
Statistical Supports for Frequent Itemsets on

Data Streams

Pierre-Alain Laur1, Jean-Emile Symphor1, Richard Nock1, and Pascal
Poncelet2

1
Grimaag-Dépt Scientifique Interfacultaire,

Université Antilles-Guyane, Campus de Schoelcher,
B.P. 7209, 97275 Schoelcher Cedex, France

{palaur,rnock,je.symphor}@martinique.univ-ag.fr
2

Lg2ip-Ecole des Mines d’Alès,
Site EERIE, N̂ımes, parc scientifique Georges Besse,

30035 N̂ımes Cedex, France
pascal.poncelet@ema.fr

Abstract. A statistical technique is developed for estimating the sup-
port of itemsets on data streams, regardless of the size of the data stored.
This technique, which is computationally ultra fast, does not depend on
the algorithm used to build or maintain the itemsets. On frequent item-
sets, it allows to maximize either the precision or the recall, as chosen by
the user, while it does not damage the other criterion, and may even yield
very good Fβ-measures. Since the maximization of both criteria is sta-
tistically hard, this provides algorithms building frequent itemsets with
an efficient alternative to find those that are true frequents, when only
a partial storing of the data stream is technically available. Experiments
demonstrate the potential of the technique.

1 Introduction

A growing body of works arising from researchers in Databases and Data Mining
deals with data arriving in the form of continuous potentially infinite streams,
i.e. an ordered sequence of item occurrences that arrives in timely manner. Many
emerging and real applications generate data streams: trend analysis, fraud de-
tection, intrusion detection, click stream, among others. In fraud detection, data
miners try to detect suspicious changes in user behavior [6]. Trend analysis is an
important problem that commercial applications have to deal with, which is to
detect in the data stream significant trends, emerging buzz, and unusually high
or low activity [10]. Security of network systems is becoming increasingly impor-
tant as more and more sensitive informations are being stored and manipulated
online. Intrusion detection has thus become a critical approach to help protect
systems [9].

From now on, we consider items to be the unit information, and itemsets
to be sets of items. An itemset is θ-frequent if it occurs in at least a fraction θ
of the data stream (called its support), where θ is a user-specified parameter.

2

When it is not needed, we shall simply omit the θ parameter, and simply qualify
as “frequent” some itemset. Because it is fast and represent a huge amount of
information, the item flow prevents its exact storage in a database. Out of the
uncertainty it generates, the problem becomes to store the information so as to
keep valid its most crucial contents. One common example of such a content
is the list of the most frequent items of itemsets encountered, a crucial issue
in Data Mining that has recently attracted significant attention [8, 15, 12, 4, 16,
9, 13]. For example, algorithms concerned with applications such as answering
iceberg query, computing iceberg cubes or identifying large networks flows, are
mainly interested in maintaining frequent items (rather than directly itemsets).

When the database is subject to be updated regularly, maintaining frequent
itemsets has been successfully addressed by various incremental algorithms, in
order to mine association rules without having to build repeatedly everything
from scratch [2, 23]. Most of these approaches focus on building efficient data
structures and/or maintaining generalization. But, due to the high frequency
and potentially huge information carried out in a timely fashion by data streams,
these incremental approaches cannot easily handle them, unless they take the
risk to make errors [22, 7] and/or fail at estimating supports, one of the two
essential components of association rules algorithms. This is where our paper
takes place.

More precisely, we address the following questions:

(a) is it possible to set up a method which replaces the exact support by a
statistical support ensuring some desirable properties on support computa-
tions, and frequency estimations ? Ideally, we would like the resulting sup-
port to hold regardless of the algorithm used to build or maintain frequent
items/itemsets (see e.g. [2, 23]), and rely on mild theoretical assumptions so
as to be reliably implementable. For example, common statistical assump-
tions such as normality, homoscedasticity and others alike are clearly not
desirable in our setting.

(b) how good is this statistical support, both from the theoretical and experi-
mental standpoints ?

The rest of this paper is organized as follows. Section 2 goes deeper into
presenting the problems of dealing with uncertainty in data streams, and gives
an extensive statement of our problem. Section 3 presents our solution to this
problem, and its properties. Section 4 presents experimental results, and Section
5 concludes the paper with future avenues for research.

2 Problem Statement

The huge size of data streams for real-world domains compared to the limited
amounts of resources to mine them makes it necessary to cope with uncertainty

3

to achieve reasonable processing time and/or space. A significant body of pre-
vious works has addressed the accurate storing of the data stream history. This
storage problem consists in finding compact data structures to reduce the size of
the data kept out of the stream, while guaranteeing with high probability that
the items observed as frequent from the data stream are still frequent inside the
data structure [1, 3, 12].

Our setting is a bit more downstream, as we question the forecasting on the
data stream future. The data stored is used to mine information. Ideally, this
information is sought to be accurate not only on the data stored, but also on
the whole data stream itself. For example, it is not enough to observe some
item as frequent in the data stored; it is much more important (e.g. from a
business standpoint, when building association rules) to predict if it is really
frequent in the whole data stream. Similarly, it is not enough to observe that
some itemsets does not meet the observed frequency requirements to argue that
it is not frequent. It is much more important to be able to conclude whether it
is really not frequent on the whole data stream.

In this paper, we consider itemsets rather than simple items [12] to be build
and stored out of the data stream. This makes the forecasting problem even more
pregnant, as there is a natural generalization/specialization relationship between
itemsets which does not exist between ordinary items, and this relationship has
a great impact on estimating frequencies.

From the estimation standpoint, there are two sources of error:

1. it is possible that some itemsets observed as frequent might in fact not be
frequent anymore from a longer observation of the data stream, even without
a drift of the observation odds;

2. on the other hand, some itemsets observed as not frequent may well in fact
be frequent from a longer history of the data stream.

Should it rely on frequencies estimations, any loss (money, business opportunity,
etc.) due to the imperfection of the information stored is incurred by at least one
of these two sources of error. The point is that it is statistically hard to nullify
both of them from a subset, even very large, of the whole data stream [21]. It
is also generally impossible to capture the missing informations from the data
stream to make a fully accurate prediction. Our paper is aimed at obtaining
a solution to the following problem, which is a convenient relaxation of this
unsatisfiable goal:

(a) the user chooses a source of error, and fixes some related parameters;
(b) the source of error chosen is nullified with high probability, while the other

one incurs a limited loss.

It turns out that in many domains, the relative importance of the two sources
of error is not the same, and one may be much more important to control than
the other one: fraud detection, trends detection, data privacy, among others [22,

4

S∗

Xθ

X,D (unknown)

sampling

data stream (observed)

X∗
θ

Fig. 1. Sampling the domain X through distribution D yields the datastream. Our
objective is to find the intersection between the subset of X we build (S∗) and the
θ-frequents of X (Xθ). This set is called X∗

θ (see text for details).

20]. For these domains, our approach may be a very convenient way to cope with
uncertainty in finding frequent itemsets. Obviously, we also want the computa-
tional cost of the solution to be affordable for data mining purposes.

Now, let us skip to a slightly more formal presentation. The data stream
is supposed to be obtained from the repetitive sampling of a potentially huge
domain X which contains all possible itemsets, see Figure 1. Each itemset is sam-
pled independently through a distribution D for which we make absolutely no
assumption, except that it remains fixed: there is no distribution drift through
time. The reader may find relevant empirical studies on concept drift for su-
pervised mining in [6, 24]. The user specifies a real 0 < θ < 1, the theoretical
support, and ideally wishes to recover all the true θ-frequent patterns of X , that
is, each itemset that generalizes at least a fraction θ of all possible itemsets of X
with respect to D. This set is called Xθ in Figure 1, and formally defined below.

Definition 1.

∀0 ≤ θ ≤ 1, Xθ = {T ∈ X : ρX(T) ≥ θ} , (1)

with ρX(T) =
∑

T ′∈X:T≤tT ′ D(T ′), and T ≤t T ′ means that T generalizes T ′,
according to some accurate user-based definition of generalization.

The recovery of Xθ faces two problems. Apart from our statistical estimation
problem, there is a combinatorial problem which comes from the fact that X
is typically huge, even when finite. The set of observed itemsets which we have
sampled from X in the data stream, hereafter called S, has a size |S| = m
(with |.| denoting the cardinal) which is typically of minute order compared to

5

|X |. In a framework like ours, admitting a natural generalization/specialization
relationship between the data stored, we usually reduce this difference with some
algorithm returning a superset S∗ of S, having size |S∗| = m∗ > m. Typically,
S∗ contains additional generalizations of the elements of S [17]. This is not
the purpose of this paper to cover the numerous aspects and approaches to this
combinatorial problem; the key point is that S∗ is usually still not large enough to
cover Xθ, regardless of the way it is built (see Figure 1), so that the pregnancy of
our statistical estimation problem remains the same. Notice however that it has
to be addressed on a potentially very large set S∗, which implies that any solution
has to be efficient from both the statistical and computational standpoints.

Because we want it to be independent from the algorithm used to build S∗

out of S, our statistical estimation problem can be formalized as follows:

• approximate as best as possible the following set:

X∗
θ = Xθ ∩ S∗ , (2)

for any S and S∗ (see Figures 1 and 2).

Remark that ∀T ∈ S∗, we cannot compute exactly ρX(T), since we do not know
X and D. Rather, we have access to its best unbiased estimator ρS(T), which
can be easily computed from S:

∀T ∈ S∗, ρS(T) =
∑

T ′∈S:T≤tT ′

w(T ′) , (3)

with w(T ′) the weight (observed frequency) of T ′ in S. We adopt the follow-
ing approach to solve our problem, which is both simple and computationally
attractive:

• find some 0 < θ′ < 1 and approximate the set X∗
θ by the set of observed

θ′-frequent of S∗, that is:

S∗
θ′ = {T ∈ S∗ : ρS(T) ≥ θ′} . (4)

Before computing θ′, we first turn to the formal criteria appreciating the goodness-
of-fit of S∗

θ′ in regard to our two sources of error. These two sources of error,
committed with respect to X∗

θ , come from the two subsets of the symmetric
difference with S∗

θ′ , as presented in Figure 2. To quantify them, let us define:

TP =
∑

T∈S∗

θ′
∩X∗

θ

D(T) , (5)

FP =
∑

T∈S∗

θ′
\X∗

θ

D(T) , (6)

FN =
∑

T∈X∗

θ
\S∗

θ′

D(T) , (7)

TN =
∑

T∈S∗\(S∗

θ′
∪X∗

θ
)

D(T) . (8)

6

S∗
θ′ FP

S∗

TP TN

FN

X∗
θ

Fig. 2. The set we build to approximate X∗

θ (S∗

θ′) contains the observed θ′-frequents
of S. The error committed with respect to X∗

θ can be appreciated through four sets
whose weights are denoted TP , TN , FP , FN (see text for details).

The precision allows to quantify the proportion of estimated θ-frequent that are
in fact not true θ-frequents, out of S∗

θ′ :

P = TP/(TP + FP) . (9)

Maximizing P is equivalent to minimizing our first source of error. Symmetrically,
the recall allows to quantify the proportion of true θ-frequent that are missed in
S∗

θ′ :

R = TP/(TP + FN) . (10)

Maximizing R is equivalent to minimizing our second source of error. In the
experimental section, we shall also make use of a well known quantity in infor-
mation retrieval, which is a weighted harmonic average of precision and recall,
the Fβ-measure. In this measure, we can adjust the importance of one source of
error against the other one:

Fβ = (1 + β2)PR/(R + β2
P) , (11)

with β > 0 some user-fixed real. β = 1 makes the two sources of error equivalent;
the first source of error becomes more important as β → 0, and the second one
becomes more important as β → ∞.

Now, let us return to fixing the value of θ′. A naive approach to approximate
X∗

θ would typically be to fix θ′ = θ, and thus keep exactly the observed θ-
frequent of S∗. Unfortunately, the main and only interesting property of S∗

θ′ is
that it converges with probability 1 to X∗

θ as m → ∞ from the Borel-Cantelli
Lemma [5]. Glivenko-Cantelli’s Theorem gives a rate of convergence as a function
of m, but this is only useful to yield the maximization of P and R in the limit.

The next Section presents our approach to solving our problem.

3 Choosing θ
′

Informally, our approach boils down to picking a θ′ different from θ, so as to
maximize either the precision or the recall, as chosen by the user. Clearly, ex-
tremal values for θ′ would do the job, but they would yield very poor values for

7

Fβ , and also be completely useless for data mining purposes. For example, we
could choose θ′ = 0, and would obtain S∗

0 = S∗, and thus R = 1. However, in
this case, we would also have P = |X∗

θ |/|S
∗|, a too small value for many domains

and values of θ, and we would also keep all elements of S∗ as true θ-frequents,
a clearly huge drawback for mining issues. We could also choose θ′ = 1, so as to
be sure to maximize P this time; however, we would also have R = 0, and would
keep no element of S∗ as θ-frequent. Again this would not be very useful for
mining issues.

These extremal examples show the principle of our approach. Should we want
to maximize the precision, we would pick a θ′ larger than θ to guarantee with
high probability that P = 1, yet while keeping large enough values for R (or Fβ),
and a set S∗

θ′ not too small to contain significant informations. There is obviously
a statistical barrier which prevents θ′ to be too close to θ to keep the constraint
P = 1 (Cf Section 2, last §). The objective is to be the closest to this barrier,
which statistically guarantees the largest recall values under the constraint.

The same principle holds for the maximization of the recall. This time, we
pick a θ′ smaller than θ, and hopefully close enough to the statistical barrier for
θ′ under which we have R = 1. This time, we aim at keeping large enough values
for the precision, and a set S∗

θ′ not too large to be mined efficiently.
The following Theorem states explicitly our bound for the maximal precision.

Its key feature is that it holds regardless of the domain, the distribution of the
itemsets, the size of S∗, or the user-fixed parameters (support, statistical risk).
It relies only on a rather mild assumption for sampling the itemsets out of the
data stream (namely, its independence).

Theorem 1. ∀X, ∀D, ∀m > 0, ∀0 ≤ θ ≤ 1, ∀0 < δ ≤ 1, suppose we pick some ε
satisfying:

ε ≥

√

1

2m
ln

|S∗|

δ
.

If we fix θ′ = θ + ε in eq. (4), then P = 1 with probability at least 1 − δ.

Now, we state the equivalent Theorem for the maximal recall.

Theorem 2. ∀X, ∀D, ∀m > 0, ∀0 ≤ θ ≤ 1, ∀0 < δ ≤ 1, suppose we pick some ε
satisfying:

ε ≥

√

1

2m
ln

|S∗|

δ
.

If we fix θ′ = θ − ε in eq. (4), then R = 1 with probability at least 1 − δ.

These Theorems are proven using standard tools on concentration inequali-
ties [18]; due to the lack of space, we skip their proofs. The main point is that
the values of θ′ seem to be very close to the statistical barriers [21, 14] that still
guarantee the maximal values for the precision or recall.

8

Database DB size Total items Max. size Avg. size

Accidents 340183 468 51 34
Retail 88163 16470 76 11
Kosarak 990002 41270 2498 9

Fig. 3. Databases used. For each of them, we give, from left to right, the whole number
of transactions of the database, the whole number of items, the maximum size of a
transaction, and the average size of a transaction.

4 Experiments

Since our method for statistical supports does not depend on the algorithms
used to build the frequent itemsets or the association rules, and since its com-
putational cost is not larger than that of computing ordinary frequencies, we
do not evaluate it in terms of speed. Rather, we focus on evaluating how our
statistical support can be helpful to mine frequent itemsets on a data stream,
given a fragment of this stream.

This experimental Section is split in four subsections: we first explain the
measures to evaluate the quality of the frequent itemsets kept. Then, we present
the databases used. The third subsection presents the experimental setup, and
the last one presents and discusses the results.

4.1 Performance measures

We previously define in eqs. (9), (10) and (11) the following information retrieval
measures: the precision (P), the recall (R) and a weighted harmonic average of
both, the Fβ measure. These measures are widely spread to evaluate statistical
predictive models. We have chosen to use them in our experiments as we thought
they are the most reliable to evaluate our method.

4.2 Data used

In order to evaluate our predictive method we have chosen three real life databases
from the Frequent itemsets Mining Dataset Repository [11], whose principal goal
is to evaluate and compare association rules algorithms. We explain in the ex-
perimental set-up subsection below how these sets are used as data streams to
evaluate our method; we focus here on the content of these sets, as shown in
Figure 3.

The first database of Fig. 3, named “Accidents”, is obtained from the Na-
tional Institute of Statistics (NIS) for the region of Flanders (Belgium) for the
period 1991-2000. More specifically, the data are obtained from the Belgian

9

Database θ sampling1 sampling2 δ

Accidents [.3, .9] / .05 [.01,.1] / .01 [.1, 1] /.03 [.01, .11] / .02
Retail [.05, .1] / .01 [.01,.1] / .01 [.1, 1] /.03 [.01, .11] / .02
Kosarak [.05,.1] / .01 [.01,.1] / .01 [.1, 1] /.03 [.01, .11] / .02

Fig. 4. Range of parameters for the experiments. For each parameter, the range of
values it takes is given on the form [a, b]/c, where a is the starting value, c is the
increment, and d is the last value. Thus, the set of values is {a, a + c, a + 2c, ..., b}. θ is
the minimum theoretical support, δ is the risk parameter. The columns “sampling1”
and “sampling2” give the two scales of percentages of the database sampled out of the
data stream (see text for details).

”Analysis Form for Traffic Accidents”, a form that has to be filled out by a po-
lice officer for each traffic accident that occurs with injured or deadly wounded
casualties on a public road in Belgium.

The second data set, named “Retail”, is supplied by an anonymous Belgian
retail supermarket store. The data are collected over a period ranging from
December 1999 till November 2000. Each record contains informations about
the customer ID, the date of purchase and the various items bought.

The third data set, named “Kosarak”, contains anonymized click-stream data
of a Hungarian on-line news portal.

4.3 Experimental setup

In order to analyze the correctness of our statistical supports, we need to eval-
uate as many situation as possible, that is, we need to use our method with a
range as large as possible for each of the free parameters. These parameters that
vary during our experiments are described in Fig. 4.

Better than using a real data stream, which would possibly skew the perfor-
mance evaluations of the statistical supports, we have chosen to simulate data
streams assuming the complete knowledge of the domains, thus allowing to com-
pute exact values for the performance measurements. More precisely, using the
databases of Fig. 3, we simulate data streams by sampling each database into
fragments. For example, we could consider that data arrive in a timely manner
from the “Accidents” database, and that only 20% of the whole data is available
and stored. So we pick 20% of the transactions of this database, we consider
that it is the data stored, and and check the P, R and Fβ values with the whole
database. Obviously, 20% is an arbitrary percentage, and we have in fact chosen
to sample the database on a broad range of percentages. In fact, we have used
two scales. The first allows a fine sampling of the database, for small values
ranging from 1% to 10% by steps of 1% (column “sampling1” in Fig. 4), and
typically gives an idea of what may happens for very large, fast data streams.We
have completed this first range with a coarse range of samplings, from 10% to

10

100% by steps of 3% (column “sampling2” in Fig. 4), which gives a basic idea
of the average and limit behaviors of our method.

Finally, δ has been chosen to range through a somewhat usual interval of
values for common statistical risks, i.e. starting from 1% and stopping at 11%
by steps of 2% (see Fig. 4).

On the top of our experiments, we have chosen to use a very convenient
association rule mining algorithm, kdci [19]. Given the very large number of
tests to do for each database, we have written a test generator, which automat-
ically crosses the parameters, and makes all experiments for all possible tuples
of parameters. This represents thousands of runs over all databases.

4.4 Results and discussion

Due to the very large number of experiments and the lack of space to report them
all, we have separately chosen to put the detail of the experiments and resulting
plots into web pages, that make navigation more convenient and understandable.
The interested reader can found these results and plots on a separate webpage3.
Here, we have chosen to report some plots we consider as representative, and
make a synthesis out of the whole results.

Figure 5 shows result from experiments on the Accidents and Retail databases.
Each plot describes for one database and one support value, either the precision
or recall of the three methods which consist in keeping S∗

θ−ε, S
∗
θ , and S∗

θ+ε. No-
tice that the value of the risk parameter is kept constant for the plots we show,
i.e. δ = .05.

A first glance at these plots, or the other ones we have computed, on whichever
of the three databases, reveals that their behavior is almost always the same.
Namely:

– the precision increases with θ′ (eq. 4), while the recall decreases with θ′,
– the precision equals or approaches 1 for a large majority of storing sizes when

θ′ = θ + ε,
– the recall equals or approaches 1 for a large majority of storing sizes when

θ′ = θ + ε.

These observations are in accordance with the theoretical results of Section 3.
There is another phenomenon we may observe: for example, the recall associated
to θ′ = θ + ε is not that far from the recall for θ′ = θ. Similarly, the precision
associated to θ′ = θ − ε is not that far from the precision for θ′ = θ. This
shows that the maximization of the precision or recall is obtained at a reduced
degradation of the other parameter. We also remark that the precision plots tend
to be better than the recall plots. This is not really surprising, as advocated in
Section 3, since the range of values for the precision is smaller than for the recall.

3 http://www.univ-ag.fr/grimaag/statisticalsupports/

11

A close look at small storing sizes of the streams (before 10%) also reveals a
more erratic behavior without convergence to maximal precision or recall. The
behavior for the Retail and Kosarak databases are also the same. This behavior
is not linked to the statistical support, but to the databases used. Indeed, the
data stream is simulated out of each database. So, small databases lead to even
smaller storing sizes, and frequent itemsets kept out of small databases are in
fact trickier to predict than for bigger databases. This point is important as,
from a real-world standpoint, we tend to store very large databases, so we may
expect this phenomenon to be reduced. We are actually leading experiments to
validate this point.

On the smallest databases, such as Retail and Kosarak, another phenomenon
seems to appear. First of all, during the experiments, because of the small values
for θ, some tests have not be performed because θ− ε was < 0, which is uninter-
esting as advocated in Section 3. Furthermore, the greater difference observed
between the curves seems to stem out from the different sizes of databases. For
example, the Retail database is smaller than the Accidents database by a factor
3. In addition, the number of frequent itemsets found in this database is not
more than a hundred. For the sake of comparison, the Accidents database for
the smallest θ gives hundreds of thousands frequent itemsets. This, we think,
explains the greater differences between the curves: they are mostly a small
database phenomenon, and may not be expected from larger databases, or even
real-world data streams.

In Figure 6, two sets of two plots taken from the Accidents database plot
the Fβ measure, against the size of the stream used (in %). The values of β
have been chosen different from 1, since it would make no real sense to put the
same weight into precision and recall, given that we put our primary emphasis
on the maximization of a single criterion. The values have also been chosen not
too small or too large to yield a reasonable prominence of one criterion (.2 and
1.8, see Figure 6). In each plot, the Fβ value displays the advantage of choosing
θ′ = θ ± ε against the choice θ′ = θ. This is all the more interesting as this is
obtained while statistically guaranteeing the maximal value for whichever of the
precision or recall criterion chosen by the user.

5 Conclusion

There are three main contributions in this paper. First, we discuss the replace-
ment of the conventional minimal support requirement for finding frequent item-
sets by a statistical support, in cases where storing the entire data is impossible
(such as for data streams). Then, we provide a method to compute this sta-
tistical support, while keeping relevant statistical properties. Last, we validate
experimentally our approach.

12

There are a number of possible extensions to this work. First, technically
speaking, our statistical support is optimal from a qualitative standpoint, since
maximizing both the precision and recall is, as we have advocated, statistically
hard. We feel that the bounds on θ′ we have obtained also yield a statistical
support which is quantitatively optimal. Previous works on the statistical validity
of prediction rules tend to show that it is the case [14, 18, 21], but this remains
to be formally shown.

The most promising extensions to this work certainly concern the application
of the technique to relevant data mining subfields, such as sequential pattern
mining or building borders in incremental mining. One very promising research
direction would also be to integrate our approach with those exploring data
structures to maintain items that are observed as frequent with maximal recall
[12]. In the framework of data streams, where they are particularly relevant, it
would be much more efficient from a statistical standpoint to keep the itemsets
that are truly frequent, better than simply observed as frequent, thus killing two
birds in one shot for minimizing approximation errors. Because of the technical
machinery used in these papers, mixing the approaches into a global technique
for reducing the error in maintaining frequent itemsets out of data streams may
be more than simply interesting: it seems to be very natural.

References

1. M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data
streams. In Proc. of the 29 th International Colloquium on Automata, Languages,
and Programming, pages 693–703, 2002.

2. D. Cheung, J. Han, V. Ng, and C. Wong. Maintenance of Discovered Association
Rules in Large Databases: An Incremental Updating Technique. In Proc. of the
12th International Conference on Data Engineering, pages 106–114, New Orleans,
Louisiana, February 1996.

3. G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most
frequent items dynamically. In Proc. of the 22nd ACM Symposium on the Principle
of Database Systems, pages 296–306. ACM Press, 2003.

4. E. Demaine, A. Lopez-Ortizand, and J.-I. Munro. Frequency Estimation of Internet
Packet Streams with Limited Space. In Proc. of the 10th European Symposium on
Algorithms, pages 348–360, 2002.

5. L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recogni-
tion. Springer, 1996.

6. W. Fan, Y.-A. Huang, H. Wang, and P.-S. Yu. Active mining of data streams. In
Proc. of the 4th SIAM International Conference on Data Mining, pages 457–461,
2004.

7. M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and Mining Data Streams:
You only get One Look. In Turorial notes of the 28th International Conference on
Very Large Databases (VLDB’02), pages 682–693, 2002.

8. C. Giannella, J. Han, J. Pei, X. Yan, and P.-S. Yu. Mining Frequent Patterns
in Data Streams at Multiple Time Granularities, chapter 6. Data Mining: Next
Generation Challenges and Future Directions. H. Karguta, A. Joshi, K. Sivakumar
and Y. Yesha (Eds.). MIT/AAAI Press, 2004.

13

9. L. Golab and M. Tamer Ozsu. Issues in Data Stream Management. ACM SIGMOD
Record, 2(2):5–14, June 2003.

10. S. Gollapudi and D. Sivakumar. Framework and Algorithms for Trend Analysis
in Massive Temporal Data Sets. In Proc. of the 13 th International Conference on
Information and Knowledge Management, pages 168–177, 2004.

11. Frequent itemset mining dataset repository — http://fimi.cs.helsinki.fi/data, 2005.
12. C. Jin, W. Qian, C. Sha, J.-X. Yu, and A. Zhou. Dynamically maintaining fre-

quent items over a data stream. In Proc. of the 12 th International Conference on
Information and Knowledge Management, pages 287–294. ACM Press, 2003.

13. R.-M. Karp, S. Shenker, and C.-H. Papadimitriou. A Simple Algorithm for Finding
Frequent Elements in Streams and Bags. ACM Transactions on Database Systems,
28(1):51–55, March 2003.

14. M. J. Kearns and Y. Mansour. A Fast, Bottom-up Decision Tree Pruning algorithm
with Near-Optimal generalization. In Proc. of the 15 th International Conference
on Machine Learning, pages 269–277, 1998.

15. H.-F. Li, S.-Y. Lee, and M.-K. Shan. An Efficient Algorithm for Mining Frequent
Itemsets over the Entire History of Data Streams. In Proc. of the 1st Int. Workshop
on Knowledge Discovery in Data Streams, Pisa, Italy, 2004.

16. G. Manku and R. Motwani. Approximate Frequency Counts over Data Streams.
In Proc. of the 28th International Conference on Very Large Databases, pages 346–
357, Hong Kong, China, 2002.

17. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

18. R. Nock and F. Nielsen. Statistical Region Merging. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 26(11):1452–1458, 2004.

19. S. Orlando, P. Palmerini, R. Perego, C. Silvestri, and F. Silvestri. kDCI: a multi-
strategy algorithm for mining frequent sets. In Proc. of the Workshop on Frequent
Itemset Mining Implementations, in conjunction with ICDM 2003, 2003.

20. S.-J. Rizvi and J.-R. Haritsa. Maintaining Data Privacy in Association Rule Min-
ing. In Proc. of the 28th International Conference on Very Large Databases, pages
682–693, 2002.

21. V. Vapnik. Statistical Learning Theory. John Wiley, 1998.
22. A. Veloso, B. Gusmao, W. Meira, M. Carvalho, S. Parthasarathy, and M.-J. Zaki.

Efficiently Mining Approximate Models of Associations in Evolving Databases. In
Proc. of the 6th European Conference on the Principles and Practice of Knowledge
Discovery in Databases, pages 435–448, 2002.

23. A. Veloso, W. Meira, M. Carvalho, B. Possas, S. Parthasarathy, and M.-J. Zaki.
Mining Frequent Itemsets in Evolving Databases. In Proc. of the 2nd SIAM Inter-
national Conference on Data Mining, pages 31–41, Arlington, April 2002.

24. H. Wang, W. Fan, P.-S. Yu, and J. Han. Mining concept-drifting data streams with
ensemble classifiers. In Proc. of the 9th International Conference on Knowledge
Discovery in Databases, pages 226–235, 2003.

14

Accidents, θ = .6

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P

Size (%)

(Pθ, Pθ+ε, Pθ-ε) = f(size S)

Pθ+ε
Pθ-ε

Pθ
 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100

R

Size (%)

(Rθ, Rθ+ε, Rθ-ε) = f(size S)

Rθ+ε
Rθ-ε

Rθ

Accidents, θ = .3

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P

Size (%)

(Pθ, Pθ+ε, Pθ-ε) = f(size S)

Pθ+ε
Pθ-ε

Pθ
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

R

Size (%)

(Rθ, Rθ+ε, Rθ-ε) = f(size S)

Rθ+ε
Rθ-ε

Rθ

Retail, θ = .05

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

P

Size (%)

(Pθ, Pθ+ε, Pθ-ε) = f(size S)

Pθ+ε
Pθ-ε

Pθ
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

R

Size (%)

(Rθ, Rθ+ε, Rθ-ε) = f(size S)

Rθ+ε
Rθ-ε

Rθ

Fig. 5. Three examples of plots for two of our databases, with δ = .05. For three
different values of θ, we give the precision (left plot) and recall (right plot) for the
three methods consisting in picking S∗

θ−ε, S
∗

θ , S∗

θ+ε. The x-axis denotes the percentage
of the data kept out of the simulated data stream (see text for details).

15

θ = .6

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

Fβ

Size (%)

(Fβ θ, Fβ θ+ε, Fβ θ-ε) = f(size S)

Fβ θ+ε
Fβ θ-ε

Fβ θ
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90 100

Fβ

Size (%)

(Fβ θ, Fβ θ+ε, Fβ θ-ε) = f(size S)

Fβ θ+ε
Fβ θ-ε

Fβ θ

θ = .3

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

Fβ

Size (%)

(Fβ θ, Fβ θ+ε, Fβ θ-ε) = f(size S)

Fβ θ+ε
Fβ θ-ε

Fβ θ
 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

Fβ

Size (%)

(Fβ θ, Fβ θ+ε, Fβ θ-ε) = f(size S)

Fβ θ+ε
Fβ θ-ε

Fβ θ

Fig. 6. Two sets of plots of the Fβ value from the Accidents database, with β = .2 for
the left plots and β = 1.8 for the right plots (see text for details).

