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ABSTRACT
The recognition of unexpected behaviors in databases is an
important problem in many real-world applications. In the
previous studies, the unexpectedness is mainly stated within
the context of the most-studied patterns, association rules,
or sequential patterns. In this paper, we first propose the
notion of fuzzy recurrence rule, a new kind of rule-based
behavior in sequence databases, and then we introduce the
problem of recognizing unexpected sequences contradicting
the beliefs on fuzzy recurrence rules, with fuzzy measures.
We also develop, UFR, an algorithm for discovering unex-
pected recurrence behaviors in a sequence database. Our
approach is evaluated with Web access log data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; I.5.1 [Pattern Recognition]: Models—Fuzzy

set

General Terms
Algorithms, Management, Theory

Keywords
Unexpected recurrence behavior, fuzzy recurrence rule, fuzzy
measure, sequence data mining

1. INTRODUCTION
During the past years, as the most important topics of

data mining, association rules [1] (corresponding to frequent
patterns) and sequential patterns [2] have received much at-
tention, such as the work addressed in [11, 5, 12] and [26,
18, 28, 3, 27, 22].

The association rule mining finds the frequent behaviors
of the correlation between sets of attributes (also called pat-

terns), as the rules in form “if X then Y” where X and Y
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are two patterns. An association rule can reflect the infor-
mation typically like “60% of customers who purchase Coca
Cola also purchase potato chips (if Coca Cola then potato

chips)”. Different from mining association rules, the purpose
of the sequential pattern mining is to find frequent behaviors
of sequential data, thus a sequential pattern is a sequence
such that “A then B then C then . . . ”, where A, B, C, . . . are
patterns. A sequential pattern can help interpreting the in-
formation typically like “60% of people purchase beers, then
purchase Sci-Fi movies, and then purchase rock music”.

On the other hand, the discoveries (normally belief-driven
[23]) of unexpected behaviors contradicting the knowledge
on known (normally frequent or predefined) behaviors in
databases, becomes more and more interesting for many
real-word applications. Since frequent patterns and sequen-
tial patterns are the most-studied behaviors in databases, in
the existing studies of discovering unexpected behaviors, the
unexpectedness is mainly stated within the context of pat-
terns [4, 19], association rules [21], or sequential patterns
[24, 16].

We proposed a semantics based framework of unexpected
sequence mining in our previous work [16]. For instance,
according to the behavior “people purchase Sci-Fi movies,
and then purchase rock music”, the behavior “people pur-
chase Sci-Fi movies, and then purchase classical music” can
be considered as unexpected since the classical music can be
considered as semantically opposite to the rock music. That
work has been extended with fuzzy methods in [17].

In this paper, we are interested in the unexpectedness
stated by fuzzy recurrence rule, a new kind of rule-based be-
havior in sequence databases. The fuzzy recurrence rules are
in the form “if the sequence sα repeatedly occurs, then the
sequence sβ repeatedly occurs”. For instance, a fuzzy recur-
rence rule can be “60% of customers who often purchase Sci-
Fi books then Sci-Fi movies later, also purchase PC games
often”. This type of rules reflect the associated correlations
between repeatedly occurred elements in sequential data.
The unexpectedness on recurrence behaviors is determined
by the domain-expert-defined semantic oppositions. For in-
stance, if we consider that the classical music is semantically
opposite to PC games, then the fact “1% customers who of-

ten purchase Sci-Fi books then Sci-Fi movies later, often

purchase classical music” stands for an unexpected recur-
rence behavior in a customer transaction database.

Such unexpected recurrence behaviors can be interesting
for many application domains, including marketing analysis,
finance fraud detection, DNA segment analysis, Web con-
tent personalization, network intrusion detection, weather
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prediction, and so on.
The rest of the paper is organized as follows. In Section 2,

we introduce the related work. Section 3 presents our pro-
posals of fuzzy recurrence rules and unexpected recurrence
behaviors. In Section 4, we develop an effective algorithm
UFR for discovering unexpected recurrence behaviors in a
sequence database. Finally, we conclude in Section 5.

2. RELATED WORK
In order to find more relevant behaviors, the fuzzy set

theory has been well adopted for treating the quantitative
attributes [25] in databases, such as the work concentrated
in [15, 7, 14, 13, 6, 8].

For instance, in the discovery of fuzzy association rules
defined in [15], with the usage of fuzzy sets, the form of
discovered rules becomes“if X is A then Y is B”, where A and
B are fuzzy sets that describe the properties of patterns X
and Y, such as“60% of customers who purchase a lot of Coca
Cola also purchase a lot of potato chips (if Coca Cola is lot

then potato chips is lot)”. In the same manner that the fuzzy
association rule is defined, the notion of fuzzy sequential
patterns proposed in [7] considers the sequential patterns
on quantitative attributes like “60% of people purchase a
lot of beers, then purchase many Sci-Fi movies later, then
purchase few PC games”, where the sequence is “beer is lot,
then Sci-Fi movie is many, and then PC game is few”.

Although most of the existing approaches for mining fuzzy
association rules or fuzzy sequential patterns concentrate
on developing efficient algorithms, the fuzzy sets are also
considered on imprecise data (like [10, 9], but that topic
is not covered in this paper). In our approach, we consider
the binary-valued attributes in databases as other crisp data
mining approaches, however we use fuzzy sets for describing
the recurrence behaviors of data, instead of the quantitative
attributes.

Unexpected behaviors are generally considered within the
framework of subjective interestingness measure. In [23],
the notion of unexpectedness is addressed with hard belief
and soft belief. A hard belief is a belief that can never be
changed by new evidences in data,and any contradiction of
such a belief implies data error. A soft belief corresponds to
the constraints on data measured by a degree, which can be
modified with new evidences contradicting this belief. The
interestingness of such new evidences is measured by the
change of the degree.

With the unexpectedness measure, a belief-driven approach
for finding unexpected patterns and association rules is pro-
posed in [19, 20, 21]. In that approach, a belief is given
from association rule, and the unexpectedness is stated by
semantic opposition of patterns. Given a belief X → Y ,
a rule A → B is unexpected if: (1) the patterns B and
Y semantically contradict each other; (2) the support and
confidence of the rule A ∪X → B hold in the data; (3) the
support and confidence of the rule A ∪X → Y do not hold
in the data. The discovery process is performed within the
framework of the a priori algorithm.

[24] proposed an approach for mining unexpectedness with
sequence rules transformed from frequent sequences. The se-
quence rule is built by dividing a sequence into two adjacent
parts, which are determined by the support, confidence and
improvement from association rule mining. A belief on se-
quences is constrained by the frequency of the two parts of
a rule, so that if a sequence respects a sequence rule but

the frequency constraints are broken, then this sequence is
unexpected. Although this work considers the unexpected
sequences and rules, it is however very different from our
problem in the measure and the notion of unexpectedness
contained in data.

In our recent work [17], we proposed a belief-driven ap-
proach for recognizing fuzzy unexpected sequences corre-
sponding to sequential implication rules. A sequential im-

plication rule is a rule of the form “if the sequence sα occurs
then the sequence sβ occurs latter”so that the beliefs are cre-
ated with respect to (1) the distance between sα and sβ; (2)
the semantics of the implication between sα and sβ, i.e., sβ

cannot be replaced by another sequence sγ . The fuzzy sets
are considered on the distance between the two sequences.

3. FUZZY RECURRENCE RULES AND
UNEXPECTED BEHAVIORS

In this section, we first formalize the fuzzy recurrence rules
within the common framework of sequence mining model,
we then present the belief base on such fuzzy recurrence
rules, with which the unexpected recurrence behaviors are
therefore proposed and discovered.

3.1 Data Model
We consider the sequential data that consist in binary-

valued attributes. Given a limited numbered set of distinct
binary-valued attributes R = {i1, i2, . . . , in}, each attribute
is an item. An itemset is an unordered collection of items,
denoted as I = {i1, i2, . . . , im}, such that I ⊆ R. A sequence

is an ordered list of itemsets, denoted as s = I1I2 · · · Ik. A
sequence database is usually a large set of sequences, denoted
as D.

Given two sequences s = I1I2 . . . Im and s′ = I ′1I
′

2 . . . I
′

n,
if there exist integers 1 ≤ i1 < i2 < . . . < im ≤ n such
that I1 ⊆ I ′i1 , I2 ⊆ I ′i2 , . . . , Im ⊆ I ′im

, then the sequence s
is a subsequence of the sequence s′, denoted as s ⊑ s′. If
s ⊑ s′, we say that s is contained in s′, or s′ supports s.
For example, the sequence s1 = (a)(b) is contained in the
sequence s2 = (a)(b)(c), but not contained in the sequence
s3 = (ab)(c).

Given a sequence database D, the support or frequency

of a sequence s, denoted as σ(s,D), is the fraction of the
total number of sequences in D that support s. Given a
user specified threshold of support called minimum support,
denoted as min supp, a sequence s is frequent if σ(s,D) ≥
min supp.

In addition, we denote the concatenation of n sequences
as s1s2 · · · sn. For example, let s1 = (a)(b) and s2 = (c)(d),
then we have s1s1 = (a)(b)(a)(b) or s1s2 = (a)(b)(c)(d).

3.2 Fuzzy Recurrence Rules
A recurrence rule is a rule on sequences with form 〈sα, ψ〉 ⇒

〈sβ, θ〉, where sα and sβ are two sequences, and ψ, θ are two
integers for describing the recurrence behaviors.

The recurrence rule indicates that given a sequence s, if
sα is orderly occurred no less than ψ times within s, then
sβ should occurs in s no less than θ times, that is,

(sα · · · sα
| {z }

n

⊑ s) ∧ (n ≥ ψ) =⇒ (sβ · · · sβ
| {z }

k

⊑ s) ∧ (k ≥ θ).
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We call the form 〈s, ψ〉 a recurrent sequence, and we have

〈s, ψ〉 ⊑ s
′ ⇐⇒ (s · · · s

| {z }

n

⊑ s
′) ∧ (n ≥ ψ),

for that the sequence s′ supports the recurrent sequence
〈s, ψ〉. We call the recurrent sequence 〈s, ψ〉 a ψ-recurrence
sequence. We use the wildcard “∗” for denoting the general-
purposed meaning of the support between sequences, that
is,

〈s, ∗〉 ⊑ s
′ ≡ s ⊑ s

′

.

Given a sequence s and a recurrence rule r = 〈sα, ψ〉 ⇒
〈sβ, θ〉, if 〈sα, ψ〉 ⊑ s and 〈sβ, θ〉 ⊑ s, then we say that
s supports r, denoted as s |= r. For instance, the recur-
rence rule r = 〈(a)(b), 3〉 ⇒ 〈(c)(d), ∗〉 depicts that given a
sequence s, if (a)(b) is contained repeatedly in s no less 3
times, then (c)(d) should be contained in s; in other words,
if (a)(b)(a)(b)(a)(b) ⊑ s, then (c)(d) ⊑ s. Notice that
the occurrences of sα must be ordered, that is, for exam-
ple, given a rule r1 = 〈(a)(b), 2〉 ⇒ 〈(c), ∗〉, the sequence
s1 = (a)(a)(c)(b)(b) does not support r1, but the sequence
s2 = (a)(b)(c)(a)(b) supports r1; however, the sequence
s1 supports the rules r2 = 〈(a), 2〉 ⇒ 〈(c), ∗〉 and r3 =
〈(b), 2〉 ⇒ 〈(c), ∗〉.

Considering the integer ψ, a human-friendly interpreta-
tion is more flexible in most applications. For instance, in
market basket analysis, to point out that“the customers who
often purchase Sci-Fi books often purchase action movies” is
more relevant than the conclusion “the customers who pur-
chase at least 7 times of Sci-Fi books purchase at least 5
times of action movies”.

We therefore extend the recurrence rule with fuzzy sets,
so called the fuzzy recurrence rule, in the form 〈sα, ωα〉 ⇒
〈sβ, ωβ〉, where ωα and ωβ are two fuzzy sets for describing
sα and sβ. The sequences 〈sα, ωα〉 and 〈sβ, ωβ〉 are fuzzy re-

current sequences. Given a sequence s′ and a fuzzy recurrent
rule 〈s, ω〉, that s′ supports 〈s, ω〉 is defined as

〈s, ω〉 ⊑ s
′ ⇐⇒ (s · · · s

| {z }

n

⊑ s) ∧ (µω(n) ≥ ζ),

where the fuzzy degree measured by the membership func-
tion µω(n) must be superior or equal to a threshold ζ.

Let us consider the following example.

rarely

1 2 3 4 5 7 8 9 10 11 12 14 15 166 13

0.2

0.4

0.6

0.8

1.0

0

offten frequently always

Figure 1: Fuzzy partitions for recurrence rules.

Example 1. Given a set of distinct events A,B,C,D, . . .,
an ordered of events can be represented as the data model
of sequence. Assuming that given an event sequence s, if
s supports the recurrent sequence 〈(A)(B), 4〉, then s sup-
ports the subsequence (C)(D); if s supports the recurrent
sequence 〈(A)(B), 9〉, then s supports (C). These behaviors
can be described by recurrence rules, such as the rule r1 =

〈(A)(B), 4〉 ⇒ 〈(C)(D), ∗〉 and the rule r2 = 〈(A)(B), 9〉 ⇒
〈(C), ∗〉. Given a sequence s1 such that 〈(A)(B), 3〉 ⊑ s1
and (C)(D) ⊑ s1, a sequence s2 such that 〈(A)(B), 8〉 ⊑ s2
and (C) ⊑ s2, we have s1 6|= r1 and s2 6|= r2. However,
since the recurrent sequences contained in these sequences
and rules are close, the sequences s1 and s2 can be still po-
tentially interesting. On the other hand, considering the
fuzzy recurrence rules r′1 = 〈(A)(B), rarely〉 ⇒ 〈(C)(D), ∗〉
and r′2 = 〈(A)(B), often〉 ⇒ 〈(C), ∗〉, corresponding to the
rules r1 and r2 with respect to the fuzzy partitions shown
in Figure 1, let the threshold ζ = 0.5, then we have s1 |= r′1
and s2 |= r′2. We can further define more partitions, such as
“always” or “rarely”.

In this paper, the fuzzy recurrence rules are considered as
having been predefined by domain experts, the discovery of
fuzzy recurrence rules will be covered in our future research
work.

3.3 Unexpected Recurrence Behaviors
We are considering to discover the sequences contained in

a database those are semantically opposite to a given set
of fuzzy recurrence rules. In order to find such sequences,
we propose an approach that constructs a belief base from
given fuzzy recurrence rules with semantic constraints, so
that each sequence not respecting the belief base is unex-
pected, from which the unexpected recurrence behaviors can
be further discovered.

A belief on recurrence behaviors is a set of constraints that
consists of a fuzzy recurrence rule 〈sα, ωα〉 ⇒ 〈sβ , ωβ〉 and
a semantic constraint 〈sβ, ωβ〉 6≃sem 〈sγ , ωγ〉, where ωγ is a
fuzzy set for the sequence sγ . The fuzzy recurrence rule im-
plies an association relation between 〈sα, ωα〉 and 〈sβ, ωβ〉,
i.e., if the recurrence of sα is ωα, then the recurrence of sβ

is ωβ . The semantic constraint implies that the recurrent
sequences 〈sβ, ωβ〉 and 〈sγ , ωγ〉 are semantically opposite to
each other. Notice that sβ and sγ are not necessary to be
different: 〈(game), rarely〉 and 〈(game), always〉 are seman-
tically opposite to each other.

We use the triple [〈sα, ωα〉 ; 〈sβ , ωβ〉 ; 〈sγ , ωγ〉] for denot-
ing a belief, that constrains: given a sequence s, if s sup-
ports 〈sα, ωα〉, then s supports 〈sβ, ωβ〉, however s should
not support 〈sγ , ωγ〉, since 〈sγ , ωγ〉 semantically be opposite
to 〈sβ, ωβ〉, that is,

(〈sα, ωα〉 ⊑ s) ∧ (〈sβ, ωβ〉 ⊑ s) ∧ (〈sγ , ωγ〉 6⊑ s).

Example 2. Let us consider the instance in Section 1. We
know that the customers who purchase Sci-Fi books (noted
as book) then Sci-Fi movies (noted as movie) latter like to
play PC games (noted as game). Since we consider that
PC games and classical music (noted as music) are seman-
tically opposite to each other, the semantic constraint can
be 〈(game), often〉 6≃sem 〈(music), often〉. Thus the belief
can be written as

[〈(book)(movie), often〉 ; 〈(game), often〉 ; 〈(music), often〉]

if we assume such customers will not often purchase classical
music. The fuzzy sets for the purchase of classical music can
also be that shown in Figure 1. The above belief describes
that the customers who often purchase Sci-Fi books and
then Sci-Fi movies, purchase PC games often, however do
not purchase classical music often.
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If a sequence s satisfies these constraints, we say that the
sequence s supports the belief [〈sα, ωα〉 ; 〈sβ, ωβ〉 ; 〈sγ , ωγ〉],
denoted as s |= b. A sequence s is unexpected if s violates
a belief b, denoted as s 3 b. Two cases of violation are
considered in our approach according to two factors of the
unexpectedness contained in the sequence s.

Definition 1. (β-unexpected sequence) Given a belief b =
[〈sα, ωα〉 ; 〈sβ , ωβ〉 ; 〈sγ , ωγ〉], a sequence s is β-unexpected,
denoted as s 3β b, if s supports 〈sα, ωα〉 and sβ but does
not support 〈sβ , ωβ〉, that is,

s 3β b ⇐⇒ (〈sα, ωα〉 ⊑ s) ∧ (sβ ⊑ s) ∧ (〈sβ , ωβ〉 ⊑ s),

and such a behavior is called β-unexpectedness.

The primary factor of the β-unexpectedness in a sequence
s is that the recurrent sequence 〈sβ, ωβ〉 does not occur
as expected however at least the sequence sβ occurs in s.
For instance, considering the belief in Example 2, noted
as b, let s be a customer transaction sequence, if we have
〈(book)(movie), often〉 ⊑ s and 〈(game), often〉 ⊑ s, then
the sequence s is expected in the meaning of fuzzy recur-
rence rule 〈(book)(movie), often〉 ⇒ 〈(game), often〉 (we
discuss the semantic constraint latter); however, if we have
(game) ⊑ s but not 〈(game), often〉 ⊑ s, for example, we
have 〈(game), rarely〉 ⊑ s instead of 〈(game), often〉 ⊑ s,
since 〈(game), rarely〉 ⊑ s implies (game) ⊑ s, then s is a
β-unexpected sequence, i.e., s 3β b.

Definition 2. (γ-unexpected sequence) Given a belief b =
[〈sα, ωα〉 ; 〈sβ , ωβ〉 ; 〈sγ , ωγ〉], a sequence s is γ-unexpected,
denoted as s 3γ b, if s supports 〈sα, ωα〉 and 〈sγ , ωγ〉, that
is,

s 3γ b ⇐⇒ (〈sα, ωα〉 ⊑ s) ∧ (〈sγ , ωγ〉 6⊑ s),

and such a behavior is called γ-unexpectedness.

Respectively, the primary factor of the γ-unexpectedness
in a sequence s is that the semantic constraint 〈sβ, ωβ〉 6≃sem

〈sγ , ωγ〉 is broken, because the recurrent sequence 〈sγ , ωγ〉
occurs in s. Considering again the belief b in Example 2
and let s be a customer transaction sequence, if we have
〈(book)(movie), often〉 ⊑ s and 〈(music), often〉 6⊑ s, then
the sequence s is not unexpected in the meaning of semantic
constraint 〈(game), often〉 6≃sem 〈(music), often〉; however,
if we have 〈(music), often〉 ⊑ s, then s is a γ-unexpected
sequence, i.e., s 3γ b. Of course, it is not necessary to
forbid (music) ⊑ s, for example, according to this belief,
the occurrence of 〈(music), rarely〉 does not imply the γ-
unexpectedness.

In our approach, we consider only the belief bases of coher-
ent beliefs, means that the beliefs contained in the belief base
do not contradict each others. Given a belief base B, for any
two beliefs b, b′ ∈ B, let b = [〈sα, ωα〉 ; 〈sβ, ωβ〉 ; 〈sγ , ωγ〉] and
b′ =

ˆ
〈s′α, ω

′

α〉 ;
˙
s′β , ω

′

β

¸
;
˙
s′γ , ω

′

γ

¸˜
, the following constraint

must be satisfied:

(sα ⊑ s
′

α) ∧ (ωα = ω
′

α) =⇒ (sβ 6⊑ s
′

γ) ∨ (ωβ 6= ω
′

γ).

For example, let us consider two beliefs b1 and b2. Let b1 =
[〈(a)(b), often〉 ; 〈(c)(d), often〉 ; 〈(e)(f), often〉] and let b2 =
[〈(a), often〉 ; 〈(e), often〉 ; 〈(c), often〉], then b1 and b2 are
in conflict: we have 〈(a)(b), often〉 ⇒ 〈(c)(d), often〉 and
〈(a)(b), often〉 6⇒ 〈(e)(f), often〉 for b1, however for b2 we

have 〈(a), often〉 6⇒ 〈(c), often〉. In the rest of this paper,
we assume that all beliefs in a belief base are coherent.

Given a sequence database D and a belief base B, the
problem of recognizing unexpected recurrence behaviors is
to, therefore, find all sequences s ∈ D that contain β- and/or
γ-unexpectedness corresponding to each belief b ∈ B.

4. UFR: MINING UNEXPECTED FUZZY
RECURRENCE BEHAVIORS

UFR stands for mining Unexpected Fuzzy Recurrence be-
haviors. In this section, we detail the algorithm involved in
our approach, which is evaluated in performance study.

4.1 Data Structure
The belief base B is constructed as a prefix tree structure

with 3 blocks α, β and γ, where in each block two types of
edge are used to represent itemsets and sequences, and be-
tween blocks a pair of links are used for representing beliefs.

a

b

a

b

b

c

d

e

f

g

...

...

ω1 ω2

∗ ω4

ω5

(α) (β) (γ)

Figure 2: Prefix tree structure of the belief base.

A belief is in the form [〈sα, ωα〉 ; 〈sβ, ωβ〉 ; 〈sγ , ωγ〉]. In
α block, all 〈sα, ωα〉 parts of each belief are organized as a
prefix tree. For example, in Figure 2, block (α) contains 3 re-
current sequences 〈(a)(a)(b), ω1〉, 〈(a)(ab), ω2〉 and 〈(ab), ∗〉.
All 〈sβ, ωβ〉 parts are contained in β block and all 〈sγ , ωγ〉
parts contained in γ block as prefix trees. For example,
blocks (β) and (γ) contain recurrent sequences 〈(c)(d), ω4〉
and 〈(ef)(g), ω5〉. The link pair between the 3 blocks shown
in Figure 2 represents the belief

[〈(a)(ab), ω2〉 ; 〈(c)(d), ω4〉 ; 〈(ef)(g), ω5〉] .

The verification of each sequence is performed by depth-
first traversing the prefix tree in each block.

4.2 Algorithm
The algorithm UFR accepts a belief base B, a sequence

database D and a minimum fuzzy degree threshold ζ as in-
put data, and outputs all unexpected sequences in D with
respect to B and ζ.

Algorithm 1 shows the verification routine for each se-
quence s ∈ D. The algorithm first traverses the prefix tree
in block α to verify the 〈sα, ωα〉 part of each belief b ∈ B,
with depth-first strategy. If the traverse arrives an ωα node,
the recurrence of sequence sα is examined within the fuzzy
set ωα and the minimum fuzzy degree ζ. If ζ is satisfied, the
link pair is followed to verify the 〈sβ , ωβ〉 part of the same
belief b contained in the prefix tree in block β, till to the
node ωβ. If the recurrence of sβ does not satisfy ωβ with
respect to ζ, then the algorithm outputs the sequence s as
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Algorithm 1 Algorithm UFR-seqveri

Input: A sequence s, a belief base B, and a minimum fuzzy
degree ζ

Output: The sequence s if unexpected
1: for all path pα ∈ B : α do

2: 〈sα, ωα〉 = generate sequence(pα);
3: if seqinc fuzzy(〈sα, ωα〉 , s, ζ) then

4: for all path pβ ∈ (pα → B : β) do

5: if seqinc(sβ, s) then

6: if !seqinc fuzzy(〈sβ, ωβ〉 , s, ζ) then

7: output s as β-unexpected;
8: end if

9: end if

10: end for

11: for all path pγ ∈ (pα → B : γ) do

12: if seqinc(sγ , s) then

13: if seqinc fuzzy(〈sγ , ωγ〉 , s, ζ) then

14: output s as γ-unexpected;
15: end if

16: end if

17: end for

18: end if

19: end for

an β-unexpected sequence. The algorithm continue to verify
(even if the traverse in block β stops, i.e., sβ not found) the
〈sγ , ωγ〉 part of the same belief b with the link, and the prefix
tree will be traversed till to the node ωγ . If the recurrence of
sβ satisfies ωβ with respect to ζ, then the algorithm outputs
s as an γ-unexpected sequence. The algorithm continues to
traverse the prefix tree in block α and repeats the above
procedure till to the end of the traverse. All unexpected
sequences are therefore discovered.

Corresponding to the fuzzy set in Figure 1 and the belief
[〈(a)(ab), often〉 ; 〈(c)(d), rarely〉 ; 〈(ef)(g), rarely〉] shown in
Figure 2, the UFR-seqveri routine can be illustrated with the
sequence s shown in Figure 3, assuming ζ = 0.6.

(5)

(b)(ab)(c)(ab)(d)(a)(abc)(d)(a)(ab)(a)(abc)(a)(d)(a)(abc)(ab)(a)(d)(abc)(d)

(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4)

Figure 3: Finding β-unexpected sequence.

We have 〈(a)(ab), often〉 ⊑ s, which is first verified by
calling seqinc fuzzy(〈(a)(ab), often〉 , s, 0.6), and the recur-
rence of (a)(ab), which is marked as (1) to (6) above the
sequence shown in Figure 3, satisfies the minimum fuzzy de-
gree 0.6. Thus 〈(c)(d), rarely〉 ⊑ s will be verified by calling
seqinc fuzzy(〈(c)(d), rarely〉 , s, 0.6), where the recurrence
of (c)(d) is marked as (1) to (5) below the sequence shown in
Figure 3. According to Figure 1, we have the fuzzy degree
of 〈(c)(d), 5〉 is 0.5 in the partition “rarely”, so that we have
〈(c)(d), rarely〉 6⊑ s, and the sequence s shown in Figure 3
is β-unexpected to the given belief.

The recognition of γ-unexpectedness is similar to the above
illustration.

4.3 Performance
Our approach is evaluated with Web access logs. Two

types of Web access log are used in our experiments: one is
a large access log file of an online forum site (labeled as BBS),

and another is a large access log file of a mixed homepage
hosting server (labeled as WWW).

Table 1: Web access logs in the experiments

Data Set Seq. Num. Dist. Items Avg. Len.
BBS 135,562 126,383 15.5591
WWW 53,325 85,810 8.3507

The composition of the two data sets are listed in Table 1.
We first apply a sequential pattern mining algorithm to dis-
cover frequent sequences for studying the general behaviors
of the data sets. The frequent 4-recurrence sequences and
8-recurrence sequences are shown in Figure 4 and Figure 5.
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Figure 4: Frequent recurrent sequences in BBS.
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Figure 5: Frequent recurrent sequences in WWW.

The recurrent sequences in the data sets show that the
recurrence behaviors depend on the semantic characteristics
of data, for instance, in our experimental data sets, the re-
currence behaviors in online forum site are more stronger
than those in mixed content Web site.

We generate 15 beliefs for each data set after examin-
ing the sequential patterns and frequent 4-recurrence and
8-recurrence sequences discovered in last step, correspond-
ing to 3 groups of 5 beliefs: with “rarely”, “often” and “fre-
quently” (according to Figure 1) appearing in the 〈sα, ωα〉
part of a belief. Table 2 lists several sample beliefs in our ex-
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Table 2: Sample beliefs

〈sα, ωα〉 〈sβ, ωβ〉 〈sγ , ωγ〉
(f=4), rarely (f=9), rarely (f=9), often
(f=0)(f=5), often (f=8), often (f=4), often
(f=5), frequently (f=4), rarely (f=9), often
/˜li/, rarely /˜li/pub/, often /˜li/pub/, rarely
/˜li/pub/, often /˜li/, rarely /˜li/doc/, often
/˜li/, frequently /˜li/doc/, rarely /˜li/doc/, often

periments, where the symbols like “(f=4)” represent a forum
ID in URL query string.

Figure 6 and Figure 7 show our experimental results.
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Figure 6: Unexpected sequences in BBS.
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Figure 7: Unexpected sequences in WWW.

With the decrease of the minimum fuzzy degree threshold,
the number of unexpected sequences increases. In Figure 6,
we find in the “frequently” partition, the number of unex-
pected sequences is much less than those in the other two
partitions, because in the data set the number of long recur-
rent sequences, such as 8-recurrence sequences, is less. We
can also find that the unexpected behaviors focus on the re-
currences between “rarely” and “often”. In Figure 7, there
is a sharp increase of the number of unexpected sequences
in the “often” partition when the minimum fuzzy degree de-
creases from 0.6 to 0.4, because in the “often” partition, the
fuzzy degree 0.5 corresponds to 4-recurrence sequences, so

that a lot of unexpected sequences in the “rarely” partition
are counted as “often”.

5. CONCLUSION
In this paper, we introduce the problem of discovering

unexpected recurrence behaviors in sequence databases. We
propose a novel notion, the fuzzy recurrence rules, for de-
picting the recurrence behaviors of the data, where fuzzy
set theory is applied to describe the recurrence of sequences.
We present a belief-driven approach for modeling two types
of unexpectedness in recurrence behaviors, where the be-
lief consists in a fuzzy recurrence rule and a semantic con-
straint on the rule. We also develop an effective algorithm
UFR, which discovers all unexpected sequences in a sequence
database with respect to domain expert specified belief base
and minimum fuzzy degree threshold. The experimental re-
sults on Web access logs show the usefulness of our propo-
sitions.

Our future research includes the discovery of fuzzy recur-
rence rules in sequential data, we believe that our proposal
of this novel rule model on sequences can be interesting for
many real-word application domains.
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