ad-
dressed in the few past years. Most of the proposed approaches concern
flat or highly structured structures. With the growing popularity of the
World Wide Web, the number of semi-structured documents produced
has quickly soared. In contrast to traditional database applications,
where we first describe the structure itself (e.g. the type or the schema)
and where we then create instances of these types, within semi-
structured data, data has no predefined schema, and each object holds
its own structure. In most cases, "on line" documents, such as the
HTML/XML, Latex, Bibtex, or SGML files are semi-structured.
Consequently, the structure of the objects is irregular and it is judicious
to think that a request on the structure of the documents is as significant
as a request on the data [22]. However in spite of this structural irregu-
larity, structural similarities among semi-structured objects can exist. It

2 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

is frequently noted that semi-structured objects which describe the
same type of information have similar structures. The analysis of such
implicit structures in semi-structured data can then provide significant
information : to optimize the evaluations of requests, to obtain general
information on the contents, to facilitate the integration of data resul-
ting from various information sources, to improve storage, to facilitate
the installation of index or views and to contribute to the classification
of semi-structured documents. Applications fields are very numerous
and gather, for example: bio-data processing, Web Content Mining and
Web Usage Mining. In this last case, frequent substructures discovered
in various users’ navigations constitute very useful knowledge to dy-
namically optimize the hypertext organization of a server or they can be
used by a proxy server in order to improve access to pages.
Recently, new approaches have been defined in this context. Very effi-
cient approaches were proposed to seek such substructures [4, 12, 18,
21, 24]. Unfortunately, the handled data are not static because new up-
dates are constantly carried out. The problem of keeping such substruc-
tures up to date becomes very significant then because, as updates are
carried out, the previously found sub-structures can become invalid.
In this article we are interested in the extraction of such substructures
with a detailed attention for their evolution. We propose a system, cal-
led AUSMS (Automatic Update Schema Mining System), which allows
the collection of data, the search for frequent substructures, and the
maintenance of extracted knowledge during evolution of sources.
The article is organized in the following way. In section 2 we present
the problems of searching frequent substructures and data maintenance.
Section 3 presents the functional architecture of the system by detailing
the various stages. We also present some experiments undertaken with
the prototype on real data files from the Web. A short related work on
the approaches of extracting and maintaining knowledge is proposed in
paragraph 4. Lastly, in paragraph 5, we conclude by evoking the conti-
nuations from this work.

2. Problem Statement

In this section, we give the formal definitions related to the problem of
searching frequent substructures in semi-structured objects.

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 3

2.1 Definitions

The goal of our proposal is to discover structural similarities among a
set of semi-structured objects. We will consider for the following
example a tree as an acyclic connected graph and a forest as an acyclic
graph. In our context a cyclic graph can be transformed into an acyclic
graph which in itself can be described by a tree while replicating the
divided sub nodes [22]. A forest is thus a collection of trees where each
tree is a connected component of the forest. An ordered tree is a rooted
tree in which the children of each node are ordered. The order is given
according to the type of application and it follows either the lexicogra-
phical order (set-of), or the imposed order (list-of). To express the dif-
ferences between orders, we will respectively use the notations "{}" to
represent a "set of" and "< >" to represent a "list of". In the rest of the
paper, we will assume that we are working with labelised and ordered
trees with a common root. Dealing with only rooted trees and two types
of orders enables us to address various types of traditional data set such
as the data from Web pages.

Example: Let us consider figure 1, where we have two types of order:
the first one is lexicographical (address, id) where address has the fol-
lowing child: city, street, zipcode, the second one is imposed by the ap-
plication: name, firstname (denoted by dotted arrows on figure 1). The
representation of the tree is as follows: [root: {address root: {city,
street, zipcode}, id: < name, firstname >}].

Fig. 1. Example of a tree

Let r be the root of tree T. Let x be a node of T. A node y from the sin-
gle path r to x is named ancestor of x and is written as y ≤k x, where k is
the y to x path length. If y is an x ancestor, then x is a y successor (each
node is at the same time his ancestor and his successor). If y ≤1 x, i.e. y

3

4 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

is a direct ancestor, then y is named parent of x and x is named child of
y.
Let T be a tree such that T = (N, B), where N is the labelised node set
and B is the edge set. Let a tree S=(Ns, Bs) be an imbricated tree in T,
written as S ≤ST T iff : Ns ≤ N and b=(nx, ny) ∈ Bs iff ny ≤1 nx, i.e. nx is
the ny child in T. If S ≤ST T then T is included in S or S is a T substruc-
ture.

Example: for example, the tree {address: {city, street, zipcode}, cate-
gory, name} is a subtree of {address: {city, street, zipcode}, category,
name, nearby: {category, name, price}}. However the tree {address:
{city, street, zipcode}, category, name, price} is not a subtree because
the element price is not on the same level in the graph as shown on fi-
gure 2.

Fig. 2. Sub tree inclusion

2.2 Problem

Let us consider DB a tree database also named structures, i.e. a forest
where each tree T is composed of an identifier and a structure included
in the forest. All the trees are sorted either by lexicographical order, or
by an imposed order. Figure 3 illustrates a database example. Let supp
(p) be the support value for a structure corresponding to the number of
occurrences of this structure in the database DB. In other words, the

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 5

support of a structure p is defined as the percentage of all the trees in
the database which contain p. A tree of the database contains p iff p is a
substructure of this tree. In order to decide whether a structure is fre-
quent or not, a value of minimal support is specified by the user (min-
Supp) so a structure is frequent if the condition supp (p)≥minSupp
holds.
Being given a tree database dB, the problem of searching for regulari-
ties in semi-structured data thus consists in finding all the maximum
structures which are in dB and whose support is higher than minSupp.

Trans_id Structure
t1
t2

t3
t4
t5
t6

[person :{identity :{address, name}}]
[person :{identity : { address : <street , zipcode >, company, director :
<name, firstname >, name}}]
[person : {identity : { address : <street, zipcode>, id }}]
[person :{identity : { address , company, name}}]
[person : { identity : {address, name}}]
[person : {identity : { address : < street , zipcode>, director : <name, firs-
tname >, name }}]

Fig. 3. A database illustration

Example: In order to illustrate the problem of mining regularities in
semi-structured data, let us consider the DB of figure 3. Let us suppose
that the support value specified by the user is 50%, i.e. to be frequent; a
substructure must appear in at least three trees. The only frequent struc-
tures in dB are the following ones: [identity: {address, name}] and
[identity: {address: < street, zipcode >}]. The first one appears in t1 as
well as in t4 and t5. On the other hand, the structure [identity: {address:
< street, zipcode >, director: < name, firstname >, name}] are checked
by t2 and t6 but is not frequent since the number of trees which hold this
structure is lower than the minimal support.
Let us now consider the evolution of the data sources. That is to say db
the database increment where new information is added or removed.
Let U=DB ∪ db, be the updated database holding all structures from
DB and db. Let LDB be the frequent substructures set in DB. The prob-
lem of keeping of up to date discovered knowledge is to seek the fre-
quent substructures in U, noted LU, by respecting the same support
value. Moreover, maintenance must take previously extracted knowl-
edge into account so as to avoid restarting retrieval algorithms from
scratch when the data are updated.

5

6 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

 3. The A.U.S.M.S. System

The aim of A.U.S.M.S. (Automatic Update Schema Mining System) is
to propose an environment of discovery and knowledge extraction for
semi-structured data from the recovery of information until the update
of extracted knowledge. These general principles illustrated by figure 4
are rather similar to those of a process of knowledge extraction. The
process can be broken into three principal phases. First of all starting
from rough semi-structured data files, a preprocessing is necessary to
eliminate the irrelevant data and to ensure their transformation. In the
second phase, a knowledge extraction algorithm is used to find the fre-
quent substructures. So as to allow the maintenance of extracted kno-
wledge, the information obtained at the knowledge discovery phase is
kept in a database. Lastly, the exploitation by the user of the results ob-
tained is facilitated by a frequent substructures visualization tool.

Fig. 4. General Architecture

The various introduced phases are detailed in the following paragraphs.

3.2 Data Pre-processing

From the sources, a process of extraction and transformation is carried
out and the extracted data are stored in a database. Within the frame-

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 7

work of Web data a process of filtering is carried out so as to eliminate
the data which are not useful for the analysis: image, sounds, video....
Moreover, according to the user point of view, the substructures which
are not of interest are also removed. For each extracted tree, we asso-
ciate an identifier which will be used as a primary key. Each extracted
structure is transformed before being stored. So as to preserve the le-
vels of overlaps of the various trees, the transformation is carried out in
the following way:

• Taking into account depth of overlap and complex type: each ex-
tracted element is considered separately, and an integer describing
the depth of overlap of this element in the complex structure, is
added to the element.

• Creation of simple elements sets lists: when two elements are on
the same level and if the first is directly followed by the second,
we gather them in the same set otherwise they are included in two
separate sets. The notion of order in "list-of", on the other hand, is
taken into account by creating new sets between elements. The
composite transaction, which results from the union of these sets
which have been created from the initial transactions, describes a
sequence of modified simple elements and the order of this se-
quence can then be perceived like a navigation in a "depth-first
manner" of the transactions.

At the end of this phase, the various structures are stored in a database.

Example: To illustrate the transformation phase, let us consider the
two following trees: t1 = {a, {c, {d, f}}} and t2 = {a, <e, {b,f},d,<,h
g>>,c}. For the illustration, each element is preceded respectively by
the letter S for "set-of" and the letter L for "list-of". In the first tree,
since all the simple elements appear in a set of values, the S symbol is
assigned to them. Concerning the transaction level of overlap, we as-
sign to each simple element its level compared to the highest set of the
hierarchy. The simple elements a, b, c, d and f are then transformed in
the following way: Sa1, Sc2, Sd3, Sf3. By affecting each simple element
in a new set and by traversing in-depth first manner the structure t1, we
obtain the following transformation: t1 = (Sa1) (Sc2) (Sd3 Sf3). By ap-
plying the same principle for t2, we obtain: t2 = (Sa1) (Le2) (Sb3 Sf3)
(Ld2) (Lh3) (Lg3) (Sc1). We can note that the modification of t2 respects
the in-depth first order of course. Let us examine in detail the part "list-

7

8 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

of" < g, h> of t2. As the elements g and h are ordered because of the
value "set-of", we consider that even if they interpose on the same le-
vel, and even if g follows h directly, they cannot be gathered in the
same set.

3.2 Knowledge Extraction

We showed in [11] that there was a bijection between the problems of
searching substructures such as we defined it and that of searching se-
quential patterns defined in [2]. To find the frequent structures in the
database obtained from the previous phase, we use an algorithm largely
inspired by those defined for the sequential patterns research and whose
general principles are explained below:

Extraction Algorithm
Input: minimal support (minSupp), a data base DB
Output: the set L of the maximum frequent structures which

check the
minimal support constraint and a graph G constituting the nega-

tive border
k = 1 ;
C1 = {{i}/ i ∈ set of atomic elements transformed by the prece-

ding phase}
while (Ck ≠ ∅) do

for each d ∈ D do VerifyCandidate (d,k) ;
Lk = { c ∈Ck/support (c) ≥ minSupp} ;
k += 1 ;
GeneratingCandidate (k) ;
GenerateBN(G,k) ;

return LDB where LDB is the union of j=0 at k of Lj

In a general way, the algorithm carries out a DB traverse to determine
which elements play a part frequently enough to be retained. From
these size 1 structures, which check the support, we generate size 2
structures which are named candidate structures. A new traverse on the
database makes it possible to retain all the candidate structures of size 2
of which the number of occurrences is higher than the minimal support.
Then, the algorithm continues in the following way: with each stage k,
the database is traversed to count the support of the candidates (Veri-

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 9

fyCandidate procedure). From the candidates of which the number of
occurrences is higher than the minimal support, the set of the frequent
structures is built: Lk. From this set, new candidates can be built (Gene-
ratingCandidate procedure). The algorithm stops when the generation
of the candidates procedure provides an empty set or that the Verify-
Candidate procedure turns over a set that does not contain frequent
substructures.
With an aim of improving the candidate generating procedure as well
as the management of candidate elements, we use a bitmap representa-
tion inspired by [3]. This structure offers the advantage of considerably
reducing the storage space and the ability to generate candidates easily.
Moreover it is particularly adapted in the search of long structures. At
the time of the search for candidates we also generate the negative bor-
der [17]. This is made up of all the structures which are not frequent but
whose substructures are frequent. This negative border will be used in
the following phase to take into account the data sources evolutions.

Example: Let us consider figure 5 representing the lattice associated
with the sample database. For a minimal support of 50 %, on level 1,
only the A1, A2 and B3 elements are frequent and can be used to create
more complex structures. We thus store in the negative border, the B2,
C3 and D2 elements. On level 2, only (A1) (A2), (A1) (B2), (A2 B2) are
frequent, we preserve in the negative border those of the preceding le-
vel elements which were frequent.

9

10 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

Fig. 5. Example of negative border

3.3 Taking into account of data sources evolutions

The negative border obtained in the previous stage enables us to take
into account the updates and to maintain extracted knowledge. Indeed,
to avoid applying the preceding algorithm again at the time of each up-
date, we store in the negative border the minimal information required
to quickly compute the frequent substructures. The taking into account
of data sources evolutions follows the general principles which are ex-
plained below:

Update algorithm
Input: S Set of data sources, BN the negative border, BNLimit,

LDB the set
of frequent structures, minSupp the minimal support specified

by the user
Output: the updated sources S, BN updated and LDB updated
while t ∈ delay do
foreach s ∈ S do
if snew ≠sold then

 updateDeltaRelation (∆s, opmaj, t)
enddo

∆S ←

if Validate(∆S, BNLimit) then
 Update (LDB)

From a time specified by the user (delay), the data sources are compa-
red (sold represents the initial data sources, i.e. during the last analysis
and snew represents the data being analyzed). This operation is carried
out in the AUSMS system by an agent which acts either in a temporal
way (fixed time difference since last update), or in a direct way (user
activation). The agent is in charge of comparing the data sources and
propagating the modifications. Thus, if the data source was modified,
the updates are stored as a ∆s set which manages the history of the mo-
difications (UpdateDeltaRelation procedure). This procedure, inspired

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 11

from the delta relations of the active rules, makes it possible to reflect
the side effects of the modifications of the structure, i.e. it contains only
the side effect resulting from the modifications [7].

 From the information contained as ∆s set, a comparison is carried out,
by the procedure Validate (∆S, BNLimit), with the elements contained in
the negative border which are likely to change quickly, i.e. those which
can become frequent or not, up to one element. This procedure also ta-
kes into account the addition or the suppression of new sources which
generate of course a modification of the support value. If one of the
conditions is then verified the modifications are brought directly into
the negative border to update the set of the frequent structures (proce-
dure Update (LDB)). Due to a lack of space, we do not detail this algo-
rithm here (the interested reader can refer to [13]) but we give the gene-
ral principles of them below.
 The first stage consists in deferring the modifications in the negative
border as soon as structures are added or removed. Indeed, such an ope-
ration causes the calculation of the support value to be modified for the
whole base. For each structure, we thus examine the value in the nega-
tive border and if this one is lower than the support, the branches of the
tree resulting from this structure are pruned. Otherwise the other ele-
ments are re-examined and the negative border is updated according to
their frequency. When the operations consist of the addition or the re-
moval of elements in existing structures, we analyze the negative bor-
der while starting with level 1 so as to verify how frequently the ele-
ments appear. If elements become frequent the various levels of the
lattice are built recursively with those which were already frequent. If
frequent elements become infrequent, the various branches of the latti-
ces resulting from the substructure are pruned. At the end of this phase,
the frequent elements are extracted and LDB is updated.

3.4 Visualization

Whereas previous modules are charged to provide and maintain fre-
quent substructures, this module makes it possible to visualize these
structures and offers a formalism to describe them. For that, we use,
initially, GraphXML [10] which is a graph description language in
XML especially designed for drawing and display systems. Graph-
XML, in addition to providing a language of description makes it pos-

11

12 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

sible for the user to add much information with the handled graphs:
date, color of the arcs, semi-structured information (for an arc, graph,
node). In the second place, so as to visualize at the same time the ex-
tracted structures but also their appearance in the data sources, we use
"Graph Visualization Framework" [14] which proposes a set of java
classes to visualize and handle the structures. This system, via an appli-
cation nameded Royère, allows the display of the structures described
by the GraphXML format.

Fig. 6. Examples of extracted structures

Let us consider figure 6 which represents screenshots of visualized
structures. We find at the left a frequent structure resulting from the
frequent substructures search with at least 85% of a history of ships da-
tabase displayed via Royère. On the right-hand side we have the same
description within the GraphXML format.

3.4 Illustration

To present the usefulness of our approach, we illustrate below an appli-
cation on the search for frequent substructures in a set of semi-
structured documents. The data used result from a Canadian database
located at the address
http://daryl.chin.gc.ca:8001/basisbwdocs/sid/title1f.html. This database
was created to meet the needs of the managers of the cultural resources
in charge of information on archaeological wrecks. It contains informa-
tion on ships which were registered in Canada or which navigate in Ca-
nadian water. It is divided into five sub-databases: Ships, Captains,
Owners, Naval manufacturers, Travels. For each one of these databa-

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 13

ses, different structures exist. In a general way, the information contai-
ned in the database has a depth varying from 2 to 10. In the database,
much of the information is incomplete, i.e. many of the fields are left
empty.
To integrate this base into our prototype we initially wrote capable ana-
lyzers, after sources recovering, to convert this one into a database
structure to which we can apply the principles presented in section 3.
Thus, for a support of 85 %, we found 5 maximum size frequent subs-
tructures (one frequent sub-structure is presented in figure 6). For a
support of 100% on this same database there is only one maximum size
frequent substructure: [Navire :{ClasseNavire ,Construction : {Nu-
mEnr}, DescriptionNavire{TypePoupe}
,NumCoque,NumMarineMilitaire}]. This schema represents informa-
tion available for the totality of the ships. We learn for example that for
the captains, only information relating to the name is available for the
totality of those. It is only for one support of 60% that we will obtain
two different maximum frequent sub-structures: [Capitaine :{ Nom,
Pays}] and [Capitaine : {Nom, NumeroCertificat}]. The totality of in-
formation is indicated only for a support of 25%. To test the update of
knowledge according to the modifications of the data sources, we simu-
lated the addition with certain sources of new information such as for
example the knowledge of the countries of origin of the captains. After
update of the negative border elements, we found only one new maxi-
mum frequent substructure for a support of 60%: [Capitaine :{ Nom,
Pays, NumeroCertificat }].

4. Related work

To the best of our knowledge, there is little research concerning the
structural regularities in large data bases. Nevertheless, our approach is
very close to that proposed in [20, 21] for the search for structural asso-
ciation in semi-structured data. The authors propose a very effective
approach and solutions based on a new representation of the search
space. Moreover, by proposing the optimizations based on strategies of
prunings, they improve considerably the stage of generation of the can-
didates. In the same manner, the approach suggested in [18] is rather
similar to the previous approach and uses a particular tree called tag
tree patterns. In [4], the authors propose an algorithm called Find-Freq-

13

14 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

Trees which also uses an approach based on a search by level as in the
algorithm Apriori [1] and extends the proposal by improving the tech-
nique of enumeration defined in [5] so as to discovering substructures
in long sequences. Finally in [24], the author proposes two algorithms
TreeMinerH and TreeMinerV for the search for frequent trees in a fo-
rest. TreeMinerH takes again the principle of the course in width of A-
priori by improving the generation and counting of the candidates using
the classes of equivalences, of a structure of prefixed tree and "scope
list". Whereas in TreeMinerV, it proposes to see a tree like a vertical
structure and associates this vision with a method of very effective in-
depth course for the search for long sequences. In these two algorithms,
the generation and the counting of the candidates are carried out by set
operations on the "scope list", the prefixed structure makes it possible
to reduce the number of transactions to be traversed in the database. In
addition to the taking into account of the evolutions, our approach has
however some differences. We are interested in the search for all the
structures included in the base whereas they are interested only in
search of tree-expression which are defined like trees going from the
root to a final leaf of the tree. With this definition, they cannot find re-
gularities of the form [identity : {address : <street, zipcode>}] which
would be frequent but would be included in a longer transaction which
is, itself, not frequent. The search algorithm for substructure used is
based on a representation by vectors of bits which also enable us to
work on long structures. Other search methods for structures of tree or
graphs are also proposed but are not directly applicable to the excava-
tion of semi-structured data. Thus, the authors of [23] propose an algo-
rithm of discovery of approximate common structures and apply it to
genomic applications discoveries. Dehaspe and al.[9] present an effec-
tive algorithm to solve the problem of frequent substructures discove-
ries in labellized graphs. Their approach is based on the use of ILP. In
[15], an algorithm is also proposed to extract patterns from a directed
graph.
With regard to the maintenance of the extracted frequent substructures,
there does not exist, to our knowledge, works in this field. We showed
that the search for substructures could approach that of sequential pat-
terns. In the continuation of our work, we will thus examine the work
carried out around this field. Near to the sequential patterns and the ba-
sis of many approaches, [8] proposes an algorithm called FUP, for an
excavation of incremental data in the case of the rules of associations.

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 15

However, the problems of incremental updates within the framework of
the sequential patterns are much more complex than that of the rules of
associations insofar as the search space, i.e. the number of combina-
tions is much larger. In [19], the authors propose an algorithm called
ISM (Incremental Sequence Mining) which allows an update of the
frequent sequences when new customers and new transactions are ad-
ded to the data base. The suggested approach builds a lattice of se-
quence which contains all the frequent and negative border elements
[17]. When new information arrives, they are added to this lattice. The
problem of this approach is obviously the increasing size of the nega-
tive border which in our case is minimized, because based on vectors of
bits. In [16], the ISE (Incremental Sequence Extraction) algorithm was
proposed for the search for frequent patterns, it generates candidates in
the entire database by attaching the sequences of the incremental data-
base to those of the original base. This approach avoids keeping the se-
quences contained in the negative border and the recalculation of these
sequences when the initial data base has been updated. However, by not
preserving the negative border, it is necessary to more often traverse
the base to seek the candidates. In [25] the algorithm proposed uses at
the same time the concepts of negative border of the original data base
and the concepts of suffixes and prefixes in the contrary of ISE. To
control the size of this negative border, they introduce a minimum sup-
port for these elements thus reducing its size. Moreover this algorithm
realizes an extension by prefix and suffix (using the negative border).
The problem of this algorithm lies in the choice of the value of the mi-
nimum support for the negative border.

5. Conclusion

In this article, we proposed a functional architecture, AUSMS, of a sys-
tem of extraction and maintenance of knowledge in bases of semi-
structured objects. The originality of the approach lies in the implemen-
tation of effective algorithms to extract the frequent substructures in the
base from semi-structured objects but also in the taking into account of
the handled data. The use of bit vectors for the extraction and the ma-
nagement of the negative border also enable us to optimize the storage
and the search of the structures. The tests which we carried out on ba-
ses resulting from the Web showed that the adopted approach was very

15

16 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

useful to help the end-user in the analysis of the various handled ele-
ments and offered solutions for the search for general information on
the data sources, to contribute to the interrogation of bases containing
semi-structured data and to help build views and indexes.
We are currently studying the application of AUSMS in data manage-
ment resulting from Web servers (Web Mining Use) where we wish to
analyze the complete behavior of the users. Even if currently, an input
in a file "access log" is automatically added each time a request for a
source reaches the server, it does not record certain behaviors of the
user such as a frequent return or the recharging of a page when the pa-
ges are hidden by the navigator or Proxy. For example, the fact that a
user is obliged to go back regularly can indicate poor design of the na-
vigation of the server and such information is significant to improve the
design of a site. For that, we developed a local user application which
stores the user’s behavior to transmit it to a database. The idea thus
consists in coupling the information obtained in the file log of the navi-
gator with the data base to be used as input with the process of
AUSMS. Another research orientation that we are currently carrying
out relates to the parallelization of the algorithms of extraction so as to
optimize the search of the frequent substructures.

6. References

[1] R. Agrawal, T. Imielinski, and A. swami, “Mining Association Rules between Sets of Items
in Large Databases “, Proceedings of SIGMOD’93, pp. 207-216, May 1993.

[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns”, Proceedings of International

Conference on Data Engineering (ICDE'95), pp. 3-14, Tapei, Taiwan, March 1995.

[3] J. Ares, J. Gehrke, T. Yiu and J. Flannick, “ Sequential Pattern Using Bitmap Representa-

tion “, Proceedings of PKDD’02, Edmonton, Canada, July 2002.

[4] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto and S. Arikawa, “Efficient subs-

tructure discovery from Large Semi-structured Data”, Proceedings of the International
Conference on Data Mining (ICDM’02), Washington DC, USA, April 2002.

[5] R. J. Bayardo Jr, “Efficiently Mining Long Patterns from Databases”, Proceedings of

SIGMOD’98, pp. 85-93, Seattle, USA, June 1998.
[7] S. Chawathe, S. Abiteboul and J. Widom, “Representing and Querying Changes History in

Semistructured Data ", Proceedings of ICDE’98, Orlando, USA, February 1998.

AUSMS: An environment for frequent sub-structures extraction in a semi-structured object
collection 17

[8] D. W. Cheung, J. Han, V. Ng and C. Y. Wong, “Maintenance of Discovered Association
Rules in Large Databases: an Incremental Update Technique”, Proceedings of ICDE’96, pp.
116-114, New Orleans, USA, February 1996.

[9] L. Dehaspe, H. Toivonen and R. D. King, “Finding Frequent Substructures in Chemical-

compounds”, Proceedings of KDD’98, pp. 30-36, New York, USA, August 1998.

[10] I. Herman and M.S. Marshall, “GraphXML An XML based graph interchange format”,

Centre for Mathematics and Computer Sciences (CWI), Technical Report Amsterdam, 2000.

[11] P.A. Laur, F. Masseglia and P. Poncelet, “A General Architecture for Finding Structural

Regularities on the Web”, Proceedings of the International Conference on Artificial Intelli-
gence (AIMSA'00), September 2000.

[12] P.A. Laur et P. Poncelet. “AUSMS : un environement pour l’extraction de sous-structures

fréquentes dans une collection d’objets semi-structurées (in french)”. Actes des Journées
d’Extraction et Gestion des Connaissances (EGC’03), Lyon, France, 2003.

[13] P.A. Laur, « Mise à jour des motifs séquentiels : une approche basée sur la bordure néga-

tive » , rapport interne, LIRMM, Montpellier, 2002.

[14] M. Marshall, I. Herman and G. Melancon, “An Object-oriented Design for Graph Visuali-

zation”, Technical Report, Centre for Mathematics and CS, Amsterdam, 2000.

[15] T. Matsuda, T. Horiuchi, H. Motoda, T. Washio, K. Kumazawa and N. Arai. “Graph Ba-

sed Induction for General Graph Structured Data”. In Proceedings of the DS’99 Conference,
pp. 340-342, 1999.

[16] F. Masseglia, P. Poncelet and M. Teisseire, “Incremental Mining of Sequential Patterns in

Large Database”, Actes des 16ièmes Journées Bases de Données Avancées (BDA'00), Blois,
France, Octobre 2000.

[17] H. Mannila and H. Toivonen. « On an Algorithm for Finding all Interesting Sequences ».

In Proceedings of the 13th European Meeting on Cybernetics and Systems Research, Vienna,
Austria, April 1996.

[18] T. Miyahara, T. Shoudai, T. Uchida, K. Takahashi and H. Ueda, “Discovery of Frequent

Tree Structured Patterns in Semistructured Web Documents “, Proceedings of PAKDD’01,
pp. 47-52, Hong Kong, China, April 2001.

[19] S. Parthasarathy and M. J. Zaki, “Incremental and Interactive Sequence Mining”, Procee-

dings of the Conference on Information and Knowledge Management (CIKM’99), pp. 251-
258, Kansas City, USA, November 1999.

[20] K. Wang and H. Liu, ”Schema Discovery for Semi-structured Data “, Proceedings of the

International Conference on Knowledge Discovery and Data Mining (KDD’97), pp. 271-
274., Newport Beach, USA, August 1997.

[21] K. Wang and H. Liu, “Discovering Structural Association of Semistructured Data”, In

IEEE Transactions on Knowledge and Data Engineering , pp. 353-371, January 1999.

17

18 P.A Laur 1 – M. Teisseire 1 – P. Poncelet 2

[23] J.TL. Wang, B.A. Shapiro, D. Shasha, K. Zhang and C.Y Chang, “Automated Discovery
Structures” In Proceedings of KDD’96, pp. 70-75, 1996

[24] M. Zaki, “Efficiently Mining Frequent Trees in a Forest “, Proceedings of SIGKDD’02,

Edmonton, Canada, July 2002.

 [25] Q. Zheng, K. Xu, S. Ma and W. Lu, “The Algorithms of Updating Sequential Patterns”,

Proceedings of the International Conference on Data Mining (ICDM’02), April 2002.

