
Towards a New Approach for Mining Frequent

Itemsets on Data Stream

C. Räıssi(1,2) P. Poncelet(1) M. Teisseire(2)

January 4, 2006

(1)EMA/LGI2P (2)LIRMM UMR CNRS 5506
Parc Scientifique Georges Besse 161, Rue Ada

30035 Nı̂mes Cedex, France 34392 Montpellier Cedex 5, France
{Pascal.Poncelet}@ema.fr {raissi, teisseire}@lirmm.fr

Abstract

Mining frequent patterns on streaming data is a new challenging prob-
lem for the data mining community since data arrives sequentially in
the form of continuous rapid streams. In this paper we propose a new
approach for mining itemsets. Our approach has the following advan-
tages: an efficient representation of items and a novel data structure
to maintain frequent patterns coupled with a fast pruning strategy. At
any time, users can issue requests for frequent itemsets over an arbi-
trary time interval. Furthermore our approach produces an approx-
imate answer with an assurance that it will not bypass user-defined
frequency and temporal thresholds. Finally the proposed method is
analyzed by a series of experiments on different datasets.

Keywords: data streams, frequent itemsets, approximate answer.

1 Introduction

Recently, the data mining community has focused on a new challenging
model where data arrives sequentially in the form of continuous rapid streams.
It is often referred to as data streams or streaming data. Many real-world
applications data are more appropriately handled by the data stream model
than by traditional static databases. Such applications can be: stock tick-
ers, network traffic measurements, transaction flows in retail chains, click
streams, sensor networks and telecommunications call records. In the same

1



way, as the data distribution are usually changing with time, very often end-
users are much more interested in the most recent patterns [3]. For example,
in network monitoring, changes in the past several minutes of the frequent
patterns are useful to detect network intrusions [4].
Due to the large volume of data, data streams can hardly be stored in main
memory for on-line processing. A crucial issue in data streaming that has
recently attracted significant attention is thus to maintain the most frequent
items encountered [7, 8]. For example, algorithms concerned with applica-
tions such as answering iceberg query, computing iceberg cubes or identify-
ing large network flows are mainly interested in maintaining frequent items.
Furthermore, since data-streams are continuous, high-speed and unbounded,
it is impossible to mine frequent itemsets by using algorithms that require
multiple scans. As a consequence new approaches were proposed to main-
tain itemsets rather than items [10, 5, 3, 9, 12]. In this paper, we propose a
new approach, called Fids (Frequent itemsets mining on data streams). The
main originality of our approach is that: (i) items are represented through a
new representation; (ii) we use a novel data structure to maintain frequent
itemsets coupled with a fast pruning strategy. At any time, users can issue
requests for frequent sequences over an arbitrary time interval. Furthermore
our approach produces an approximate answer with an assurance that it will
not bypass user-defined frequency and temporal thresholds.
The remainder of this paper is organized as follows. Section 2 goes deeper
into presenting the problems and gives an extensive statement of our prob-
lem. In Section 3, we give an overview of the related work and present our
motivation for a new approach. Section 4 presents our solution. Experi-
ments are reported Section 5, and Section 6 concludes the paper with future
avenues for research.

2 Problem Statement

The problem of mining frequent itemsets was previously defined by [1]: Let
I = {i1, i2, . . . im} be a set of literals, called items. Let database DB be
a set of transactions, where each transaction T is a set of items such that
T ⊆ I. Associated with each transaction is a unique identifier, called its
TID. A set X ⊆ I is also called an itemset, where items within are kept
in lexicographic order. A k-itemset is represented by (x1, x2, . . . xk) where
x1 < x2 < . . . < xn. The support of an itemset X, denoted support(X),
is the number of transactions in which that itemset occurs as a subset.
An itemset is called a frequent itemset if support(X) ≥ σ × |DB| where

2



σ ∈ (0, 1) is a user-specified minimum support threshold and |DB| stands
for the size of the database. The problem of mining frequent itemsets is to
mine all itemsets whose support is greater or equal than σ × |DB| in DB.
The previous definitions consider that the database is static. Let us now as-
sume that data arrives sequentially in the form of continuous rapid streams.
Let data stream DS = Bbi

ai
, B

bi+1
ai+1 , ..., Bbn

an
be an infinite sequence of batches,

where each batch is associated with a time period [ak,bk], i.e. Bbk
ak

, and let
Bbn

an
be the most recent batch. Each batch Each batch Bbk

ak
consists of a set

of transactions; that is, Each batch Bbk
ak

= [T1, T2, T3, ..., Tk]. We also as-
sume that batches do not have necessarily the same size. Hence, the length
(L) of the data stream is defined as L = |Bbi

ai
|+ |Bbi+1

ai+1 |+ . . . + |Bbn
an
| where

|Bbk
ak
| stands for the cardinality of the set Bbk

ak
.

B1
0

Ta (1 2 3 4 5)
Tb (8 9)

B2
1 Tc (1 2)

B3
2

Td (1 2 3)
Te (1 2 8 9)

Figure 1: The set of batches B1
0 , B2

1 and B3
2

The support of an itemset X at a specific time interval [ai, bi] is now denoted
by the ratio of the number of customers having X in the current time window
to the total number of customers. Therefore, given a user-defined minimum
support, the problem of mining itemsets on a data stream is thus to find all
frequent itemsets X over an arbitrary time period [ai, bi], i.e. verifying:

bi∑

t=ai

supportt(X) ≥ σ × |Bbi
ai
|,

of the streaming data using as little main memory as possible.

Example 1 In the rest of the paper we will use this toy example as an
illustration, while assuming that the firt batch B1

0 is merely reduced to two
customers transactions. Figure 1 illustrates the set of all batches. Let us
now consider the following batch, B2

1 , which only contains one customer
transaction. Finally we also assume that two customer transactions are
embedded in B3

2 . Let us now assume that the minimum support value is set
to 50%.

3



If we look at B1
0 , we obtain the two following maximal frequent itemsets: (1 2

3 4 5) and (8 9). If we now consider the time interval [0-2], i.e. batches B1
0

and B2
1 , maximal itemsets are: (1 2). Finally when processing all batches,

i.e. a [0-3] time interval, we obtain the following set of itemsets: (1 2),
(1) and (2). According to this example, one can notice that the support
of the itemsets can vary greatly depending on the time periods and so it is
highly needed to have framework that enables us to store these time-sensitive
supports.

3 Related Work

From the definition presented so far, different efficient approaches were pro-
posed to mine frequent itemsets when the whole database is available. Nev-
ertheless they are usually based on Generating Pruning techniques which
are irrelevant when considering streaming data since the generation is per-
formed through a set of join operations, a typical blocking operator [5].
Mining itemsets in a data stream requires a one-pass algorithm and thus
allow some counting errors on the frequency of the outputs. Traditional al-
gorithms are not defined to cope with uncertainty they rather focus on exact
results. As databases evolve, the problem of maintaining frequent itemsets
over a significantly long period of time was also investigated by incremen-
tal approaches. Nevertheless, since they are generally Generating-Pruning
based, they suffer the same drawbacks.

31 days 24 hours 4 qtrs

t

. .

Figure 2: Natural Tilted-Time Window Frames

tt2t2t4t

Time 

Figure 3: Logarithmic Tilted-Time Windows Table

The first approach for mining all frequent itemsets over the entire history of
a streaming data was proposed by [10] where they define the first single-pass

4



algorithm based on the anti-monotonic property. They use an array-based
structure to represent the lexicographic order of itemsets. Li et al. [9] use an
extended prefix-tree-based representation and a top-down frequent itemset
discovery scheme. In [12] they propose a regression-based algorithm to find
frequent itemsets in sliding windows. Chi et al. [3] consider closed frequent
itemsets and propose the closed enumeration tree (CET) to maintain a dy-
namically selected set of itemsets. In [5], authors consider a FP-tree-based
algorithm [6] to mine frequent itemsets at multiple time granularities by a
novel logarithmic tilted-time window technique. Figure 2 shows a natural
tilted-time windows table: the most recent 4 quarters of an hour, then, in
another level of granularity, the last 24 hours, and 31 days. Based on this
model, one can store and compute data in the last hour with the precision
of quarter of an hour, the last day with the precision of hour, and so on.
By matching for each sequence of a batch a tilted-time window, we have the
flexibility to mine a variety of frequent patterns depending on different time
intervals. In [5], the authors propose to extend natural tilted-time windows
table to logarithmic tilted-time windows table by simply using a logarithmic
time scale as shown in Figure 3. The main advantage is that with one year
of data and a finest precision of quarter, this model needs only 17 units of
time instead of 35,136 units for the natural model. In order to maintain
these tables, the logarithmic tilted-time windows frame will be constructed
using different levels of granularity each of them containing a user-defined
number of windows.
Let B2

1 , B3
2 , . . . , Bn

n−1 be an infinite sequence of batches where B2
1 is the

oldest batch. For i ≥ j, and for a given pattern X, let supportji (X) de-
notes the frequency of X in Bj

i where Bi
j=

⋃i
k=j Bk. By using a logarithmic

tilted-time window, the following frequencies of S are kept: supportnn−1(X) ;
supportn−1

n−2(X) ; supportn−2
n−4(X) ; supportn−2

n−6(X) . . .. This table is updated
as follows. Given a new batch B, we first replace supportnn−1(X), the fre-
quency at the finest level of time granularity (level 0), with support(B) and
shift back to the next finest level of time granularity (level 1 ). support −
n− 1n(X) replaces supportn−1

n−2(X) at level 1. Before shifting supportn−1
n−2(X)

back to level 2, we check if the intermediate window for level 1 is full
(in this example the maximum windows for each level is 2). If yes, then
supportn−1

n−2(X) + supportnn−1(X) is shifted back to level 2. Otherwise it is
placed in the intermediate window and the algorithm stops. The process con-
tinues until shifting stops. If we received N batches from the stream, the log-
arithmic tilted-time windows table size will be bounded by 2×dlog2(N)e+2
which makes this windows schema very space-efficient.

5



According to the related work, it is clear that mining frequent itemsets
on data stream is far away from trivial since lot of constraints have to be
managed in an efficient way. Furthermore, in such a dynamic context, and
whatever the structure considered two problems remains:

(a) How to efficiently retrieve previous frequent itemsets in order to update
their tilted-time windows? Ideally we would like to avoid to navigate
to all the stored itemsets or in other words we would like to reduce
the search space to only ”interesting” itemsets.

(b) How to efficiently verify if an itemset is a subset or not of an other
one? More precisely, could we find a new representation for itemsets
allowing us to verify the inclusion very quickly?

4 The Fids approach

In this section we propose the Fids approach for mining itemsets in stream-
ing data. First we propose an overview. Second we address a new representa-
tion for efficiently mining included itemsets. Finally we describe algorithms.

4.1 An overview

Our main goal is to mine all maximal frequent itemsets over an arbitrary
time interval of the stream. The algorithm runs in two steps:

1. The insertion of each itemset of the studied batch in the data structure
Latticereg using a region principle (C.f. Figure 4).

2. The extraction of the maximal subsets.

Figure 4: ICI IL Y A LE JOLI DESSIN DE CHEDY SUR LES LATTICES
QUE JE N’AI PAS et la legende est : The data structures used in the Fids
algorithm

We will now focus on how each new batch is processed then we will have a
closer look on the pruning of unfrequent itemsets.
From the batches from Example 1 our algorithm performs as follows: we
process the first transaction Ta in B1

0 by first storing Ta into our lattice

6



Items Tilted-T W. (regions, Rootreg)
1 {[t10=1]} {(1, Ta)}
2 {[t10=1]} {(1, Ta)}
3 {[t10=1]} {(1, Ta)}
4 {[t10=1]} {(1, Ta)}
5 {[t10=1]} {(1, Ta)}

Figure 5: Updated Items after the transaction Ta

Itemsets Size Tilted-Time Windows
(1 2 3 4 5) 5 [t10 = 1]

Figure 6: Itemsets updated after the transaction Tb

(Latticereg). This lattice has the following characteristics: each path in
Latticereg is provided with a region and itemsets in a path are ordered ac-
cording to the inclusion property. By construction, all subsets of an itemset
are in the same region. This lattice is used in order to reduce the search
space when comparing and pruning itemsets. Furthermore, only ”maximal
itemsets” are stored into Latticereg. These itemsets are either itemsets di-
rectly extracted from batches or their maximal subsets such as all these
items are in the same region. By storing only maximal itemsets we aims at
storing a minimal number of itemsets such that we are able to answer a user
query. When the processing of Ta completes, we are provided with a set of
items {1,2,3,4,5}, one itemset (1 2 3 4 5) and Latticereg updated. Items are
stored as illustrated in Figure 5. The ”Tilted-T W ” attribute is the num-
ber of occurrences of the corresponding item in the batch. The ”Rootreg”
attribute stands for the root of the corresponding region in Latticereg. Of
course, for one region we only have one Rootreg and we also can have several

(First Batch − Ta) (First Batch − Tb)

Root

1

Root

1

(8 9)

2

(1 2 3 4 5) (1 2 3 4 5)

Figure 7: The valuation tree after the first batch

7



regions for one item. For itemsets (C.f. Figure 6), we store both the size
of the itemset and the associated tilted-time window. This information will
be useful during the pruning phase. The left part of the Figure 7 illustrates
how the Latticereg lattice is updated when considering Ta.
Let us now process the second transaction Tb of B1

0 . Since Tb is not included
in Ta, it is inserted in Latticereg in a new region (C.f. subtree (8 9) in Figure
7).

Root

1 2

(1 2 3 4 5)

(1 2)

(8 9)

(Second Batch − Tc)

Figure 8: The region lattice after the second batch

Itemsets Size Tilted-Time Windows
(1 2 3 4 5) 5 [t10 = 1]

(8 9) 2 [t10 = 1]
(1 2) 2 [t10 = 1], [t21 = 1]

Figure 9: Updated itemsets after B1
2

Let us now consider the batch B2
1 merely reduced to Tc. Since items 1 and

2 already exist in the set of itemsets, their tilted-time windows must be
updated (C.f. Figure 9). Furthermore, items 1 and 2 are in the same region:
1 and the longest itemset for these items is (1 2 3 4 5), i.e. Tc is included
in Ta. We thus have to insert Tc in Latticereg in the region 1 (C.f. Figure
8). Nevertheless as Tc is a subset f Ta that means that when Ta occurs in
previous batch it also occurs for Tc. So the tilted-time windows of Tc must
also be updated.
The transaction Td is considered in the same way as Tc (C.f. Figure 11 and
Figure 10). Let us now have a closer look on the transaction Te. We can
notice that items 1 and 2 are in region 1 while items 8 and 9 are in region
2. We can believe that we are provided with a new region. Nevertheless, we
can notice that the itemset (8 9) already exist in Latticereg and is a subset

8



Itemsets Size Tilted-Time Windows
(1 2 3 4 5) 5 [t10 = 1]

(8 9) 2 [t10 = 1]
(1 2) 2 [t10 = 1], [t21 = 1], [t32 = 1]

(1 2 3) 3 [t32 = 1]

Figure 10: Updated itemsets after Td of B3
2

Root

1 2

(1 2)

(1 2 3)

(1 2 3 4 5) (8 9)

1

Root

(1 2 3 4 5)

(1 2 3)

(1 2)

(1 2 8 9)

2

(8 9)(1 2)

(Third Batch − Te)(Third Batch − Td)

Figure 11: The region lattice after batches processing

of Te. The longest itemset of Te in the region 1 is {1, 2}. In the same way,
the longest subset of Te for region 2 is {8, 9}. As we are provided with two
different regions and {8, 9} is the root of the region 2, we do not create a new
region but we insert Te as a root of region for 2 and we insert the subset
{1, 2} both on lattice for region 1 and 2. Of course, tilted-time windows
tables are updated (C.f. Figure 13 and Figure 12).
To only store frequent maximal itemsets, let us now discuss how unfrequent
itemsets are pruned. While pruning in [5] is done in two distinct operations,
our algorithm prunes unfrequent itemsets in a single operation which is in
fact a dropping of the tail itemsets of tilted-time windows supportk+1

k (X),
supportk+2

k+1(X) . . . supportnn−1(X) when the following condition holds:

∀i, k ≤ i ≤ n, supportbi
ai

(X) < εf |Bbi
ai
|.

By navigating into Latticereg, and by using the region indexes, we can di-
rectly and rapidly prune irrelevant itemsets without further computations.
This process is repeated after each new batch in order to use as little main
memory as possible. During the pruning phase, titled-time windows are
merged in the same way as in [5]

9



Items Tilted-T W. (regions, Rootreg)
1 {[t10 = 1],[t21 = 1],[t32 = 2]} {(1, Ta)}

(2 , Te)}
2 {[t10 = 1], [t21 = 1],[t32 = 2]} {(1, Ta)

(2, Te)}
3 {[t10 = 1], [t32 = 2]} {(1, Ta)}
8 {[t21 = 1], [t32 = 2]} {(2, Te)}
9 {[t21 = 1], [t21 = 1]} {(2, Te)}
Figure 12: Updated items after the transaction Te

Itemsets Size Tilted-Time Windows
(1 2 3 4 5) 5 [t10 = 1]

(8 9) 2 [t10 = 1], [t32 = 2]
(1 2) 2 [t10 = 1], [t21 = 1], [t32 = 2]

(1 2 3) 3 [t32 = 1]

Figure 13: Updated itemsets after Te of B3
2

4.2 An efficient representation for itemsets

According to the overview, one crucial problem is to efficiently compute
the inclusion between two itemsets. This costly operation could easily be
performed when considering a new representation for items in transactions.
From now, each item is represented by an unique prime number (C.f. Figure
14).

Items 1 2 3 4 5 ... 8 9 ...
Prime Number 2 3 5 7 11 ... 19 23 ...

Figure 14: Prime Number transformation

A similar representation was also adopted in [11] where they consider parallel
mining. According to this definition, each transaction could be represented
by the product of the corresponding prime numbers of individual items into
the transaction. As the product of the prime number is unique we can easily
check the inclusion of two itemsets (e.g. X ¹ Y ) by performing a modulo
division on itemsets (Y MOD X). If the remainder is 0 then X ¹ Y ,

10



otherwise X is not included in Y . For instance on Figure 15, Tc ≺ Ta, since
the remainder of Ta MOD Tc is 0.

Ta (1 2 3 4 5) 2× 3× 5× 7× 11 2310
Tb (8 9) 19× 23 437
Tc (1 2) 2× 3 6
Td (1 2 3) 2× 3× 5 30
Te (1 2 8 9) 2× 3× 19× 23 2622

Figure 15: Transformed transactions

4.3 The Fids algorithm

Algorithm 1: The Fids algorithm
Data: an infinite set of batches B=B1

0 , B2
1 , ... Bm

n ...; a σ user-
defined threshold; an error rate ε.

Result: A set of frequent items and itemsets
// init phase
Latticereg ← ∅; ITEMS ← ∅; ISETS ← ∅;region ← 1;
repeat

foreach Bb
a ∈ B do

Update(Bb
a, Latticereg, ITEMS, ISETS, σ, ε);

Prune(Latticereg, ITEMS, ISETS, σ, ε);

until no more batches;

We describe in more detail the Fids algorithm (C.f. Algorithm 1). While
batches are available, we consider itemsets embedded into batches in order
to update our structures (Update). Then we prune unfrequent itemsets in
order to maintain our structures in main memory (Prune). In the following,
we consider that we are provided with the three next structures. Each value
of ITEMS is a tuple (labelitem, {time, occ}, {(regions, rootreg)}) where
labelitem stands for the considered item, {time, occ} is used in order to
store the number of occurrences of the item for different time of batches
and for each region in {regions} we store its associated itemsets (rootreg)
in the Latticereg structure. The ISETS structure is used to store itemsets.
Each value of ISETS is a tuple (itemset, size(itemset), {time, occ}) where
size(itemset) stands for the number of items embedded in s. Finally, the

11



Latticereg structure is a lattice where each node is an itemset stored in
ISETS and where vertices correspond to the associated region (according
to the previous overview).
Let us now examine the Update algorithm (C.f. Algorithm 2) which is the
main core of our approach. We consider each transaction embedded in the
batch. From a transaction T , we first get regions of all its items (GetRe-
gions). If items were not already considered we only have to insert T in a
new region. Otherwise, we extract all different regions associated on items
of T . For each region, the GetRootreg function returns the corresponding
root of the region, FirstItemset, i.e. the maximal itemset of the region
reg. Since we represent items by prime numbers, we can then compute the
greatest common factor of T in FirstItemset by applying the GCF func-
tion. This usual function was extended in order to return an empty set both
when there are no maximal itemsets or if itemsets are merely reduced to one
item. If there is only one itemset, i.e. cardinality of NewIts is 1, we know
that the itemset is either a root of region or T itself. We thus store it into
a temporary array (LatticeMerge) in order to avoid to create a new useless
region.
Otherwise we know that we are provided with a subset and then we in-
sert it into Latticereg (Insert) and propagate the tilted-time window (Up-
dateTTW). Itemsets are also stored into a temporary array (DelayedIn-
sert). If there exist more than one sub itemset (from GCF), then we insert
all these subsets on the corresponding region. We also store them with T
on DelayedInsert in order to delay their insertion as a new region. If Lat-
ticeMerge is empty we know that it does not exist any subset of T already
included on itemsets of Latticereg and then we can directly insert T into
Latticereg with a new region. If the cardinality of LatticeMerge is greater
than 1, we are provided with an itemset which will be a new root of region
and then we insert it.
Maintaining all the data streams in the main memory requires too much
space. So we have to store only relevant itemsets and drop itemsets when
the tail-dropping condition holds. When all the tilted-time windows of the
itemsets are dropped the entire itemset is dropped from Latticereg. As
the result of the tail-dropping we no longer have an exact support over
L, rather an approximate support. Now let us denote supportL(X) the
frequency of the itemset X in all batches and ˜supportL(X) the approximate
frequency. With ε ¿ σ this approximation is assured to be less than the
actual frequency according to the following inequality [5]:

supportL(X)− ε|L| ≤ ˜supportL(X) ≤ supportL(X).

12



Algorithm 2: The Update algorithm
Data: a batch Bb

a = [T1, T2, T3, ..., Tk]; σ a user-defined threshold;
an error rate ε. Three structures.

Result: Latticereg, ITEMS, ISETS updated.

foreach transaction T ∈ Bb
a do

LatticeMerge ← ∅; DelayedInsert ← ∅;
Candidates ← GetRegions(T );
if Candidates = ∅ then

Insert(T ,New Region);

else
foreach region reg ∈ Candidates do

// Get Rootreg from region reg
F irstItemset ← GetRootreg(reg);
// Compute all the longest common subsets
NewIts ← GCF(T ,FirstItemset);
if (NewIts == T ) ‖ (NewIts == FirstItemset) then

LatticeMerge ← reg;

else
// A new itemset has to be considered
Insert(NewIts,reg); UpdateTTW (NewIts);
DelayedInsert ← NewIts;

// Create a new valuation
if |LatticeMerge| = 0 then

Insert(T, New Region); UpdateTTW(T );

else
if |LatticeMerge| = 1 then

Insert(T, LatticeMerge[0]); UpdateTTW(T );

else
// A Maximal itemset will merge two or more regions
Merge(LatticeMerge, T );

13



Due to lack of space we do not present the entire Prune algorithm we rather
explain how it performs. First all itemsets verifying the pruning constraint
are stored into a temporary set (ToPrune). We then consider items in
ITEMS. If an item is unfrequent, then we navigate through Latticereg in
order:

1. to prune this item in itemsets;

2. to prune itemsets in Latticereg also appearing in ToPrune.

This function takes advantage of the anti-monotonic property as well as the
order of stored itemsets. It performs as follows, nodes in Latticereg, i.e.
itemsets, are pruned until a node occurring in the path and having siblings
is found. Otherwise, each itemset is updated by pruning the unfrequent
item. When an item remains frequent, we only have to prune itemsets in
ToPrune by navigating into Latticereg.

5 Experiments

In this section, we report our experiments results. We describe our experi-
mental procedures and then our results.

5.1 Experimental Procedures

The stream data was generated from Web Server Log Data of the ECML/PKDD
Challenge 2005 1 These data comes from a Czech company running several
internet shops. The log data cover the traffic on the web server of about
three weeks. This represents about 3 mil. records. After a preprocessing
step, the stream was broken into batches of 30 seconds duration which en-
ables the possibility for different batch sizes depending on the distribution
of the data. The number of items per batch was nearly 5000. We have fixed
the error threshold (ε) at 0.1%. Furthermore, all the transactions can be fed
to our program through standard input. Finally, our algorithm was written
in Java. All the experiments were performed on a Pentium 3 (1200 Mhz)
running Linux with 512 MB of RAM.

5.2 Results

At each processing of a batch the following informations were collected: the
size of the Latticereg structure in bytes and the total number of seconds
required per batch. The x axis represents the batch number.

1available at http://lisp.vse.cz/challenge/CURRENT/.

14



 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 0  2  4  6  8  10  12  14  16  18  20

T
em

ps
 n

ec
es

sa
ire

 p
ou

r 
le

 tr
ai

te
m

en
t d

’u
n 

ba
tc

h 
(e

n 
M

ill
is

ec
on

de
s)

Batches

Epsilon=0.1

Figure 16: Fids time requirements

Figures 16 show time results itemsets. Every two batches (maxL = 2 in our
experiments) the algorithm needs more time to process itemsets, this is in
fact due to the merge operation of the tilted time windows which is done
in our experiments every 2 batches. The jump in the algorithm is thus the
result of extra computation cycles needed to merge the tilted time values
for all the nodes in the Latticereg structure. We can notice that the time
requirements of the algorithm as the stream progresses never excess the 30
seconds computation time limit for every batch.
Figures 17 show memory needs for the processing of our itemsets. We can
notice that the space requirement is bounded by 4.5M and thus can easily fit
into main memory. Experiments show that the FIDS algorithm can handle
itemsets in data streams without falling behind the stream as long as we
choose correct batch duration values.

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0  2  4  6  8  10  12  14  16  18  20

M
em

oi
re

 u
til

is
ee

 (
en

 B
yt

es
)

Batches

Epsilon=0.1

Figure 17: Fids memory requirements

15



6 Conclusion

In this paper we addressed the problem of mining itemsets in streaming data.
Our main contributions are the following. First, by using prime numbers for
representing items of the stream we improve the itemset inclusion checking
and thus improve the overall process. Second, by using a new region-based
structure we propose to efficiently find stored itemsets either for mining
included itemsets or for pruning. Last, by storing only a minimal number
of itemsets (i.e. the longest maximal itemsets) coupled with a tilted-time
window, we can produce an approximate answer with an assurance that it
will not bypass user-defined frequency and temporal thresholds. With Fids,
users can, at any time, issue requests for frequent itemsets over an arbitrary
time interval.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large database. In Proc. of the Intl. Conf. on
Management of Data (ACM SIGMOD 93), 1993.

[2] Y. Chen, G. Dong, J. Han, B. Wah, and J. Wang. Multi-dimensional
regression analysis of time-series data streams. In Proc. of VLDB’02
Conference, 2002.

[3] Y. Chi, H. Wang, P.S. Yu, and R.R. Muntz. Moment: Maintaining
closed frequent itemsets over a stream sliding window. In Proc. of
ICDM’04 Conference, 2004.

[4] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P.-N.
Tan. Data mining for network intrusion detection. In Proc. of the 2002
National Science Foundation Workshop on Data Mining, 2002.

[5] G. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining frequent pat-
terns in data streams at multiple time granularities. In Next Generation
Data Mining, MIT Press, 2003.

[6] J. Han, J. Pei, B. Mortazavi-asl, Q. Chen, U. Dayal, and M. Hsu.
Freespan: Frequent pattern-projected sequential pattern mining. In
Proc. of KDD’00 Conference, 2000.

16



[7] C. Jin, W. Qian, C. Sha, J.-X. Yu, and A. Zhou. Dynamically maintain-
ing frequent items over a data stream. In Proc. of CIKM’04 Conference,
2003.

[8] R.-M. Karp, S. Shenker, and C.-H. Papadimitriou. A simple algorithm
for finding frequent elements in streams and bags. ACM Transactions
on Database Systems, 28(1):51–55, 2003.

[9] H.-F. Li, S.Y. Lee, and M.-K. Shan. An efficient algorithm for mining
frequent itemsets over the entire history of data streams. In Proc. of
the 1st Intl. Workshop on Knowledge Discovery in Data Streams, 2004.

[10] G. Manku and R. Motwani. Approximate frequency counts over data
streams. In Proc. of VLDB’02 Conference, 2002.

[11] S.N. Sivanandam, D. Sumathi, T. Hamsapriya, and K. Babu. Parallel
buddy prima - a hybrid parallel frequent itemset mining algorithm for
very large databases. In www.acadjournal.com, Vol.13, 2004.

[12] W.-G. Teng, M.-S. Chen, and P.S. Yu. A regression-based temporal
patterns mining schema for data streams. In Proc. of VLDB’03 Con-
ference, 2003.

17


