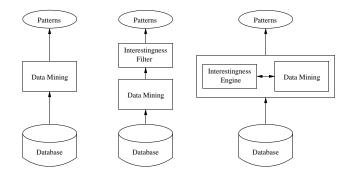
Towards Unexpected Sequential Patterns

Haoyuan Li

LGI2P - École des Mines d'Alès LIRMM - Université Montpellier II

3 July 2007

< ∃⇒


< ∃⇒

Outline

- 2 Related Work
- 3 Mining Unexpected Sequential Patterns
- 4 Conclusions and Perspectives

Frequent Pattern Mining and Interestingness Measure

- Finding all frequent patterns
- **2** Finding all interesting frequent patterns
- Sinding all interesting patterns (even not frequent)

• • • • • • • • • • • • •

Mining Sequential Patterns

Computational Task

• Given a data set of sequences (or a transactional database), find maximal sequences that satisfy the given threshold minimal support σ .

Example

• With $\sigma = 0.5$, we find that 60% of customers who bought a iBook will buy an iPhone later.

Problem

Which one is more interesting?

- **60%** of customers who buy a iBook will buy an iPhone later.
- 2% of customers who buy a iBook will buy a Windows Mobile later.

Unexpected Sequence Mining

- A new field in the sequence mining domain
- Depends on domain knowledge and semantics
- Widely applicable

Outline

2 Related Work

Interestingness Measures for Data Mining

Unexpected Association Rules

3 Mining Unexpected Sequential Patterns

Interestingness Measures for Data Mining Unexpected Association Rules

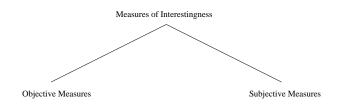
Interestingness Measures for Data Mining

Haoyuan Li Towards Unexpected Sequential Patterns

(日) (同) (三) (三)

э

References


Interestingness Measures for Data Mining Unexpected Association Rules

- Abraham Silberschatz and Alexander Tuzhilin. On subjective measures of interestingness in knowledge discovery. In KDD, pages 275–281, 1995.
- Abraham Silberschatz and Alexander Tuzhilin. What makes patterns interesting in knowledge discovery systems. IEEE Trans. Knowl. Data Eng., 8(6), 1996.
- Ken McGarry. A survey of interestingness measures for knowledge discovery. Knowl. Eng. Rev., 20(1):39–61, 2005.

・ロト ・同ト ・ヨト ・ヨト

Interestingness Measures for Data Mining Unexpected Association Rules

Classification of Interestingness Measures

A (1) > A (1) > A

Interestingness Measures for Data Mining

Objective Measures

Principal

- Depend on the structure of patterns.
- Based on statistics or probability approaches.

liBook

Example

- Association rule: $iBook \rightarrow iPhone$ • Support: $\frac{|iBook \cup iPhone|}{|AII | Purchases|}$ ● Confidence: |*iBook* ∪ *iPhone*|

Interestingness Measures for Data Mining Unexpected Association Rules

Subjective Measures

Principal

- Depend on the class of users.
- Based on knowledge/belief systems and semantics.

Example

- Domain knowledge: *iPhone* $\Rightarrow \neg$ *Windows Mobile*
- User belief: $iBook \rightarrow iPhone$
- Unexpected rule: *iBook* → *Windows Mobile*

Interestingness Measures for Data Mining Unexpected Association Rules

Belief-Driven Unexpectedness

Definition

- A *belief system* is a set of domain knowledge related user defined constraints.
- The *unexpectedness* is the violations between patterns and beliefs.

Classification of Beliefs

- Hard belief
- Soft belief

▲ □ ▶ ▲ □ ▶ ▲

Hard Belief

Interestingness Measures for Data Mining Unexpected Association Rules

Principal

- A hard belief cannot be changed with new evidences.
- Violations mean unexpected data.

Example

- Hard belief: *STOP* → *Car stops*
- New evidence: $STOP \rightarrow Car \ passes$
- Action: Alarm?

Soft Belief

Principal

- A *soft belief* is measured by a *degree* which can be changed with new evidences.
- The change of degree is performed by user-defined criteria.
- The interestingness is measured by the change of the degree.

Example

- Soft belief: $iBook \rightarrow iPhone$, degree = 0.9
- New evidence: $iBook \rightarrow Windows Mobile$, confidence = 0.3
- Action: $iBook \rightarrow iPhone$, degree = 0.8

(日) (同) (三) (三)

Interestingness Measures for Data Mining

Interestingness Measures for Data Mining Unexpected Association Rules

Unexpected Association Rules

э

References

Interestingness Measures for Data Mining Unexpected Association Rules

- Balaji Padmanabhan and Alexander Tuzhilin. Unexpectedness as a measure of interestingness in knowledge discovery. Decision Support Systems, 27:303–318, 1999.
- Balaji Padmanabhan and Alexander Tuzhilin. On characterization and discovery of minimal unexpected patterns in rule discovery. IEEE Trans. Knowl. Data Eng., 18(2):202–216, 2006.

A (1) > A (1) > A

Interestingness Measures for Data Mining Unexpected Association Rules

Unexpected Association Rule

Definition

- Belief $b = X \rightarrow Y$ (given by domain experts).
- Rule $p = A \rightarrow B$ is unexpected to b:
 - B = CONTR(Y) (logical contradiction in semantics);
 - **2** If $A \cup X \to Y$ does not hold given confidence/support;
 - **(3)** If $A \cup X \rightarrow B$ holds given confidence/support.

- 4 同 2 4 日 2 4 日 2

Interestingness Measures for Data Mining Unexpected Association Rules

The ZoominUR Algorithm

Input : \mathcal{B} , \mathcal{D} , σ and δ Output: Itemsets for each belief $b \in \mathcal{B}$ 1 foreach $b : (X \to Y) \in \mathcal{B}$ do 2 Find all itemsets $\mathcal{I}_C = \{\mathcal{I} | X \cup CONTR(Y) \subset \mathcal{I}\}$ from \mathcal{D} with respect to σ , by the *a priori* approach;

3 end

```
4 foreach \mathcal{I} \in \mathcal{I}_C do

5 foreach b : (X \to Y) \in \mathcal{B} do

6 a := CONTR(b);

7 Output all rules (x \setminus a) \to a, x \subseteq \mathcal{I} with respect to \delta;

8 end
```

9 end

A (1) > A (1) > A

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Outline

2 Related Work

3 Mining Unexpected Sequential Patterns

- Formal Models of Sequence
- Belief Based Unexpected Sequential Patterns
- Unexpected Sequential Pattern's Occurrence Problem
- The USP Approach

/⊒ > < ∃ >

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Formal Models of Sequence

(日) (同) (三) (三)

э

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Item, Itemset and Sequence

Definition (Item)

Given a set of distinct attributes, an *item* is an attribute, denoted by **i**. We use A, B, C, \ldots for describing individual items.

Definition (Itemset)

An *itemset* $\mathcal{I} = (\mathbf{i}_1 \mathbf{i}_2 \dots \mathbf{i}_m)$ is an unordered collection of items.

Definition (Sequence)

A sequence $\mathbf{s} = \langle \mathcal{I}_1 \mathcal{I}_2 \dots \mathcal{I}_k \rangle$ is an ordered list of itemsets.

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Segment of Sequence

Definition

$$\mathbf{s} = \langle \mathcal{I}_1 \mathcal{I}_2 \dots \mathcal{I}_m \rangle$$
$$\mathbf{s}' = \langle \mathcal{I}'_1 \mathcal{I}'_2 \dots \mathcal{I}'_n \rangle$$

If there exist integers $1 \leq i_1 < i_2 < \ldots < i_m \leq n$ such that

$$\mathcal{I}_1 = \mathcal{I}'_{i_1}, \mathcal{I}_2 = \mathcal{I}'_{i_2}, \dots, \mathcal{I}_m = \mathcal{I}'_{i_m},$$

then sequence \mathbf{s} is a *segment* of sequence \mathbf{s}' .

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Inclusion of Sequences

Definition

$$\mathbf{s} = \langle \mathcal{I}_1 \mathcal{I}_2 \dots \mathcal{I}_m \rangle$$
$$\mathbf{s}' = \langle \mathcal{I}'_1 \mathcal{I}'_2 \dots \mathcal{I}'_n \rangle$$

If there exist integers $1 \leq i_1 < i_2 < \ldots < i_m \leq n$ such that

$$\mathcal{I}_1 \subseteq \mathcal{I}'_{i_1}, \mathcal{I}_2 \subseteq \mathcal{I}'_{i_2}, \dots, \mathcal{I}_m \subseteq \mathcal{I}'_{i_m},$$

then sequence \mathbf{s} is included in sequence \mathbf{s}' , denoted by

$$\mathbf{s} \sqsubseteq \mathbf{s}'$$
.

< ロ > < 同 > < 三 > < 三

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Bordered Inclusion of Sequences

Definition

$$\mathbf{s} = \langle \mathcal{I}_1 \mathcal{I}_2 \dots \mathcal{I}_m \rangle$$
$$\mathbf{s}' = \langle \mathcal{I}'_1 \mathcal{I}'_2 \dots \mathcal{I}'_n \rangle$$

If there exist integers $1 < i_2 < \ldots < i_{m-1} < n$ such that

$$\mathcal{I}_1 \subseteq \mathcal{I}_1', \mathcal{I}_2 \subseteq \mathcal{I}_{i_2}', \dots, \mathcal{I}_{m-1} \subseteq \mathcal{I}_{m-1}', \mathcal{I}_m \subseteq \mathcal{I}_n'$$

then sequence \mathbf{s} is bordered included in sequence \mathbf{s}' , denoted by

$$\mathbf{s} \sqsubseteq_{\perp}^{\top} \mathbf{s}'.$$

< ロ > < 同 > < 三 > < 三

(日) (同) (三) (三)

• $\mathbf{s}_1 \sqsubseteq^\top_{\perp} \mathbf{s}_2, \, \mathbf{s}_1 \nvDash^\top_{\perp} \mathbf{s}_3$

• $\mathbf{s}_1 \sqsubseteq \mathbf{s}_2, \ \mathbf{s}_1 \sqsubseteq \mathbf{s}_3$

Example

- **s**₂ is a segment of **s**₃

Example of Segment and Inclusions

- $\mathbf{s}_1 = \langle (A)(B)(C) \rangle$

 $\mathbf{s}_2 = \langle (AD)(EF)(BD)(EF)(CD) \rangle$

 $\mathbf{s}_3 = \langle (EF)(AD)(EF)(BD)(EF)(CD)(EF) \rangle$

Related Work

Mining Unexpected Sequential Patterns Conclusions and Perspectives The USP Approach

Formal Models of Sequence

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Ordered Relations Between Subsequences in a Sequence

Definition $(\mapsto,\mapsto^*,\mapsto^n)$

- $s_j \mapsto s_k$: s_j is directly followed by s_k .
- $\mathbf{s}_j \mapsto^* \mathbf{s}_k$: \mathbf{s}_j is followed by \mathbf{s}_k .
- s_j →ⁿ s_k: s_j is followed by s_k and between s_j and s_k there must be n itemsets.

Definition $(\not\mapsto, \not\mapsto^*, \not\mapsto^n)$

- $\mathbf{s}_j \not\mapsto \mathbf{s}_k$: \mathbf{s}_j is not directly followed by \mathbf{s}_k .
- $\mathbf{s}_j \not\mapsto^* \mathbf{s}_k$: \mathbf{I}_j is not followed by \mathbf{s}_k .
- s_j ⊬ⁿ s_k: if s_j is followed by s_k, then between s_j and s_k there must not be n itemsets.

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Example of Ordered Relations

Example

$$\begin{split} \mathbf{s} &= \langle (A)(BEF)(ACD)(CEF)(AD) \rangle \\ \mathbf{s}_1 &= \langle (A)(EF) \rangle, \mathbf{s}_2 &= \langle (A)(D) \rangle \\ \mathbf{s}_3 &= \langle (F)(A) \rangle, \mathbf{s}_4 &= \langle (D) \rangle, \mathbf{s}_5 &= \langle (A)(B) \rangle \end{split}$$

•
$$\mathbf{s}_1 \mapsto \mathbf{s}_1, \ \mathbf{s}_1 \mapsto \mathbf{s}_4, \ \mathbf{s}_1 \mapsto^* \mathbf{s}_3, \ \mathbf{s}_1 \mapsto^2 \mathbf{s}_4$$

• $\mathbf{s}_1 \not\mapsto \mathbf{s}_3, \ \mathbf{s}_1 \not\mapsto^* \mathbf{s}_5, \ \mathbf{s}_2 \not\mapsto^2 \mathbf{s}_4$

Introduction Formal Models of Sequence Related Work Belief Based Unexpected Sequential Patterns Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem Conclusions and Perspectives The USP Approach

Belief Based Unexpected Sequential Patterns

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Belief of Sequence

Definition

A belief *b* of sequence **s** is a pair (p, C), where *p* is a rule between two subsequences $\mathbf{s}_{\alpha}, \mathbf{s}_{\beta} \sqsubseteq \mathbf{s}$ and *C* is a set of constraints:

$$p: \mathbf{s}_{\alpha} \models \mathbf{s}_{\beta}$$

$$C: \{\tau, \eta\}$$

$$\tau: n \{<, \leq, =, \neq, \geq, >\} N (N \in \mathbb{N}), n = 0, n = *$$

$$\eta: \{\mathbf{s}_{\gamma} | \mathbf{s}_{\gamma} \not\sim \mathbf{s}_{\beta}\}.$$

denoted as $b = [\mathbf{s}_{\alpha}; \mathbf{s}_{\beta}; \mathbf{s}_{\gamma}; \tau]$. For any two beliefs b_i and b_j , we have:

$$\mathbf{s}_{\alpha i} \sqsubseteq \mathbf{s}_{\alpha j} \Longrightarrow \mathbf{s}_{\gamma i} \not\sqsubseteq \mathbf{s}_{\beta j}.$$

イロン イボン イヨン イヨン

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Unexpected Sequence

Definition

Given a belief $b = [\mathbf{s}_{\alpha}; \mathbf{s}_{\beta}; \mathbf{s}_{\gamma}; \tau]$, a sequence **s** is *unexpected* if one of the following conditions (*violations*) is satisfied:

9
$$\tau$$
 : $n = *$ and $\mathbf{s}_{\alpha} \sqsubseteq \mathbf{s}$ (called α violation);

2
$$\tau : n \neq *$$
 and $\mathbf{s}_{\alpha}, \mathbf{s}_{\beta} \sqsubseteq \mathbf{s}, \mathbf{s}_{\alpha} \mapsto^{\tau'} \mathbf{s}_{\beta}$, where τ' is incompatible to τ (called β violation);

3
$$\mathbf{s}_{\alpha}, \mathbf{s}_{\gamma} \sqsubseteq \mathbf{s}$$
 and $\mathbf{s}_{\alpha} \mapsto^{\tau} \mathbf{s}_{\gamma}$ (called γ violation).

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Example of Unexpected Sequences

Example

Given beliefs

$$b_1 = [(A)(B); (C)(D); (E)(F); n = *], b_2 = [(A)(B); (C)(D); (E)(F); n = 1].$$

• $\mathbf{s}_1 = \langle (A)(B)(C)(F) \rangle$ is unexpected to b_1 (α violation);

• $\mathbf{s}_2 = \langle (A)(B)(C)(D) \rangle$ is unexpected to b_2 (β violation);

• $\mathbf{s}_3 = \langle (A)(B)(G)(E)(F) \rangle$ is unexpected to b_2 (γ violation);

• $\mathbf{s}_4 = \langle (A)(B)(G)(C)(D) \rangle$ is expected to both b_1 and b_2 .

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Unexpected Sequential Pattern

Definition

Given an unexpected sequence **s** corresponding to belief $b = [\mathbf{s}_{\alpha}; \mathbf{s}_{\beta}; \mathbf{s}_{\gamma}; \tau]$, a segment $\mathbf{s}_{u} \sqsubseteq \mathbf{s}$ is an *unexpected sequential pattern* if:

•
$$\mathbf{s}_{\alpha} \sqsubseteq_{\perp}^{\top} \mathbf{s}_{u}$$
 (for α violation); or

$${f 2}$$
 ${f s}_{\alpha}{f s}_{\beta} \sqsubseteq_{\perp}^{\top} {f s}_{u}$ (for β violation); or

$$3 \mathbf{s}_{\alpha} \mathbf{s}_{\gamma} \sqsubseteq_{\perp}^{\top} \mathbf{s}_{u}$$
 (for γ violation).

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Example of Unexpected Sequential Patterns

Example

Given a belief b = [(A)(B); (C)(D); (E)(F); n = 2].

- s₁ = ⟨(A)(BD)(DF)(CE)(D)⟩ is an unexpected sequence and ⟨(A)(BD)(DF)(CE)(D)⟩ is an unexpected sequential pattern;
- s₂ = ⟨(C)(AC)(BF)(BG)(HF)(CE)(FGH)(E)⟩ is an unexpected sequence and ⟨(AC)(BF)(BG)(HF)(CE)(FGH)⟩ is an unexpected sequential pattern.

Introduction Formal Models of Sequence Related Work Belief Based Unexpected Sequential Patterns Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Unexpected Sequential Pattern's Occurrence Problem

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Maximal Occurrence Bordered Inclusion

Definition

Given sequences $\mathbf{s} = \langle \mathcal{I}_1 \dots \mathcal{I}_n \rangle$, $\mathbf{s}' = \langle \mathcal{I}'_1 \dots \mathcal{I}'_m \rangle$, $\mathbf{s}'' = \langle \mathcal{I}''_1 \dots \mathcal{I}''_k \rangle$ that $\mathbf{s}'' \sqsubseteq_{\perp}^{\top} \mathbf{s}'$ and $\mathbf{s}' \sqsubseteq \mathbf{s}$. If for any i > 1 that $\mathcal{I}'_1 \subseteq \mathcal{I}_i$ there does not exist integer j < i that $\mathcal{I}''_1 \subseteq \mathcal{I}_j$, and if for any i > 1 that $\mathcal{I}'_m \subseteq \mathcal{I}_i$ there does not exist integer j > i that $\mathcal{I}''_k \subseteq \mathcal{I}_j$, then \mathbf{s}' is the maximal occurrence bordered inclusion sequence of \mathbf{s}'' in \mathbf{s} .

- 4 同 2 4 日 2 4 日 2

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Example of Maximal Occurrence Bordered Inclusion

Example

$$\mathbf{s}_1 = \langle (A)(B)(C) \rangle \\ \mathbf{s}_2 = \langle (B)(A)(AD)(BD)(CD)(C)(B) \rangle$$

The maximal occurrence bordered inclusion sequence of \boldsymbol{s}_1 in \boldsymbol{s}_2 is

 $\langle (A)(AD)(BD)(CD)(C) \rangle$.

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Minimal Occurrence Bordered Inclusion

Definition

Given sequences $\mathbf{s} = \langle \mathcal{I}_1 \dots \mathcal{I}_n \rangle$, $\mathbf{s}' = \langle \mathcal{I}'_1 \dots \mathcal{I}'_m \rangle$, $\mathbf{s}'' = \langle \mathcal{I}''_1 \dots \mathcal{I}'_k \rangle$ that $\mathbf{s}'' \sqsubseteq_{\perp}^{\top} \mathbf{s}'$ and $\mathbf{s}' \sqsubseteq \mathbf{s}$. If any $\mathbf{s}''' \sqsubseteq \mathbf{s}'$ and $\mathbf{s}'' \sqsubseteq_{\perp}^{\top} \mathbf{s}'''$ imply $|\mathbf{s}'''| = |\mathbf{s}''|$, then \mathbf{s}' is the *minimal occurrence bordered inclusion* sequence of \mathbf{s}'' in \mathbf{s} .

▲□ ► < □ ► </p>

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Example of Minimal Occurrence Bordered Inclusion

Example

$$\begin{aligned} \mathbf{s}_1 &= \langle (A)(B)(C) \rangle \\ \mathbf{s}_2 &= \langle (B)(A)(AD)(BD)(CD)(C)(B) \rangle \end{aligned}$$

The minimal occurrence bordered inclusion sequence of \boldsymbol{s}_1 in \boldsymbol{s}_2 is

 $\langle (AD)(BD)(CD) \rangle$.

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Bordered Inclusion and Unexpected Sequential Pattern

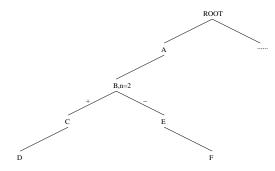
Maximal Occurrence Bordered Inclusion

- Maximizes the length of unexpected sequential pattern
- Requires less computational resources

Minimal Occurrence Bordered Inclusion

- Minimizes the length of unexpected sequential pattern
- Requires more computational resources

▲ @ ▶ ▲ @ ▶ ▲


The USP Approach

<ロ> <同> <同> < 回> < 回>

э

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Prefix Tree Representation of Belief System

b: (p, C) $p: (A)(B) \models (C)(D)$ $C: {\tau, \eta}$ $\tau: n = 2$ $\eta: {(E)(F)}$

▲ □ ▶ ▲ □ ▶ ▲

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

USP: Unexpected Sequential Pattern Mining

Algorithm USP⁻F

Find all unexpected sequential patterns with respect to given belief system.

Algorithm USP⁺F

Find all unexpected sequential patterns with respect to given belief system, and all frequent sequential patterns with respect to given minimal support.

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

The USP⁻F Algorithm

Input

- B: a belief system (candidate sequences) represented as a prefix tree
- \mathcal{S} : a database of sequences

Output

• $\mathcal{T}\colon$ Prefix tree containing all unexpected sequential patterns with respect to $\mathcal B$

• • • • • • • • • • • • •

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Main Routine of Algorithm USP⁻F

1 $\mathcal{T} := \emptyset;$

- 2 foreach $\mathbf{s}_b \in \mathcal{B}$ do
- 3 foreach $s \in S$ do
 - $\mathbf{s}_u := FindOccurrence(\mathbf{s}_b, \mathbf{s});$
 - if $\mathbf{s}_u \neq \emptyset$ then
 - AppendPrefixTree(T, s_u);

7 end

8 end

9 end

4

5

6

10 return \mathcal{T} ;

▲ 同 ▶ → ミ ● ▶

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

The USP⁺F Algorithm

Input

- \mathcal{B} : a belief system represented as a prefix tree
- \mathcal{D} : a database of sequences
- σ : a minimal support value for frequent sequential patterns

Output

• \mathcal{T} : Prefix tree containing of all frequent sequential patterns with respect to σ and all unexpected sequential patterns with respect to \mathcal{B}

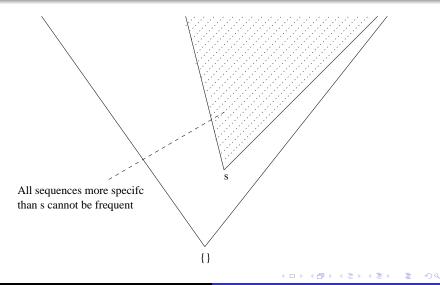
Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Main Routine of Algorithm USP⁺F

- 1 $\mathcal{T} := \emptyset;$
- 2 k := 1;
- 3 $C_B := AppendBeliefs(\mathcal{B}, \mathcal{T}, k);$
- 4 $C_k := CountSequence(\mathcal{D}, \mathcal{T}, \mathcal{C}_B, \sigma, k);$
- 5 while $C_k \neq \emptyset$ do

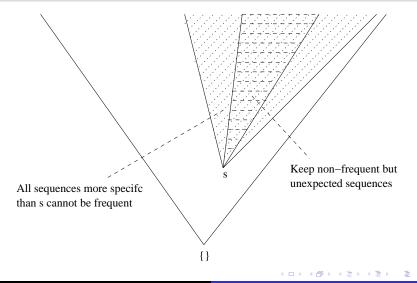
$$\mathbf{6} \quad \mathcal{T} := \mathcal{T} \cup \mathcal{C}_k;$$

7
$$C_B := AppendBeliefs(\mathcal{B}, \mathcal{T}, k+1);$$


8
$$C_{k+1} := CountSequence(\mathcal{D}, \mathcal{T}, C_B, \sigma, k+1);$$

- 9 k := k + 1;
- 10 end
- 11 return \mathcal{T} ;

- 4 同 6 4 日 6 4 日 6


Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Anti-Monotone on Frequent Sequence Spanning

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Anti-Monotone on Unexpected Sequence Spanning

Formal Models of Sequence Belief Based Unexpected Sequential Patterns Unexpected Sequential Pattern's Occurrence Problem The USP Approach

Principal of Algorithm USP⁺F

AppendBeliefs

- Appends first item of each b ∈ B to each i ∈ T that does not correspond to any belief.
- Finds unexpected sequential patterns to each $\mathbf{i}_b \in \mathcal{T}$ that corresponds to the first item of any belief.
- Removes all non frequent nodes in current path if i_b does not occurred in any sequence.

CountSequence

- Counts the frequency of each $\mathbf{i} \in \mathcal{T}$ in each path of current level.
- Finds frequent sequences for next level by the PSP approach.

Outline

2 Related Work

3 Mining Unexpected Sequential Patterns

Conclusions

- Sequence Oriented Belief System
- Output Description of the sequences and Unexpected Sequential Patterns
- The USP⁻F algorithm for finding all unexpected sequential patterns
- The USP⁺F algorithm for finding all unexpected sequential patterns and all frequent sequential patterns

Perspectives

- Implementation of the USP approach
- Experimentation with real world data
- Proposition of unexpected sequential pattern rules
- Influence of bordered inclusions on unexpected sequential pattern rules

/⊒ > < ∃ >

About Unexpected Sequential Pattern Rules

Anticipation Rule

 $\mathbf{s}_x \Rightarrow \mathbf{s}_u$

Exception Rule

 $\begin{array}{l} \mathbf{s}_{\alpha} \Rightarrow \mathbf{s}_{y} \text{ for } \alpha \text{ violation} \\ \mathbf{s}_{\alpha} \mathbf{s}_{y} \Rightarrow \mathbf{s}_{\beta} \text{ for } \beta \text{ violation} \\ \mathbf{s}_{\alpha} \mathbf{s}_{y} \Rightarrow \mathbf{s}_{\gamma} \text{ for } \gamma \text{ violation} \end{array}$

Influence Rule

$$\mathbf{s}_u \Rightarrow \mathbf{s}_z$$

Thank you!

æ

- * @ * * 注 * * 注