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Abstract—Data warehouses are nowadays extensively used to

perform analyses on huge volume of data. This success is partly

due to the capacity of considering data at several granularity

levels thanks to the use of hierarchies. However, in previous work,

we showed that the experts’ knowledge were not much considered

in the generalization process. To overcome this drawback, we

introduced a new category of hierarchies, namely the contextual

hierarchies. Unfortunately, in contrast to the complexity of expert

knowledge that should be considered, the knowledge definition

process was too rigid. In this paper, we extend these hierarchies

and their related techniques to drastically increase their flexibility

and expressivity. To this purpose, we adopt a fuzzy-based

methodology which allows to express expert knowledge in a very

convenient way. Experiment results obtained on synthetic datasets

show that the contextual generalization process is very fast and

can thus be used in practice.

I. INTRODUCTION

Today the volume of generated data rapidly increases and
their analysis represents a strategic challenge for decision mak-
ers. To this aim, data warehouses were designed to consolidate,
store and organize data thanks to a multidimensional schema
[1]. Often, attributes are equipped with hierarchies which allow
to consider data at several levels of granularity [2]. On-Line
Analytical Processing (OLAP) tools exploit these hierarchies
by enabling the decision makers to aggregate and examine
data at different combinations of levels [3]. Because of the
effectiveness of these tools, data warehouses play a central
role in various decisional information systems [4] such as sales
analysis, equipment monitoring or medical data surveillance
[5].

In this paper, we illustrate our purpose using this last domain
since this work was partially supported by a french national
project1 that brings into play an Intensive Care Unit (ICU).
Thus, let us assume that a medical data warehouse records
vital signs, e.g., blood pressure, of patients from an ICU. In
order to achieve effective monitoring of patients, a doctor may
want to know those who had a low blood pressure during the
night. Formulating this type of query requires the existence
of a hierarchy on blood pressure where the first level of
aggregation is a categorization of blood pressure, e.g., low,
normal, high. However, this categorization is tricky because it
strongly depends on both blood pressure measured and certain
physiological characteristics of the considered patient, e.g., the

1Project ANR MIDAS (ANR-07-MDCO-008)

age, the average daily tobacco consumption. Therefore, the
same pressure can be differently generalized according to the
considered analysis context. For example, 13 is a high pressure
for babies whereas it is a normal one for adults. To allow these
generalizations, we proposed a new type of hierarchy, namely
the contextual hierarchies [6].

The definition of these hierarchies makes possible to express
and integrate some crisp and very precise expert knowledge
into the navigation and analysis processes. However, it now
appears that we need to go one step beyond to enhance
expressivity and flexibility of the expert knowledge. Precisely,
it may be very interesting to consider these two points. First,
knowledge can be more or less precise. Second, the adequacy
of a piece of knowledge to a patient is sorely crisp by nature.

In terms of expressiveness of knowledge, the fuzzy approach
is really pertinent [7]. Various studies have also involved the
integration of fuzzy logic in data warehouses to increase the
expressivity of hierarchies [8], [9]. Thus, in this work, we
propose to focus on the integration of fuzzy logic in the context
of hierarchies, going a step further in the expressiveness
hierarchies, ensuring analyses even more relevant.

The remainder of this paper is as follows. Section II presents
a case study. Section III introduces some background to this
work. In Section IV, we discuss the existing model and
exhibit improvements to bring. In Section V, we propose our
new extended model of contextual hierarchies. Implementation
details are presented in Section VI. Experimental results are
presented in Section VII. We briefly discuss the related work
in Section VIII and Section IX concludes this paper.

II. CASE STUDY

Assume that we would like to determine the normality
degree of the blood pressure (BP) measured on patient 1 (P1).
Informations related to this patient are displayed in Table I. It
can be noted that the attributes Age and Tobacco Consumption
can each one be considered at two levels of granularity. Figure
1 displays the concerned samples of these two hierarchies. As
stated in our previous work [6], BP generalization is impacted
by some patient-related features. Table II displays some of
the expert knowledge that could be useful to perform this
generalization.

Based on the joint analysis of Tables I and II, the following
remarks could be observed:



IdP Age AgeSubCategory Tobacco Consumption Tobacco Consumption Category Treatment Blood Pressure Blood Pressure Category
(ASC) (TC) (TCC) (BP) (BPC)

P1 22 Adult 5 Occasional Hypotensive 13 ?

TABLE I
TUPLE OF T RELATED TO THE PATIENT 1

Young Adult

0 20 21... ...
AGE

Null Occasional Regular

0 5 61 ... ...
TOBACCO CONSUMPTION

Fig. 1. Hierarchies over X and Y attributes

TABLE II
EXPERT KNOWLEDGE ASSOCIATED TO THE BP GENERALIZATION

IdC Connaissance
R1 Young + Null or occasional + BP ∈ [8; 12] → Normal
R2 Young + Null or occasional + BP > 12 → High
R3 Regular + BP ∈ [9; 14] → Normal
R4 Regular + BP > 14 → High
R5 Hypotensive + BP > 12 → High
R6 BP ∈ [8; 13] → Normal
. . . . . .

1) Pieces of knowledge do not necessarily concern the same
attributes, e.g., R4 and R5.

2) Both R5 and R6 can be applied but their generalization
differ.

3) R5 is more precise than R6 since more conditions have
to be fulfilled.

4) R2 and R3 almost match with P1. Typically, one more
smoked cigaret per day would have been enough to
consider that R3 matches with P1.

In the two next sections, we recall the existing contextual
hierarchy model and show that it does not fully integrate
these observations. Thus, the model is extended and efficient
solutions are proposed to handle these extended hierarchies.

III. BACKGROUND

We first recall definitions related to classical contextual
hierarchies and then described existing solution to handle and
exploit them. Finally, we recall definitions related to fuzzy
hierarchies.

A. Classical Contextual Hierarchies
Definitions. Contextual hierarchies were first designed in

the framework of data warehouses [10]. Consequently, the
initial formalism redefines the standard concepts of dimension,
fact table, dimension attribute and measure. In this paper,
to lighten the definitions and without loss of generality, the
formalism only assumes a functional dependency between an
identifier attribute and a set of attributes.

More formally, let Id = {id1, . . . , idn} be the identifier
attribute and A = {A1, . . . , At} be a set of t attributes. For
each attribute Ai ∈ A, its domain of definition is denoted by

Dom(Ai). We assume that each attribute Ai is equipped with
a hierarchy and can thus be observed at several granularity
levels Ai = A0

i , . . . , A
maxi
i . Such hierarchies are said to be

simple, i.e., the several levels of granularity form a chain.
By convention, A0

i stands for the finest granularity level and
Amaxi

i stands for the coarsest granularity level. We denote
aji ∈ Dom(Aj

i ) if the attribute value aji belongs to the level
Aj

i . The set of the granularity levels from all the attributes is
denoted by A∗

= {A0
1, A

1
1, . . . , A

Mt
t }. We assume that data

are stored in a single table T .
Definition 1: (Relational Table) Let Id be an identifier

attribute and A∗ be the set of granularity levels of the
descriptive attributes. Data are stored in a relational table
T = (Id,A0

1, A
1
1, . . . , A

Mt
t ) so that Id → A0

1 × A1
1 ×

. . .×, AMt
t . Each tuple t from T is of the form t =

(id, a01, a
1
1, . . . , a

0
t , . . . , a

Mt
t ) where (1) a0t is the value to con-

textually generalize and (2) a1t , . . . , a
Mt
t are the contextualized

generalizations.
Example 1: Considering our case study, Table I displays

how data related to P1 are stored in T .
Given an attribute Ai, the generalization from a level to its

direct upper level is guided by the so called aggregation path.

Definition 2: (Aggregation Path) Let Aj
i and Aj+1

i , j =

0, . . . ,Mi−1 be two granularity levels from the same attribute
Ai. The aggregation path between Aj

i and Aj+1
i , denoted G =

Aj
i

C�−→ Aj+1
i with C = {Aj

i , . . .}, is such that:
1) Aj

i is called the source attribute,
2) Aj+1

i /∈ C is the result attribute,
3) C ⊆ A is the set of attributes that may affect the

generalization,
4) Aj+1

i functionally depends on C.

Traditionally, a generalization value only depends on its
specialization. For instance, generalizing Sydney to the Coun-
try level does not necessitate external knowledge. Though, as
motivated in Section II, some generalizations are not so trivial
and require external knowledge to be correctly performed. In
the following we make the distinction between these two cases.

Definition 3: (Classical and Contextual Aggregation Path)
Let G = Aj

i
C�−→ Aj+1

i be an aggregation path. G is said to be
contextual if |C| > 1. Otherwise, G is said to be a classical
aggregation path.

Definition 4: (Contextualizing and Contextualized At-
tributes) Let G = Aj

i
C�−→ Aj+1

i be a contextual aggregation
path. The attribute is said to be contextualized by the attributes



of C that are said to be contextualizing.

Definition 5: (Context) Let G = Aj
i

C�−→ Aj+1
i be a contex-

tual aggregation path. The triplet c = (Aj
i ,C, A

j+1
i ) is called

the context of the attribute Aj
i .

Definition 6: (Instance of aggregation path) Let G = Aj
i

C�−→
Aj+1

i be an aggregation path. An instance of G,denoted g =

a
IC�−→ a�, is such that:
1) a ∈ Dom(Aj

i ) and a� ∈ Dom(Aj+1
i ),

2) IC = {(Am
l ,α) — Am

l ∈ C and α ⊆ Dom(Am
l )},

3) ∃(Am
l ,α) so that Aj

i = Am
l and a ∈ α,

4) �Am
l so that Am

l ∈ C and (Am
l ,α) /∈ IC.

Definition 7: (Instance of context) Let g = a
IC�−→ a� be

an instance of the aggregation path Aj
i

C�−→ Aj+1
i . The pair

cl = (IC, a�) is called an instance of the context c of Aj+1
i .

Example 2: Assume that the generalization from the
level Blood Pressure (BP for short) to the level Blood
Pressure Category (BPC for short) is contextualized by
attributes Tobacco Consumption Category (TCC for short)
and BP only. The contextual aggregation path is thus denoted
G = BP

C�−→ BPC where C = {TCC,BP} and the
associated context is denoted c = (BP,C, BPC). Here,
TCC and BP are the contextualizing attributes and BPC
is the contextualized attribute. The instance of context
related to R4 is represented by cl = (IC,High) where
IC = {(TCC, {Regular}), (BP, {x > 14})}.

Knowledge Storage. In previous work [6], we proposed to
store the expert knowledge in an external relational database
denoted by DBKnow.. This solution allows to store different
contexts in a similar way and thus guarantees the genericity
of the knowledge storage within the data warehouse. This
external database is composed of only two relations which
are briefly described below.

The Knowledge Meta Table, denoted KMT, stores the struc-
ture of the different contexts of T . This table has the following
structure:

• IdCtxt designates the context identifier. By convention,
we consider that it is the contextualized attribute, i.e.,
BPC in our case study.

• Attribute designates an attribute involved in IdCtxt.
• Type indicates if Attribute is contextualizing or contextu-

alized. By convention, Type = 0 if Attribute is contextu-
alizing and Type = 1 if Attribute is contextualized.

The Knowledge Table, denoted KT, stores the instances
of the different contexts in the database. This table has the
following structure:

• IdCtxt designates the related context.
• IdInstance is an integer identifying the instance of con-

text.
• Attribute designates an attribute involved in the context.
• Value represents the set of values of Attribute that are

concerned in this instance of context.

Contextual Roll-Up. Due to a lack of space, the functioning
of ROLL_UP_CTX, the contextual roll-up operator, is shortly
described below2. First, the concerned context has to be
identified in KMT to exhibit the contextualizing attributes.
KT is then queried to determine the unique instance that is
concerned by this generalization. Once the instance of context
is identified, the value of the contextualized attribute associated
to this instance has just to be returned.

B. Fuzzy Hierarchies

When combined to decision systems, fuzzy set theory [11]
allows to improve performances and expressivity [9]. Partic-
ularly, fuzzy hierarchies described in [12] allow to model the
fact that an element can belong to several generalizations with
each distinct membership degree. In our context, using this
kind of hierarchies can be extremely useful to model instances
of context that almost match a given tuple.

More formally, given a set of references, denoted Dom(Aj
i ),

where j = 1, . . . ,Mi, a fuzzy subset A of Dom(Aj
i ) is defined

by a membership function fA. This function associates to each
element a in Dom(A0

i ) a membership degree fA(a), 0 ≤
fA(a) ≤ 1, which indicates how much a is in A. For instance,
fASC=Adult(22) = 0.7 means that 22 belongs to the subset
{Adult} with a degree of 0.7.

IV. DISCUSSION AND OBJECTIVES

Existing contextual hierarchies allow the integration of
expert knowledge into the generalization process. Hence, they
represent an original and very convenient solution to numerous
real case scenarios, e.g., medical data warehouse or alarm
detection, where numerical values have to be aggregated
into a semantically correct categorical value. Though, these
hierarchies still suffer from some limitations. Mainly, it must
exist one (referred as the existence constraint) and only
one (referred as the unicity constraint) instance for a given
contextual generalization.

The existence constraint implies that the set of expert
knowledge is complete regarding the instances of T . Without
this guarantee, a blood pressure value may not be generalized.
This theoretical guarantee is of crucial importance but is
difficult to check in practice. Indeed, tools for checking the
completeness of a set of rules exist but fail when dealing with
large number of attributes [13]. This point is a problem since
we do not have any control on the number of contextualizing
attributes in a given context.

The unicity constraint guarantees the consistency of the
system but is extremely difficult to obtain in practice. Sev-
eral arguments motivate this assumption. First, contextual-
izing attributes represent the factors that could impact on
a generalization. Nevertheless, it is not straightforward that
the combined impact of all the contextualizing attributes has
been studied. Typically, considering our case study, there is
no expert knowledge specifying values on the complete set
of contextualizing attributes. Second, determining if a tuple

2Interested readers may refer to [6] for further details.



matches or not with an instance of context is sometimes tricky.
Typically, in our case study, we have seen that P1 almost
but not fully matches the instance R3. As we will see in the
next section, the use of fuzzy hierarchies could overcome this
inflexibility.

Relaxing both existence and unicity constraints is thus of
high importance to enhance the expressivity of our model but it
comes with new problematics mainly related to the knowledge
storage and the generalization process.

V. EXTENDED CONTEXTUAL HIERARCHIES

We now overcome the above described limitations by ex-
tending our model in two ways. First, generalized instances of
context are introduced. These instances allow the description
of pieces of knowledge which do not involve all the contex-
tualizing attributes. Second, contextualizing attributes can be
now equipped with fuzzy hierarchies.

A. Generalized Instances of Context
As previously argued, guarantying the completeness in the

sense of the tuples of T can be tricky. Additionally, this
completeness can be ensured at time t but cannot be ensured
at time t + 1 if new tuples are inserted in the table. Thus,
guarantying the universal completeness of the system, i.e., any
potential tuple of T can match with an instance of context,
would be preferable. For this, we authorize instances of context
to be more or less precise. Typically, very general pieces of
knowledge such as R6 could ensure that any blood pressure
could be generalized. This knowledge could be completed by
much more precise instances such as R1 and R2. Naturally,
during the generalization process, the most precise instance
would be chosen among the set of adequate instances. Gen-
eralized instances of context are now formally defined and
we introduce a generality-based relation to partially order
instances.

Definition 8: (Generalized instance of a contextual aggre-
gation path) Let G = Aj

i
C�−→ Aj+1

i be a contextual aggregation
path. A generalized instance of G , denoted g = a

IC�−→ a�, is
such that:

1) a ∈ Dom(Aj
i ) and a� ∈ Dom(Aj+1

i )

2) IC = {(Am
l ,α) |Am

l ∈ C ∧ α ⊆ Dom(Am
l )}

3) ∃(Am
l ,α)|Aj

i = Am
l ∧ a ∈ α

Definition 9: (Generalized instance of context) Let g =

a
IC�−→ a� be a generalized instance of the aggregation path

Aj
i

C�−→ Aj+1
i . The pair cl = (IC, a�) is named a generalized

instance of the c of Aj+1
i .

The contextualizing attributes of a given instance g are
denoted Attrib(g). We now introduce the Prec function to
formally quantify the precision of a given generalized instance
of context.

Definition 10: (Precision of a generalized instance of con-
text) Let cl = (IC, a) be a generalized instance of the context
c = (Aj

i ,C, A
j+1
i ). The precision of cl, denoted Prec(cl), is

defined as Prec(cl) = |IC|.

Example 3: cl =
�
{(BP, [8; 13])},Normal

�
is

the generalized instance of the context c =

(BP, {BP,ASC, TCC, Treatment}, BPC) which
represents R6. Additionally, Attrib(cl) = {BP} and
Prec(cl) = 1.

In the initial model, the precision of any instance was the
number of contextualizing attributes. From now on, instances
could be more general than others.

B. Taking Fuzzy Hierarchies into Account
The use of fuzzy hierarchies leads to redefine the table

T to store membership degrees. From now on, a tuple
t = (id, a01, a

1
1, . . . , a

0
t , . . . , a

Mt
t ) from T is stored on the

form t� = (id�, e01, e
1
1, . . . , e

0
t , . . . , e

Mt
t ) such that id = id�,

e0i = a0i for i = 1, . . . , t and eji = {(αj
i , fαj

i
(e0i )) | αj

i ∈
Dom(Aj

i ) and fαj
i
(e0i ) �= 0} for i = 1, . . . , t − 1 and

j = 1, . . . ,Mi. The Table III illustrates how fuzzy hierarchies
over the Age and Tobacco Consumption attributes are stored.

Taking fuzzy hierarchies into account automatically breaks
the unicity constraint. Indeed, a fuzzy tuple from T can match
to several instances of context with distinct adequacy degrees.
We now focus on how this adequacy degree can be computed.
Intuitively, the process is very similar to the crisp case: the
adequacy of a tuple to each condition has to be computed and
these local adequacies have then to be combined.

We first describe how the local adequacy, i.e., the adequacy
of a tuple to a condition, is computed. For this, let us assume
that we want to compute how much the patient P1 matches
to the criterion (ASC, {Y oung,Adult}). Here, it comes to
compute the membership degree of the element 22 to the fuzzy
subset {Y oung,Adult}, i.e., to the union of fuzzy subsets
{Y oung} and {Adult}. Since the t-conorm operator, denoted
⊥, is the fuzzy extension of the union operator, it is used to
define such local adequacy.

Definition 11: (Local adequacy) Let cond = (Aj
i ,α) be a

condition (with j = 0, . . . ,Mi and α = {α1, . . . ,αk}) and
t� = (id�, e01, e

1
1, . . . , e

0
t , . . . , e

Mt
t ) be a tuple from T . The

adequacy of t� to cond, denoted µunit(t�, cond), is defined
as:

µunit(t
�, cond) = ⊥

�
fα1(e

0
i ), . . . , fαk(e

0
i )

�

Many t-conorm functions exist in the literature. A detailed
study could be useful to determine which one is the most
appropriate. Nevertheless, this study is out of the scope of this
paper and we consider here the max function as the t-conorm
function as introduced by Zadeh.

Example 4: Let t be the tuple corresponding to
the patient P1 and cond = (ASC, {Young, Adult})
be a criterion. We have µunit(t, cond) =

max(fASC=Y oung(22), fASC=Adult(22)) = 0.7.
We now describe how the local adequacies can be combined

to compute the global adequacy of a tuple to an instance of
context. An instance can be typically seen as a conjunction of
conditions. Thus, the global adequacy measures the adequacy
to all the criteria involved in a given instance. In other words,
it measures the membership degree of the intersection of fuzzy



IdP Age ASC TC TCC Treatment BP BPC

P1 22 fASC=Y oung(22) = 0.25 5 fTCC=occ.(5) = 0.3 Hypotensive 13 ?
fASC=Adult(22) = 0.7 fTCC=reg.(5) = 0.6

TABLE III
INTEGRATION OF FUZZY HIERARCHIES IN THE CASE STUDY

subsets that each represents a criterion involved in the instance.
Since the t-norm operator, denoted �, is the fuzzy extension
of the intersection operator, it is used to define such global
adequacy.

Definition 12: (Instance adequacy to a tuple) Let cl =

(IC, a) be an instance of the context c = (Aj
i ,C, A

j+1
i ) and

t� = (Id, e01, e
1
1, . . . , e

0
t , . . . , e

Mt
t ) be a tuple from T . The

adequacy of t� to cl, denoted µ(t�, cl), is defined as:

µ(t�, cl) = �
�
µunit

�
t�, (Am

k ,α)
�

such that Am
k ∈ Attrib(cl)

�

Many t-norm functions exist in the literature. Similarly to
the t-conorm function, a detailed study could be useful to
determine which one is the most appropriate. Nevertheless,
this study is out of the scope of this paper and we consider
here the min function as the t-norm function as introduced by
Zadeh.

Example 5: Let t be the tuple corre-
sponding to the patient P1 and cl =�
{(BP, [8; 13]), (ASC, {Y oung,Adult})},Normal

�
be an

instance of the context Blood Pressure. We have:

µ(t, cl) = min
�
µunit

�
t, (BP, [8; 13])

�
,

µunit

�
t, (ASC, {Y oung,Adult})

��

= min(0.7 , 1)

= 0.7

VI. IMPLEMENTATION

Now we have extended the model, we discuss about its
consequences over two crucial aspects: (1) the knowledge
representation and storage and (2) the generalization process.

A. Knowledge Representation and Storage

Interestingly, our new extended model does not impact on
the knowledge storage described in Section III-A. This is due
to three reasons. First, the definition of a context remains
unchanged. Thus, the structure of the relation KMT has not
to be modified. Second, our storage solution does not force
to specify a valid subset of values for each contextualizing
attribute of each instance. Therefore, the relation KT can
indistinguishably store generalized instances of any precision
without structural change. Finally, fuzzy hierarchies are de-
fined over attributes of T and thus do not particularly concern
the expert knowledge itself3.

3Interested readers on fuzzy hierarchy storage may refer to [8], [9] for
further details.

Example 6: Table IV displays the tuples of KMT related to
the BPC context. As we can see, contextualizing attributes, i.e.,
where Type = 0 are ASC, TCC, Treatment and BP whereas
the contextualized attribute is BPC. It should be noted that
other contexts can be stored in the same way in this table.

TABLE IV
SAMPLE OF KMT RELATED TO THE BPC CONTEXT

idCtx Attribute Type
BPC ASC 0
BPC TCC 0
BPC Treatment 0
BPC BP 0
BPC BPC 1
. . . . . . . . .

Table V displays the tuples of KT related to R5 and R6. It
should be noted that even if these two instances of context
do not have the same precision, i.e., Prec(R5) = 2 and
Prec(R6) = 1, they are stored in the same way.

TABLE V
SAMPLE OF KT RELATED TO THE PIECES OF KNOWLEDGE R5 AND R6

idCtx IdInst Attribute Value
BPC R5 TCC {Hypotensive}
BPC R5 BP > 12
BPC R5 BPC High
BPC R6 BP [8; 13]
BPC R6 BPC Normal
. . . . . . . . . . . .

B. Extension of the Contextual Generalization Algorithm

The contextual generalization algorithm we briefly de-
scribed in Section III-A assumes the unicity constraint holds.
This constraint is now relaxed, it is necessary to introduce
techniques to elect the most appropriate instance to be used
in a generalization. More precisely, two ways to relax this
constraint have been proposed: (1) the possibility to incorpo-
rate generalized instances and (2) the possibility to use fuzzy
hierarchies over contextualizing attributes. Consequently, can-
didate sequences to a given generalization can be more or less
precise and more or less adequate. These two measures thus
have to be aggregated to obtain a single score.

Definition 13: (Score) Let t be a tuple from T and cl be an
instance of the context c. The score function which determines
how much cl represents t is defined as:

Score(cl, t) = Aggr
�
Prec(cl), µ(t, cl)

�

It should be noted that this score function definition is
voluntarily general. This function is of high importance since
the selected contextual generalization is the one associated to



the instance maximizing this score function. Indeed, we are
convinced that such function should be defined in collaboration
with the users of the system depending on both the application
domain and their motivation. Nevertheless, we now provide
two possible score functions.

Score 1: The first score function we propose can be seen as
a basic combination of precision and adequacy. Particularly,
let t be a tuple from T , cl be an instance of the context c and
α be a user-defined numerical value which ranges over [0; 1].
A possible score function, denoted Score1, could be:

Score1(c
l, t) = α× Prec(cl) + (1− α)× µ(t, cl)

Here, the parameter α indicates the importance that is given
to each component.

Score 2: A realistic assumption is that some attributes are
of higher importance in a given context. For example, in our
case study, instances where Treatment values are specified may
be considered of utmost importance. To materialize this idea,
we assume the existence of a user-defined function, denoted
Priority, which indicates how important is an attribute in
a context. Typically, this function ranges over [1; +∞[ and
Priority(A) > Priority(B) means that the attribute A is
more important than B in the considered context. With these
notations, a priority-based score function, denoted Score2,
could be:

Score2(c
l, t) =

�

X∈Attrib(cl)

�
Priority(X)

�
× Score1(c

l, t)

Assuming defined this score function, we present
ROLL_UP_CTX_GEN, the extended contextual generalization
operator. Pseudo-code of the underlying algorithm is displayed
in Figure 2. Here, we assume that the useful context is known
in advance and omit this very cheap and trivial step in the
described process. Schematically, the algorithm operates in
two steps. First, given a tuple t, the set of candidate instances
is searched (line 3). An instance is said to be a candidate
to the generalization if its global adequacy is not null. Once
extracted, each candidate is scanned to evaluate if its score is
greater than the temporary score (line 6). If so, the instance
is temporarily considered as the elected one (line 8). When
all the instances in ICand have been scanned, the operator
returns the contextual generalization associated to Inst, the
last elected instance. Note that we do not consider the case
where several instances can have identical highest score. In
such a case, different strategies could be applied. First, if the
elected instances share the same contextual generalization, we
return to the above-described case. In conflicting situations,
a policy should be implemented in collaboration with the
experts to choose the generalization to return. Examples of
policy could be: (1) returning the majority generalization or (2)
display the diverse generalizations and their related instance
to let the user deciding the most appropriate one.

Searching the candidate instances and electing the one with
the highest score could be considered as a time-consuming
task depending on the size of both the dataset and the

1: Inst ← ∅
2: ScoreMax ← 0, ScoreTemp ← 0

3: ICand ← selectMatchInst(Ctxt, t)
4: for all cl ∈ ICand do

5: ScoreTemp ← Score(cl, t)
6: if (ScoreTemp > ScoreMax) then

7: ScoreMax ← ScoreTemp
8: Inst ← cl

9: end if

10: end for

11: return the contextual generalization associated to Inst

Fig. 2. ROLL_UP_CTX_GEN(t, BKnow.) such that t is a tuple from T and
BKnow. is the expert knowledge database

expert knowledge. Nevertheless, we experimentally show the
feasibility of our approach in the next section.

VII. EXPERIMENTAL STUDY

Using synthetic datasets, we now evaluate the efficiency and
scalability of ROLL_UP_CTX_GEN.

A. Datasets and Setups

Synthetic Dataset Generation. Synthetic datasets are gen-
erated using a multidimensional random data generator follow-
ing a random uniform distribution. D10F3C1000CC10S1000
stands for 10 attributes, 3 of them are equipped with fuzzy
hierarchies, i.e., the others are equipped with simple crisp
hierarchies, the cardinality of each lowest level attribute is
1000, the cardinality of the contextualized attribute is 10 and
the size of the dataset is 1000.

Crisp and Fuzzy Hierarchies Generation. For sake of
simplicity, the two following assumptions are made. First,
except for the attribute to be contextually generalized, each
attribute is equipped with a hierarchy. Second, this hierarchy
contains only one level. Fuzzy hierarchies used in this ex-
periment study implement trapezoidal membership functions.
Nevertheless, our approach supports any type of membership
function. The generation is driven by two parameters: Interval
(I) and Slope (Sl). Interval specifies the length of the interval
where the membership degree is maximum for each general-
ization. It should be noted that each value v can be generalized
into a value v� such that µv�(v) = 1. Slope indicates the slope
of the trapeze. Figure 3 displays an example of fuzzy hierarchy
generation with I = 3 and Sl = 2. Crisp hierarchies are
similarly generated with Sl = 0. Note that the cardinality of
upper levels is C

I where C is the cardinality of the lowest
level.

Knowledge Generation The expert knowledge is randomly
generated. The generation is controlled by two parameters:
SizeCtxt and NbInstances. SizeCtxt attributes are randomly
chosen among the set of D available attributes. For each, the
granularity level that is involved in the context is randomly
determined. Then, NbInstances are randomly created. For each
attribute of each instance, the set of values in the condition,
i.e., the set of attribute values that is inserted in the Value
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Fig. 3. Impact of the number of fuzzy hierarchies

attribute of KT, is randomly chosen. Cardinality of this set
varies between 1 and the cardinality of the attribute. Finally,
we check if each tuple of T matches with at least one instance.
If not, generation is run again until this condition is fulfilled.

Implementation and Score Function. Data are all stored as
described in this paper in a Postgresql database. Additionally,
the ROLL_UP_CTX_GEN operator has been implemented in
the PL/Java language and can be used in SQL queries in
WHERE clauses. We used Score1 with α = 0.5 as the score
function.

B. Metric and Evaluated Parameters
The ROLL_UP_CTX_GEN operator has been executed on

each tuple of the dataset. In this experimental study, the
average time needed to perform one contextual generalization
is measured. Results are reported in milliseconds. To increase
the comprehension of the operator behavior, this global time is
decomposed in four distinct times that each represents a crucial
step of the algorithm: (1) the selection of candidates instances,
(2) the precision computation, (3) the adequacy computation
and (4) the score computation.

The impact of the following four parameters has been
studied: (1) the number of fuzzy hierarchies, (2) the number
of contextualizing attributes, (3) the number of instances of
context and (4) the cardinality of contextualizing attributes.

C. Analysis of Results
Impact of the Number of Fuzzy Hierarchies. The pro-

portion of fuzzy hierarchies in the dataset varies from 10%
to 95%, i.e., each attribute is equipped with a fuzzy hierarchy
except the attribute to be contextually generalize. Some con-
clusions can be drawn from the results displayed in Figure
4(a). First, the score computation time is negligible. This
is verified in each experiment and will not be mentioned
anymore. Second, the more the number of fuzzy hierarchies,
the slower the aggregation. This is obviously due to an
increase of the time needed to compute adequacy. However,
both candidate search and precision computation times remain
stable. Finally, it can be noted that the global generalization
time does not exceed 50 ms.

Impact of the Number of Contextualizing Attributes.

The proportion of contextualized attributes in the dataset varies
from 10% to 100%. Two distinct behaviors can be observed
from the results displayed in Figure 4(b). First, from 10%

to 30%, most of the running time is spent on the precision
computation. Indeed, since the number of contextualizing
attributes is low, researching candidates is made with very
simple queries. Additionally, the probability to get attributes
equipped with fuzzy hierarchies in the context is also low
leading to low adequacy computation time. Moreover, since
the number of instances does not change, few contextualizing
attributes lead to many candidates. This explains why the time
to compute the precision of all the candidates is proportionally
high. Conversely, from 40% to 100%, most of the running
time is spent on the candidate research phase. Indeed, the
more attributes in the context, the more complex the queries
to find candidates. Additionally, this leads to discover much
less candidates. This explains why the time to compute both
precision and adequacy is low. Finally, it can be noted that the
global generalization time is almost lower than 100 ms.

Impact of the Number of Instances of Context. The
number of instances of context varies from 10 to 10000.
Some observations can be made from the results displayed in
Figure 4(c). First, the number of instances obviously impacts
on the time to find candidates. Second, the other component
times remain stable except for very high number of instances.
Indeed, the more instances the more candidates. Finally, it can
be noted that the global generalization time is almost lower
than 100 ms.

Impact of the Cardinality of Contextualizing Attributes.

The cardinality of contextualizing attribute varies from 10
to 10000. Results are displayed in Figure 4(d). Clearly, the
higher the cardinality, the higher the time to search candidates.
Indeed, large domains of definition impact on the number of
authorized values in conditions. This naturally leads to execute
costly queries to determine if an attribute value appears in
subsets of values. However, due to smaller sets of candidates,
the time dedicated to other components tends to slightly
decrease when cardinality increases. Finally, it can be noted
that, with reasonable cardinalities, the global generalization
time is low.

Conclusion. We highly benefit from the very efficient
indexing strategies implemented in the Postgresql core engine
to obtain very satisfactory results. These results over synthetic
datasets representing extreme cases assess the scalability of
the operator.

VIII. RELATED WORK

A. Knowledge Integration
Various works have been proposed to integrate knowledge

within data warehouses to extend their capabilities, particularly
for the hierarchies that define navigation path within the data.
Here is an extract of these works. In [14], definitions of
rules enhance the flexibility of the navigation since they can
express exception in the aggregation process. In [15], the user
knowledge allows the creation of new levels in dimension
hierarchies. However these hierarchies are still classical, i.e.,
not contextualized. Some other authors proposed to enrich di-
mension hierarchies with new granularity levels by exploiting
semantic relations provided by WordNet [16].
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Fig. 4. Average time-consumption of contextual generalization on different synthetic datasets

To conclude, enrichment of data warehouses with different
types of knowledge is a very promising issue to enhance
the analysis capacities. Among the different possible way to
specify knowledge, fuzzy logic constitutes an interesting issue.

B. Fuzzy Issues within the Decisional Process

In the field of data warehouses, many approaches have
been proposed to integrate the fuzzy logic to increase the
expressivity of hierarchies and/or facts [17], [8], [9], [18], [12].

All these approaches propose multidimensional models that
are able to manage fuzzy logic to satisfy different needs,
e.g., reality of the data, reliability of sources. Particularly,
they focus on the integration of the fuzzy logic during the
conception level when designing the data warehouse. In this
paper, our purpose is to study the consequences of using fuzzy
hierarchies in our contextual hierarchy model and clearly not
to propose a new model which integrates fuzziness at the
data level. Thus, we are more focused on how the user can
express his own knowledge in an expressive way with fuzzy
logic to enrich the analysis possibilities. Consequently, cited
approaches are complementary with our work.

IX. CONCLUSION

In this paper, we have showed the limitations of the existing
contextual hierarchy model and have motivated the need to
extend it to enhance flexibility and expressivity. Extension
of the model has been two-fold. First, generalized instances
of context have been defined. Second, we have authorized
contextualizing attributes to be equipped with fuzzy hierar-
chies. Finally, we have proposed and experimentally evaluated
an efficient contextual generalization operator that fits this
new model. Future work includes human validation, proposal
of a non-relational structure, e.g., a tree-based structure, to
store and exploit expert knowledge and the introduction of
personalized expert knowledge to differently aggregate data
depending on the user.
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