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With recent technological developments, 
the acquisition and storage of large da-
tasets from various domains are now 

common. However, outliers in these datasets can 
arise due to changes in system behavior, instru-
ment or human error, intentional fraudulent 
behavior, or natural deviations in population re-
sulting from epidemics and virus infections. The 
detection of these outliers now has many appli-
cations in data cleansing, stopping fraudulent in-
tentions, controlling disease outbreaks, detecting 
infected individuals, and so on. 

A recent outlier detection research area con-
cerns the identification of rare events. Members of 
this group of outliers are similar to each other, 
but they deviate from the dataset’s general behav-
ior, thus arousing suspicions that they were gener-
ated by a different mechanism. Furthermore, these 
groups are usually small compared with clusters or 
groupings within the entire dataset, which is why 
they’re classified as outliers. Detection of such 
groups is more challenging when the aim is to de-
tect only the groups of outliers that are similar to 
each other but markedly different from the entire 
population. Examples of such rare events include 
identification of students in a class that excel 
academically or a group of spammers or autobots 
that increase the popularity of an individual or an 

event in an online social network. (See the “Defin-
ing an Outlier and a Group of Outliers” sidebar 
for more information on this topic.) 

One critical application of detecting rare events 
arises in biomedical science and clinical research, 
specifically, the problem of extracting rare events 
from flow cytometry standard (FCS) data (see the 
“Flow Cytometry” sidebar). Such files consist of 
multiparametric descriptions of 
thousands to millions of individ-
ual and rare cells—called biologi-
cal markers of interest—are used to 
monitor vascular diseases, oncol-
ogy, and infectious diseases. The 
detection of rare events with a 
high recall—that is, with no false 
negatives—is critical in this do-
main because the cost of missing 
pathologic cells is significantly 
higher than the cost of misclas-
sifying a healthy group of cells. 

In this article, we address this 
challenging problem of detecting 
rare events in FCS files. Our proposed approach is 
based on initial candidate selection using k-nearest 
neighbors (kNN), filtering irrelevant candidates, 
applying a metric for detecting densely connected 
data items, and rendering a representation for 

Although the problem of 
identifying single outliers 
has been extensively studied 
in the literature, little effort 
is devoted to detecting 
small groups of outliers. A 
novel method to solve this 
challenging problem lies at the 
frontiers of outlier detection 
and clustering of similar 
groups. 
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interactive visual detection of the cluster of interest. 
Results demonstrate the accuracy and effectiveness 
of our proposed algorithm when compared with 
available ground truth. We conducted experiments 
to detect pathologic cells, and we intend to extend 
this study to other types of datasets as part of future 
work. (See the “Outlier Detection Approaches” 
sidebar for a review of earlier work.)

Flow Cytometry
Flow cytometry is a laser-based, biophysical tech-
nology used in cell counting, sorting, biomarker 
detection, and protein engineering. This technol-
ogy allows the measurement of blood cell charac-
teristics at very high rates (up to thousands of cells 
per second). Figure 1 illustrates the flow cytometry 
process.

Each cell passes through one or more light 
beams that measure the fluorescent signals from 
individual cells—these have different possible re-
sponses depending on the fluorophores added to 
the blood sample. This fluorescence process gen-
erates considerable information about cells and 
allows their separation (an antibody is linked to 
a fluorescent dye and bound to a protein that’s 
discriminative between cells). Finally, fluorescence 
levels in response to cell markers are stored in flow 
cytometry standard (FCS) data files.1

Current flow cytometers can count up to tens 
of millions of cells in the normal cell populations 
found in any healthy patient, such as lymphocytes 
or monocytes. In patients presenting with a blood 
pathology, the blood samples also contain micro-
clusters of cells with abnormal signatures—that 
is, abnormal combinations of cell marker fluores-
cence levels. 

According to Douglas Hawkins, “An outlier is an 
observation which deviates so much from the other 

observations as to arouse suspicions that it was generated 
by a different mechanism.”1 Vic Barnett and Toby 
Lewis define an outlier as “An observation or subset of 
observations which appear to be inconsistent with the 
remainder of that dataset.”2

Other terminologies commonly used for outliers 
are novelty detection, anomaly detection, one-class 
classification, noise detection, deviation detection, and 
exception mining.3 Outlier detection has been found 
to be useful in numerous applications, such as intrusion 
detection in computer networks, fraudulent usage of 
credit cards, topic detection in news documents and 
webpages, discovery of temporal changes in evolving 
online social networks, and identification of inconsistent 
digital records.

Analogous to an outlier, a group of outliers can be 
defined as a subpopulation of individuals with general 
behavior that is similar to each other but that differs 
from the entire population. The cardinality of this set of 
rare events is usually small compared with the general 
grouping of the dataset, which classifies them as outliers. 
We use the term rare events in the main article to refer to 
this group of outliers, but synonyms such as a cluster of 

outliers,4 clustered anomaly,5 anomaly collection,6 and 
microclusters7 are also used in the literature. 
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Defining an Outlier and a Group of Outliers

Cell1 Cell1 Celln
Fluo1 446 2,773 ... 3,676

... ... ... ... ...

Fluoj 2,144 7,779 ... 10,836

Figure 1. Principle of a flow cytometer. Cells are suspended in a stream 
and passed by a laser beam. The light hitting the cells is re-emitted 
according to the cell characteristics. Values (fluorescent signals from 
individual cells) are stored in corresponding fields for further analysis.
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The operator usually performs a visual detec-
tion by sequentially inspecting two-dimensional 
spaces, which are combinations of two markers 
(see Figure 2). This approach leads to high inter-
variability (17 to 44 percent)2 among research 
laboratories about what defines an abnormal cell 
population; it’s also sensitive to complex multi-
variate relationships.

Flow cytometers of the current generation have 
a capacity for analyzing more than 105 cells per 
second. They measure the characteristics of single 
cells determined by visible and fluorescent light 
emissions from the markers on the cells. These 
labeled cells pass a laser that emits light at a spe-
cific wavelength according to the specific mark-
ers attached to the cell fluoresce. For each cell, a 
fluorescence intensity value is collected and stored 
in FCS data files3 that consist of multiparametric 
descriptions of thousands to millions of individual 
cells. Analyzing and sorting subpopulations widely 
representing immune cells (CD4 + T lymphocytes, 
CD8 +, B, or NK) is a common practice.4

Recent biomedical science and clinical research 
has addressed the problem of extracting rare 
events from these data files3 with 1 × 102 to 1 × 
103 cells per milliliter (ml) of blood cells for 20 ml 
of blood. Rare events in these cells often occur at 
a very low frequency, with researchers citing this 
number as between 0.1 to 0.00001 percent of the 
total population.5 Recent advances in flow cytom-
etry have enabled it to emerge as an important tool 
in the systems biological approach to theoretical 
and clinical research.3

Methods for analyzing FCS consist of grouping 
individual cell data records into discrete popula-
tions based on similarities in light scattering and 
fluorescence.6 This is usually done by sequential 
manual partitioning (or gating)—plotting differ-
ent combinations of descriptors two at a time in 
a 2D scatter plot and then selecting subgroups of 

cells using gates. Cells within the gates are se-
lected for further analysis and plotted in another 
2D scatter plot with a different axis. However, 
the main problem with this approach is that it’s 
tedious, it can miss subgroups of rare cells,7 and 
there are difficulties in effectively analyzing high-
dimensional data.4

Proposed Method
Our proposed method takes tabular data as input, 
with each row corresponding to a data item (a 
blood cell) along with its numeric attributes and 
the cluster of interest, which is a set of rare events, 
as shown in Figure 3. 
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Figure 2. Original data events on a flow cytometry blood sample. The 
standard approach of visually inspecting combinations of markers high 
intervariability among research laboratories.

Cell information Detected
rare events

Detection steps

1. Initial candidate selection of K
nearest cells using KNN algorithm

2. Construction of directed graph

3. Removal of nodes with
in-degree > ClusterSize

4. Transformation into a simple graph

5. Detection of densly connected
nodes using strength and color 

encoding for visual layout

6. Rendering and visual encoding
to highlight group of suceptible

cell in visual layout

7. Interactive exploration using
histograms to detect rare events

Figure 3. Proposed method. Taking tabular data as input, we use these seven steps to detect rare events.
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For each pair of data items, we calculate the Eu-
clidean distance as the similarity metric among 
data items. The next step is to construct a graph 
based on this similarity among data items. For 

each node, we find the nearest neighbors in terms 
of distances using the kNN algorithm,8 where K is 
a priori known. For every node, directed edges are 
introduced, with the target nodes being a node’s K

There are different approaches to detecting outliers in 
the literature.1 For example, we can determine outliers 

without any prior knowledge, an approach that processes 
data and identifies the most distant points as outliers. If 
the data distribution is known, data points that don’t fol-
low the known distribution can be classified as outliers. 
Alternatively, there can be multiple predetermined classes 
of normal data, and deviation from these classes reveals 
outliers. Another perspective considers parametric and non-
parametric methods: statistical methods often take some 
parameters as input, whereas methods based on distance 
and density don’t require any input parameters.1

A completely different technique for detecting groups of 
outliers is based on clustering algorithms, where the idea is 
to identify clusters that are smaller in size and classify them 
as outliers.2 Clustering algorithms such as K-means are ide-
ally suited to finding convex clusters, but these algorithms 
are also highly sensitive to input parameters and can result 
in misclassification of clusters and outliers.3 Usually, cluster-
ing algorithms attempt to balance clusters of varying sizes. 
For example, spectral clustering algorithms have gained in 
popularity because if their low time complexity and scal-
ability, but they use RatioCut and Ncut to create balanced 
clusters,4 thus making them impractical for detecting rare 
events. Some clustering algorithms allow the generation of 
different size clusters,5 but a priori knowledge about cluster 
size is required to detect rare events, which is difficult in 
most domains. Furthermore, different clustering algorithms 
can result in different clusters for the same dataset. With all 
of these described inconsistencies in clustering algorithms, 
it’s hard to rely on them to detect true positives, especially 
in critical applications. 

Cluster-based approaches often use densities and dis-
tances to identify outliers. For instance, DBSCAN,6 the 
most common density-based clustering algorithm, uses 
the notion of density reachability to allow the detection of 
clusters of arbitrary sizes and shapes, but it can’t handle 
clusters of different densities. Another approach is based 
on the notion of isolation.7 Such methods take advantage 
of the fact that anomalies rarely occur in datasets; based 
on training using subsamplings and evaluation stages, they 
instead discover rare events by building forests of binary 
trees. These methods are effective in revealing global rare 
events, but they perform suboptimally when rare events 
are close to the entire population’s general behavior. In 
LOCI,8 the detection of outlying clusters depends on the 
choice of nearest-neighbor minimum number of points 
(MinPts) that define the local neighborhood. Actually, the 

detection of very small clusters requires a MinPts large 
enough to contain all points in a cluster—that is, larger 
than the cluster’s size. LOCI thus proposes a multigranular-
ity deviation factor (MDEF) and identifies outliers as points 
with a neighborhood size that is significantly different than 
their neighbors’ neighborhood size. It then relies on an 
appropriate choice of neighborhood size and requires the 
neighborhood’s maximum radius as an input parameter. 

A new approach, called RARE,9 proposes a two-step process 
to extract rare cells. First, it prunes the search space by remov-
ing obvious clusters that don’t contain rare events. Second, 
it carefully grows these clusters, preserving their consistency. 
Although this approach has proved efficient for extracting rare 
events, the major drawback is its dependency on the required 
input parameters, which are hard to predetermine. 

Another approach to detecting outliers is the use of 
summary statistics and visual representations. Boxplots, 
along with its variations,10 have commonly been used to 
compare univariate distributions as well as to detect outli-
ers. However, these visual representations are hard to read 
and not scalable with multivariate data. 

Recent advances in visual analytics and visual data min-
ing have also introduced approaches to detecting outliers 
through visual representation and interactive explora-
tion.11 Visualization techniques exploit the human pattern 
recognition capacity to detect anomalies and are devel-
oped by building user interfaces and interactions to deal 
with the graphical representation of data.12 The problem 
with these approaches is their limited application to large 
datasets; it becomes hard to interactively explore and find 
rare events in thousands and millions of data items. 

Extensive literature on the outlier detection issue is 
available in the form of surveys and books,2,13–16 but these 
works don’t approach the problem of detecting rare 
events. In the main text, we introduce a novel method to 
address this issue from an interactive visualization stand-
point and demonstrate that proper visual encoding is a 
powerful technique for exploring very large datasets.
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nearest neighbors in terms of the Euclidean dis-
tance calculated earlier. The choice of K value de-
pends on the estimated size of the rare events that 
we’re trying to detect. For problems where this size 

can’t be estimated, we interactively test different 
values to find an appropriate threshold. For patho-
logic cells, because we know that the usual cluster 
size is 50, we consider K = 100 so as to ensure that 
we don’t miss any true positives.

Hence, we obtain a directed graph where each 
node is connected to its K most similar data items. 
Because the maximum number of data items in a 
cluster is a priori known, we apply a filter to re-
move all nodes with an in-degree greater than the 
known cluster size. This is because all these nodes, 
which are similar to many other nodes, represent 
regular data items that can be found readily in 
the graph and thus can’t belong to the group of 
rare events. After filtering nodes with an in-degree 
higher than the cluster size, we ignore the orien-
tation of edges to obtain a simple graph; the edge 
direction isn’t used in further processing. Figure 4 
shows the graph we obtain as a result.9,10

The next step aims to find clusters of nodes 
based on their structural similarity. We use the 
strength metric to detect densely connected 
groups of nodes within the graph. David Au-
ber and his colleagues introduced this metric to 
quantify the neighborhood cohesion of a given 
edge and thus determine if it’s an intra- or an 
inter-community edge within a network.11 The 
metric assigns nodes and edges a high value if 
they’re connected densely to each other (just like 
a clustering coefficient), but it considers cycles of 
size 4 as well.

Figure 4. Visual representation of the simple graph generated in step 
4 of our proposed method. A force directed algorithm FM3 is used to 
render the graph.9,10
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The strength of an edge e given by ws(e) is 
defined as follows:

w e e
e

s( ) ( )
( )

,

max
= γ
γ

3 4 ,

where γ3,4(e) is the number of cycles of sizes 3 
or 4 that the edge e belongs to and γmax(e) is the 
maximum possible number of such cycles. Based 
on this definition, we define the strength of a 
vertex as follows: 

w u
w e

u
s

se u( )
( )

deg( )
( )= ∈∑ adj ,

where adj(u) is the set of edges adjacent to u, and 
deg(u) is the degree of vertex u. The time complex-
ity to calculate the strength metric over all verti-
ces (V) and edges (E) is O(|E| • (degmax)2), where 
degmax is the maximum degree of the graph. In our 
case, because the maximum degree is bounded by 
a constant factor, the calculation remains con-
stant in linear time in terms of number of edges 
in the graph. 

Figure 5 shows the result of calculating the 
strength metric and applying color encoding on 
the graph nodes and vertices. The scale depends 
on the node value interval; we used the Tulip 
plugin for color mapping.12 The user defines a list 
of colors, with the first one given to nodes having 
the highest values and the last one to nodes having 
the lowest one. A linear interpolation between 
consecutive colors of the list is used for the other 
values. In our example, nodes and edges in red 
highlight the potential rare events in the figure 
(Figure 5a shows the result, and Figure 5b shows 
the color scale). 

We prefer the strength metric to the clustering 
coefficient because triads are more frequently pres-
ent in these datasets as compared to cliques of size 
4. If we use a clustering coefficient as a metric to 
detect densely connected groups of nodes, a large 
number of true negatives will be detected. This will 
ultimately slow down the interactive detection pro-
cess because domain experts would require further 
manual verification. We didn’t use metrics to cal-
culate cliques of size 5 and above because such a 
calculation would become too slow for large datas-
ets, as discussed in detail elsewhere.13

The final step is to visually detect the presence 
of rare events that form a cluster in the graph. We 
plot the histogram of strength of nodes along with 
their frequencies (as shown in Figure 5a), which 
immediately reveals that many nodes have very 
low strength value. Domain experts interactively 
remove those nodes from the graph by using his-
tograms of frequency distribution, eventually leav-
ing only a few nodes with high strength value, as 
shown in Figure 6a.

Domain experts then manually remove true 
negatives and obtain the required rare events, 
which is a set of densely connected nodes that have 
a high similarity to each other, as shown in Figure 
6b. High similarity of nodes is depicted with color 
encoding: the red color indicates high similarity, 
and a gradual degradation to blue indicates low 
similarity among pairs of nodes. 

Case Studies and Prototype
A comparative study of different graph-drawing 
software packages clearly shows that Tulip scales well 
to rendering graphs and networks with hundreds of 
thousands of nodes and edges,14 thus making it the 
ideal platform to implement our proposed method. 

(b)(a)
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Figure 5. Computing the strength metric in step 6 and visually encoding it on nodes/edges, from blue (low values) to red (high 
values).9 (a) The histogram shows the frequency distribution of different strength values; rare events appear in red at the bottom 
left of the graph. (b) In the color-mapping plugin Tulip,10 the user defines a list of colors—the first one is given to nodes having 
the highest values and the last to nodes having the lowest. A linear interpolation between consecutive colors of the list is used 
for the other values. 
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The computation time of the strength metric takes 
only a few seconds (even on the larger datasets 
described hereafter), and manual removal is fast 
enough to preserve the tool’s interactivity.

Real-World Datasets
A domain expert performed experiments on real-
world datasets with our method as we explained 
to him how to interact with the tool (see Table 1). 
He validated the results obtained using classical 
methods.

Figure 7 shows the results obtained for the three 
datasets presented in Table 1. When compared 
with the available ground truth, these results 
demonstrate that our proposed method success-
fully found the pathologic cells within the doctor-
provided dataset. In all three cases, the domain 
expert and the ground truth also identified three 
to seven false positives, which is an acceptable re-
sult because none of the true positives were missed 
by the proposed method. 

Table 2 shows the number of nodes filtered at 
different stages of the process. The number of false 
positives detected is negligible compared with the 
size of the dataset provided. 

Benchmark
We also ran experiments on synthetic datasets that 

we constructed by injecting grown pathological 
blood cells into a cell sample from a healthy 
patient. The size of the rare population injected 
was 50 in a dataset containing 700,000 cells.

By applying RARE on this dataset, we detected 
31 rare cells. We also conducted experiments 
with LOCI, which is considered to be one of 
the most efficient approaches for detecting rare 
events. To evaluate the best parameter setting, 
we chose various values of the maximum radius 
in LOCI {3,000, 4,000, 5,000, 6,000}. Each time, 
we obtained a score of 1 for points in the rare 
event, indicating inliers and rare events that 
couldn’t be detected. For values of a radius larger 
than 6,000, we ran into memory problems. We 
performed additional experiments with DBSCAN, 
which usually reports high recall (generally, 100 
percent), but for most parameter values, the rare 
events were left unclustered and belonginh to the 
subset classified as noise.

Table 1. Datasets used for experimentation with available ground truth.

Patient Disease Total nodes Pathologic cells

P1 Intracranial aneurysm 1,895,261 25

P2 Intracranial aneurysm 2,524,916 15

Pc Cancer 2,470,042 7

Table 2. Number of nodes after different filtration steps in the detection process.

Patient Total nodes Nodes after 
Step 3

Nodes after 
Step 6

After removal of 
disconnected nodes

Pathologic cells False positives

P2 1,895,261 126,049 33 31 25 6

P2 2,524,916 138,647 80 22 15 7

P3 2,470,042 182,626 20 10 7 3

(b)(a)

Figure 6. Detecting the presence of rare events. (a) Interactive and manual removal of nodes in step 7 involves 
selecting nodes with low strength values in the histogram. Nodes with high strength couldn’t be removed via 
histograms. (b) After performing step 7 of our proposed method, a set of rare events appears.
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Figures 5 and 6 show the results obtained by ap-
plying our method to the same synthetic dataset, 
in which we detected 37 cells. Unlike the real-world 
dataset, some pathologic cells weren’t detected, but 
all detected cells were from the rare injected popu-
lation. Even though our method doesn’t find all the 

injected cells, it outperformed RARE by finding six 
more cells.

We’ve proposed a novel method for detecting 
a group of rare events in large networks. 

(a)

(b)

(c)

Figure 7. Results for the three datasets in Table 1. For (a) patient 1, (b) patient 2, and (c) patient 3, the 
highlighted region shows the pathologic cells found using our proposed method.
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The results we obtained on a real-world biologi-
cal dataset clearly demonstrate the superiority of 
our proposed method’s accuracy. Furthermore, 
the algorithm is highly efficient in terms of time 
complexity once we’ve calculated the K-nearest 
neighbors. We intend to explore this method with 
other real-world datasets, most notably, on social 
networks, where the detection of groups of outliers 
and rare events has many applications.
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