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ABSTRACT

In this paper, we devise a method for the estimation of the
true support of itemsets on data streams, with the objective
to maximize one chosen criterion among {precision, recall}
while ensuring a degradation as reduced as possible for the
other criterion. We discuss the strengths, weaknesses and
range of applicability of this method that relies on conven-
tional uniform convergence results, yet guarantees statistical
optimality from different standpoints.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval; 1.5.3 [Pattern Recognition]: Clustering

General Terms: Algorithms.

Keywords: Data stream mining.

1. INTRODUCTION

A growing body of works arising from researchers in Data
bases and Data Mining deals with data arriving in the form
of continuous potentially infinite streams, i.e. an ordered
sequence of item occurrences that arrives in timely manner.
Data streams have seen the emergence of crucial problems
for databases that were previously not as pregnant, such as
the accurate retrieval of informations in a data flow that pre-
vents its exact storage, and whose information may evolve
through time. We consider items to be the unit information,
and itemsets to be sets of items. An itemset is 0-frequent
(frequent for short) if it occurs in at least a fraction 6 of
the data stream, called its support. An important task is
to build the set of the most frequent items or itemsets en-
countered. The subject of this paper is to propose a tight
and extensive study of the application of local uniform con-
vergence results [4] to extend classical supports to statistical
supports.

2. THEORETICAL STATEMENT

There are two sources of error for the estimation of fre-
quent itemsets: it is possible that some itemsets observed
as frequent might in fact not be frequent anymore from a
longer observation of the data stream, even without a drift
of the observation odds; on the other hand, some itemsets
observed as not frequent may well in fact be frequent from
a longer history of the data stream. The point is that it is
statistically hard to nullify both sources of error from the
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observation of a subset, even very large, of the whole data
stream [4]. This unsatisfiable goal can be relaxed to the tight
control of one source or error, while keeping the other one
within reasonable bounds: the user chooses a source of error,
and fixes some related parameters; then, the source of error
chosen is nullified with high probability, while the other one
incurs a loss as limited as possible. We now formalize this.

The data stream is supposed to be obtained from the
repetitive sampling of a potentially huge domain X which
contains all possible itemsets. Each itemset is sampled in-
dependently through a distribution D, on which we make
no distribution assumption, except that it remains fixed
through time. Our problem, as explained in [1], is to re-
cover X5 = XgNS*, where 0 < 0 < 1. Here, X9 = {T €
X 1 px(T) > 0}, with px(T) = X e x.pe, D(T7), and
T <; T' means that itemset T is a subset of 7”. Further-
more, S* is the set of itemsets observed from the stream
(S), augmented by conventional generalization algorithms
[2]. Now, VI' € S*, we cannot compute exactly px(T),
since we do not know X and D. Rather, we have access to
its best unbiased estimator ps(T"), which can be easily com-
puted from S: VT € S*,ps(T) = Y ricgir<, v w(T"), with
w(T") the weight (observed frequency) of 7/ in S. A simple
and computationally attractive way to address our problem
is to solve the following problem: find some 0 < #’ < 1 and
approximate as best the set X by the set of observed ¢’'-
frequent of S*, that is: Sg = {T € S* : ps(T) > ¢'}. This
finally amounts to fixing an accurate value for §’. Statisti-
cally speaking, it is hard to find some 6’ that nullifies the
overall error, Xy ASy, for any m. However, it is possible to
obtain some fairly strong constraints on its two components,
| X5\ Sy | and |S;/\X5|, i.e. the basis of the two sources of
errors outlined in the beginning of this Section, and these
constraints hold regardless of m. To model them, we use
the conventional definitions of precision and recall [1]; Max-
imizing the precision P is equivalent to minimizing our first
source of error. Symmetrically, maximizing the recall R is
equivalent to minimizing our second source of error.

We adopt the concise probabilistic notation of [3], and
define for some predicate P the notation ¥° P which means
that P holds for all but a fraction < ¢ of the sets S sam-
pled under distribution D. The following definition is the
cornerstone of our approach.

Definition 1. V0 < 6 < 1, V0 < e < 1, VS C X, we
say that S* is a sup—(0,¢)—cover of X iff VI' € Xj,
ps(T) > px(T) — . Respectively, we say that S* is an
inf—(0,e)—cover of X iff VI € S"\ Xy, ps(T) < px(T) +e¢.



The way we use definition 1 is simple. Consider that the
user has fixed both the theoretical support 0 < 6 <1, and a
statistical risk parameter 0 < § < 1. Suppose we can find ¢
such that: ¥°, S* is an inf-(6, &)-cover of X. Now, fix 8’ = 6+
€, so that we keep Sy, .. We observe VI € S™\ Xy, ps(T) <
px(T) +¢e < 0 +e. Thus, we obtain ¥°,S;, . C X, which
easily yields: V°,P = 1. Thus, there is no first source of
error, with high probability. Symmetrically, suppose we can
find e such that V%, S* is a sup—(0,e)—cover of X, and fix
this time 8" = 6 — ¢, so that we keep Sj_.. Because of the
property of S*, we observe VI' € Xg,ps(T) > px(T) — e >
§ — &, which yields V°, X; C S;_., and finally: V°,R = 1,
i.e. there is mo second source of error with high probability.
Our problem is thus reduced to finding an accurate value of
¢ such that S* is a sup or inf — (0, e)—cover of X with high
probability. The following Theorem gives a value & which
yields with high probability a sup—(6, e)—cover of X.

THEOREM 1. VX, VD Vm > 0,V0 < 6 < 1,V0 < 46 < 1,

the following holds: ¥°,S* is a sup—(0,&)—cover of X, for
any € satisfying: € > +/(1/(2m))In(|X;[/5). Respectively,
V9, 8* is an inf—(,e)—cover of X, for any € satisfying: € >
V/(1/(2m)) In(|S*\X51/9).
Theorem 1 says that finding (inf/sup)—(0,e)—covers is a
fairly easy task Vm. The following argument shows that
there are no significant better covers. Informally, we build
a skewed distribution D on some very simple X, such that
with probability > ¢ we ”"miss” the (6,¢)-cover for some
value of ¢ slightly smaller than those of Theorem 1.

THEOREM 2. 3X,3D,;3Im > 0,30 < 6 < 1,30 < § <
1 such that the following holds: with probability > §, S*
is not a sup—(0,e)—cover of X, for any € satisfying: € <
c/(1/(2m)) In(|X;]/5). Respectively, with probability > 6,
S* is not an inf—(0,e)—cover of X, for any e satisfying:
e < ¢y/(1/(2m)) In(]S*\X;]/0). Here, ¢ is some constant
< 1.

Theorem 2 says that the criterion which is not controlled
incurs a loss which is, in one sense, also statistically near-
optimal; a simple argument shows that the value of this loss
behaves in a very reasonable manner.

We now shift to a discussion on the way our approach be-
haves when there is a distribution drift, i.e. when D changes
through time. It turns out that our approach can be tailored
in a very simple way to estimating these changes in X;. This
simply consist in estimating ps(.) on the basis of a moving
window, wide enough to ensure m large enough, and reg-
ularly sampling the data stream. All other parameters do
not change. Figure 1 explains that, with this straightforward
adaptation, the distribution drift is estimated with respect
to the moving average of the distributions (thick lines), and
not with respect to the true distributions (regular line). We
estimate for any itemset T the fluctuations of a moving av-
erage py (T) instead of px (7). With respect to this change,
it is straightforward to show that the results still hold under
any distribution drift, to keep maximal precision or recall
with respect to the average drift. This smoothes the small
local drifts, but keeps the significant variations of D within
the detection range.

There only remains to upperbound | Xg| and |S*\Xj| to
compute empirically & for Theorem 1. Since |Xj|+|S™"\X;| =
m”™, we shall use afterwards in the experiments the same up-
perbound, m*, for both cardinals.
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Figure 1: A moving window makes it possible to
track distribution drifts. In this example, we may
detect that T is -frequent during window A;; while
it is not f-frequent anymore during A; 3.
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Figure 2: Plots for 2 of our databases, Accidents
(left, 6 = .6) and Retail (right, § = .07), with § = .05.
Precision (top) and recall (bottom) are given for the
three methods, picking S;_.,Sj,S5... z-axis=m.

3. EXPERIMENTS

Experiments are reported in Figure 2, where each point
is an average over 10 runs of the setup of [1], with the same
data bases. This clearly confirms the theory, as the param-
eter controlled is always at its maximum, regardless of m,
while the conventional method of keeping Sj virtually al-
ways fails to this goal. This tends to confirm the robustness
of the method, as it also holds for a broad range of supports
on each of the data bases we have used.
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