
Web Usage Mining: Extracting Unexpected Periods from Web Logs

F. Masseglia, A. Marascu
INRIA Sophia Antipolis

AxIS Project-Team
2004 route des Lucioles
06902 Sophia Antipolis

France
fmassegl@sophia.inria.fr
amarascu@sophia.inria.fr

P. Poncelet
EMA-LGI2P/Site EERIE

Parc Scientifique Georges Besse
30035 N̂ımes Cedex 1

France
Pascal.Poncelet@ema.fr

M. Teisseire
LIRMM UMR CNRS 5506

161 Rue Ada
34392 Montpellier Cedex 5

France
teisseire@lirmm.fr

Abstract

Existing Web Usage Mining techniques are currently
based on an arbitrary division of the data (e.g. “one log
per month”) or guided by presumed results (e.g “what is
the customers behaviour for the period of Christmas pur-
chases?”). Those approaches have two main drawbacks.
First, they depend on this arbitrary organization of the data.
Second, they cannot automatically extract “seasons peaks”
among the stored data. In this paper, we propose to perform
a specific data mining process (and particularly to extract
frequent behaviours) in order to automatically discover the
densest periods. Our method extracts, among the whole set
of possible combinations, the frequent sequential patterns
related to the extracted periods. A period will be consid-
ered as dense if it contains at least one frequent sequential
pattern for the set of users connected to the Web site in that
period. Our experiments show that the extracted periods
are relevant and our approach is able to extract both fre-
quent sequential patterns and the associated dense periods.

Keywords: Sequential Patterns, Temporal Mining, Web
Usage, Dense Periods.

1 Introduction

Analyzing the behaviour of a Web Site users, also known
as Web Usage Mining, is a research field which consists
in adapting the data mining methods to access log files
records. These files collect data such as the IP address of
the connected machine, the requested URL, the date and
other information regarding the navigation of the user. Web
Usage Mining techniques provide knowledge about the be-

haviour of the users in order to extract relationships in the
recorded data [4, 14, 16, 20]. Among available techniques,
the sequential patterns [1] are particularly well adapted to
the log study. Extracting sequential patterns on a log file, is
supposed to provide the following kind of relationship: “On
the INRIA’s Web Site, 10% of users visited consecutively the
homepage, the available positions page, the ET1 offers, the
ET missions and finally the past ET competitive selection”.

This kind of behaviour is only supposed to exist, because
extracting sequential patterns on a log file means to manage
several problems (caches and proxies, great diversity of
pages on the site, search engines which allow the user to
directly access a specific part of the Web site, etc.). Among
those problems, let us focus on the arbitrary division of
the data which is done today. This division comes either
from an arbitrary decision in order to provide one log per
x days (e.g. one log per month), or from a wish to find
particular behaviours (e.g. the behaviour of the Web site
users from November 15 to December 23, during Christmas
purchases). In order to better understand our goal, let us
consider student behaviours when they are connected for a
working session. Let us assume that these students belong
to two different groups having twenty students. The first
group was connected on 31/01/05 while the other one
was connected on 01/02/05, (i.e. the second group was
connected one day later). During the working session,
students have to perform the following navigation: First
they access URL “www-sop.inria.fr/cr/tpaccueil.html”,
then ”www-sop.inria.fr/cr/ tp1accueil.html” which will be
followed by ”www-sop.inria. fr/cr/tp1a.html”.
Let us consider, as it is usual in traditional approaches,
that we analyze access logs per month. During January,
we only can extract twenty similar behaviours, among
200,000 navigations on the log, sharing the working

1ET: Engineers, Technicians.

session. Furthermore, even when considering a range of
one month or of one year, this sequence of navigation does
not appear sufficiently on the logs (20/20000) and will not
be easy to extract. Let us now consider that we are provided
with logs for a very long period (e.g. several years). With
the method developed in this article, we can find that it
exists at least one dense period in the range [31/01-01/02].
Furthermore, we know that, during this period, 340 users
were connected. We are thus provided with the new fol-
lowing knowledge: 11% (i.e. 40 on 340 connected users)
of users visited consecutively the URLs “tpaccueil.html”,
“tp1 accueil.html”, and finally “tp1a.html”.

Efficient tools are proposed today [22, 9] for analyzing
logs at different level of granularity (day, month, year).
They allow for instance to know how many time the site
is accessed or how many requests have been done on
each page. Nevertheless, as they depend on the chosen
granularity, they suffer the previously addressed drawback:
they cannot obtain frequent patterns on a very short period
because usually such patterns do not appear sufficiently
on the whole log. Close to our problem, [15] propose to
extract episodes rules on a long sequence as well as the the
optimal window size. Nevertheless our problem is very
different since we do not consider that we are provided
with a unique long sequence. In our context,i.e. access
logs, sequences correspond to different behaviours of users
on a Web Server. Then we have to manage a very huge
set of data sequences and we have to extract both frequent
sequences and the period where these sequences appear.

The remainder of this paper is organized as follows. Sec-
tion 2 goes deeper into presenting sequential patterns and
how they can be used on Web Usage Mining. In Section
3, we give an overview of Web Usage Mining approaches
which are based on sequential patterns. Section 4 presents
our motivation for a new approach. Our solution based on
a new heuristic calledPERIO is presented in Section 5. Ex-
periments are reported Section 6, and Section 7 concludes
the paper with future avenues for research.

2 Definitions

In this section we define the sequential pattern mining
problem in large databases and give an illustration. Then
we explain the goals and techniques of Web Usage Mining
with sequential patterns. The sequential pattern mining def-
initions are those given by [21].

2.1 Sequential Pattern Mining

The problem of mining sequential patterns from static
databases is defined as follows [1]:

Definition 1 Let I = {i1, i2, ..., im}, be a set ofm literals
(items). I is a k-itemset wherek is the number of items
in I. A sequence is an ordered list of itemsets denoted by
< s1s2 . . . sn > wheresj is an itemset. The data-sequence
of a customerc is the sequence inD corresponding toc.
A sequence< a1a2 . . . an > is a subsequence of another
sequence< b1b2 . . . bm > if there exist integersi1 < i2 <
. . . < in such thata1 ⊆ bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin

.

Example 1 Let C be a client andS=< (c) (d e) (h) >,
be that client’s purchases.S means that “C bought itemc,
then he boughtd ande at the same moment (i.e. in the same
transaction) and finally bought itemh”.

Definition 2 The support of a sequences, also called
supp(s), is defined as the fraction of total data-sequences
that contains. If supp(s) ≥ minsupp, with a minimum
support valueminsupp given by the user,s is considered
as a frequent sequential pattern.

The problem of sequential pattern mining is thus to find
all the frequent sequential patterns as stated in definition 2.

2.2 Access Log Files Analysis with Sequential Pat-
terns

The general idea is similar to the principle proposed in
[6]. It relies on three main steps. First of all, starting from
a rough data file, a pre-processing step is necessary to clean
”useless” information. The second step starts from this pre-
processed data and applies data mining algorithms to find
frequent itemsets or frequent sequential patterns. Finally,
the third step aims at helping the user to analyze the results
by providing a visualization and request tool.
Raw data is collected in access log files by Web servers.
Each input in the log file illustrates a request from a client
machine to the server (http daemon). Access log files format
can differ, depending on the system hosting the Web site.
For the rest of this presentation we will focus on three fields:
client address, the URL asked for by the user and the time
and date for that request. We illustrate these concepts with
the access log file format given by the CERN and the NCSA
[3], where a log input contains records made of 7 fields,
separated by spaces [18]:host user authuser [date:time]
“request” status bytes

The access log file is then processed in two steps. First
of all, the access log file is sorted by address and by trans-
action. Then each ”uninteresting” data is pruned out from
the file.

Definition 3 Let Log be a set of server access log entries.
An entryg, g ∈ Log, is a tuple:
g =< ipg, ([l

g
1 .URL, lg1 .time] ... [lgm.URL, lgm.time]) >

such that for1 ≤ k ≤ m, lgk.URL is the item asked for by

Client d1 d2 d3 d4 d5
1 a c d b c
2 a c b f c
3 a g c b c

Figure 1. File obtained after a pre-processing
step

the userg at timelgk.time and for all1 ≤ j < k, lgk.time >
lgj .time.

The structure of a log file, as described in Definition 3,
is close to the “Client-Time-Item ” structure used by
sequential pattern algorithms. In order to extract frequent
behaviour from a log file, for eachg in the log file, we
first have to transformipg into a client number and for each
recordk in g, lgk.time is transformed into a time number and
finally lgk.URL is transformed into an item identifier. Table
1 gives a file example obtained after that pre-processing. To
each client corresponds a series of times and the URL re-
quested by the client at each time. For instance, the client 2
requested the URL “f” at timed4.
The goal is thus, according to definition 2 and by means
of a data mining step, to find the sequential patterns in the
file that can be considered as frequent. The result may be,
for instance,< (a) (c) (b) (c) > (with
the file illustrated in Figure 1 and a minimum support given
by the user: 100%). Such a result, once mapped back into
URLs, strengthens the discovery of a frequent behaviour,
common ton users (withn the threshold given for the data
mining process) and also gives the sequence of events com-
posing that behaviour.

3 Related Work

Several methods for extracting sequential pat-
terns have been applied to Web access log files
[13, 20, 2, 8, 23, 17, 14]. We report in this section
some studies using this temporal aspect for analyzing a
Web users behaviour.

The WUM tool [20] allows to discover navigation
patterns which are considered as “interesting” from a
statistical point of view. WUM proposes to extract patterns
depending on their threshold and a user request.
In [13], the authors propose WebTool. This system takes
into account all the steps of a Web Usage Mining process,
from data selection to result display,via data transformation
and patterns extraction. WebTool is based on a prefix tree
(PSP [11]) to extract sequential patterns.
In [8] the authors propose to consider the temporal aspect of

Web accesses in a user clustering method. This clustering
algorithm is based on a sequences alignment method in
order to evaluate their distance. The main contribution is
to evaluate the quality of the proposed clusters. They are
compared, during the experiments, to the clusters obtained
thanks to a distance based on itemsets.
Authors of [23] consider the navigation patterns as Markov
chains. They propose to build a Markov model for a
link prediction method taking into account the previous
navigations. The paper is devoted to the problems related
to Markov models and the transition matrix built for each
log.
Recent work on analyzing Web usage have focused on the
quality of the results, their relevance and their utility. This
is also the case for work related to the temporal aspect
of navigation patterns. In [17] the authors show that the
characteristics of the Web site have to be considered before
deciding to use frequent itemsets or frequent sequences (as
well as sequential patterns). Mainly, three characteristics
are proposed: topology, connectivity degree and length of
potential navigations. They show that sequential patterns
are adapted for Web sites having long potential navigations
(including Web sites involving dynamic pages).
According to the authors of [14], the study of the result
quality has to consider sequential patterns with very low
support. High or average thresholds often lead to useless
(obvious) patterns. Nevertheless, extracting sequential
patterns with very low support is very difficult because of
the number of candidates generated. The authors thus pro-
pose to split down the problem in a recursive way in order
to consider each sub-problem as a specific data mining step.

Whatever the goals pursued by these Web Usage Mining
approaches, they always depend on the division of the data.
In the next section, we propose to understand the goal of
our proposal and the general principle of our heuristic.

4 Motivation and Principle

This section is devoted to motivating our proposal re-
garding the relevance and utility of the tackled knowledge.
It also illustrates the issues involved and the general princi-
ple of our method.

4.1 Motivation

The outline of our method is the following: enumerat-
ing the sets of periods in the log that will be analyzed and
then identifying which ones contain frequent sequential pat-
terns. In this section we will define the notions of period and
frequent sequential patterns over a period. Let us consider
the set of transactions in Figure 2 (upper left table). Those
transactions are sorted by timestamp, as they would be in

a log file. In this table containing 9 records, the customer
c1, for instance, has connected at time 1 and requested the
URL a. Let us now consider the “in” and “out” timestamps
of each client, reporting their arrival and departure (upper
right table in Figure 2). The first request of clientc1 has
occurred at time 1, and the last one at time 4. We can thus
report the periods of that log. In the example of Figure 2
there are 5 periods. During the first period (from time 1 to
time 2), the clientc1 was the only one connected on the Web
site. Then, clientsc1 andc2 are connected during the same
periodp2 (from time 3 to time 4), and so on.

Cust Id time URL
c1 1 a
c1 2 b
c2 3 a
c1 4 d
c2 5 d
c3 6 d
c2 7 e
c3 8 e
c3 9 f

Cust Id In Out
c1 1 4
c2 3 7
c3 6 9

Period Begin/End Customers
p1 [1..2] c1

p2 [3..4] c1, c2

p3 [5] c2

p4 [6..7] c2, c3

p5 [8..9] c3

Figure 2. A log containing three sequences
and the associated periods

Let us now consider the navigation sequences of the log
represented in Figure 2. Those sequences are reported in
Figure 3, as well as the frequent sequential patterns ex-
tracted on the whole log and on the identified periods. With
a minimum support of 100 % on the whole log, the only
frequent sequential pattern is merely reduced to the itemd:
< (d) >. Let us now consider the periods identified above,
as well as the customers connected for each period. For the
periodsp1, p3 andp5, reduced to a single client, there is no
relevant frequent pattern. For the periodp2 a sequential pat-
terns is extracted:< (a) (d) >. This pattern is common to
both clients connected during the periodp2: c1 andc2. Fi-
nally, during periodp4, the pattern< (d) (e) > is extracted.

The following part of this section is devoted to more
formal definitions of period, connected clients and stable
periods. LetC be the set of clients in the log andD the set
of recorded timestamps.

Definition 4 P , the set of potential periods on the log is
defined as follows:
P = {(pa, pb)/(pa, pb) ∈ D ×D and a ≤ b}.

In the following definition, we consider thatdmin(c) and
dmax(c) are respectively the arrival and departure time for
c in the log (first and last request recorded forc).

Definition 5 Let C(a,b) be the set of clients connected
during the period(a, b). C(a,b) is defined as follows:
C(a,b) = {c/c ∈ C

and [dmin(c)..dmax(c)] ∩ [a..b] 6= ∅}.

Finally, we give the definitions ofstable periodand
dense period. The first one is a maximal periodpm dur-
ing which Cpm

does not vary. With the example given in
Figure 2, the period[6..7] is a stable period. This is not the
case for[3..3] which is included in[3..4] and contains the
same clients (i.e. C(3,3) = C(3,4)). A dense periodis a sta-
ble period containing at least a frequent sequential pattern.
In the example given in section 1, the period corresponding
to January 31 (i.e. during the working session) should be a
dense period.

Definition 6 Let Pstable be the set of stable periods.
Pstable is defined as follows:

Pstable = {(ma,mb)/(ma,mb) ∈ P and

1) 6 ∃ (m′
a,m′

b)/(b− a) < (b′ − a′)
and [a′..b′] ∩ [a..b] 6= ∅
and C(m′

a,m′
b
) = C(ma,mb)

2) ∀(x, y) ∈ [a..b],∀(z, t) ∈ [a..b]/
x ≤ y, z ≤ t then C(x,y) = C(z,t).}

Condition 1, in definition 6, ensures that no largest pe-
riod includes(ma,mb) and contains the same clients. Con-
dition 2 ensures that there is no arrival or departure inside
any period ofPstable.

Definition 7 A stable periodp is dense ifCp contains at
least a frequent sequential pattern with respect to the min-
imum support specified by the user proportionally to|Cp|.

The notion of dense period (definition 7), is the core of
this paper. In the following, our goal will be to extract
those periods, as well as the corresponding frequent pat-
terns, from the log file. In order to give an illustration, let us
consider the periodpe containing 100 clients (|Cpe | = 100)
and a minimum support of 5 %. Any sequential pattern in-
cluded in at least 5 navigations ofCpe will be considered as

Cust Id Sequence log p1, p3, p5 p2 p4

c1 < (a) (b) (d) > –
c2 < (a) (d) (e) > < (d) > – < (a) (d) > < (d) (e) >
c3 < (d) (e) (f) > –

Figure 3. Frequent sequential patterns obtained for customers connected at each period

frequent for that period. If there exists at least a frequent
pattern inpe then this period has to be extracted by our
method. Extracting the sequential patterns of each period
by means of a traditional sequential pattern mining method
is not a suitable solution for the following reasons. First,
sequential pattern mining algorithms (such asPSP[11] or
PrefixSpan [19] for instance) can fail if one of the patterns
to extract is very long. When considering navigations on a
Web site, it is usual to find numerous requests for a same
URL (pdf or php files for instance). Finally, during our ex-
periments, with a total amount of 14 months of log files,
we detected approximately3, 500, 000 stable periods. We
believe that mining dense period by means of a heuristic is
more relevant that several millions calls to a traditional al-
gorithm for mining sequential patterns. The outline of our
approach, intended to detect dense periods in the log file, is
presented in the next section.

4.2 General Principle

Figure 4. Overview of the operations per-
formed by PERIO

Figure 4 gives an overview of thePERIO heuristic that
we propose for solving the problem of dense period min-
ing. First, starting from the log, the periods are detected.
Those periods are then considered one by one and sorted
by their “begin” timestamp. For each iterationn, the pe-
riod pn is scanned. The set of clientsCpn is loaded in main
memory (“DB” in Figure 4). Candidates having length 2

are generated from the frequent items detected inCpn
(step

“1” in Figure 4). Because of the large number of candidates
generated, this operation only occurs everys steps (wheres
is a user defined parameter). Candidates are then compared
to sequences ofCpn

in order to detect the frequent patterns
(step “2” in Figure 4). Frequent patterns are injected in the
neighborhood operators described in Section 5.1.1 and the
new generated candidates are compared with the sequences
of Cpn . In order to obtain a result as fine as possible on
each period, it is possible for the user to give the minimum
number of iteration (j) on each period.

4.3 Limits of Sequential Pattern Mining

Figure 5. Limits of a framework involving PSP

Our method will process the log file by considering mil-
lions of periods (each period corresponds to a sub-log). The
principle of our method will be to extract frequent sequen-
tial patterns from each period. Let us consider that the fre-
quent sequences are extracted with a traditional exhaustive
method (designed for a static transaction database). We ar-
gue that such a method will have at least one drawback lead-
ing to a blocking operator. Let us consider the example of
the PSP [12] algorithm. We have tested this algorithm on
databases containing only two sequences (s1 ands2). Both
sequences are equal and contain repetitions of itemsets hav-
ing length one. The first database contains 11 repetitions of
the itemsets(1)(2) (i.e. s1 =< (1)(2)(1)(2)...(1)(2) >,
lentgh(s1)=22 ands2 = s1). The number of candidates
generated at each scan is reported in Figure 5. Figure 5 also
reports the number of candidates for databases of sequences

having length 24, 26 and 28. For the base of sequences hav-
ing length 28, the memory was exceeded and the process
could not succeed. We made the same observation for Pre-
fixSpan2 [19] where the number of intermediate sequences
was similar to that of PSP with the same mere databases. If
this phenomenon is not blocking for methods extracting the
whole exact result (one can select the appropriate method
depending on the dataset), the integration of such a method
in our process for extracting dense periods is impossible be-
cause the worst case can appear in any batch3.

5 Extracting Dense Periods

In this section, we describe the steps allowing to obtain
the dense periods of a Web access log. We also describe the
neighborhood operators designed forPERIO, the heuristic
presented in this paper.

5.1 Heuristic

Since our proposal is a heuristic-based miner, our goal
is to provide a result having the following characteristics:
For each periodp in the history of the log, letrealResult
be the set of frequent behavioural patterns embedded
in the navigation sequences of the users belonging to
p. realResult is the result to obtain (i.e. the result
that would be exhibited by a sequential pattern mining
algorithm which would explore the whole set of solu-
tions by working on the clients ofCp). Let us now
considerperioResult the result obtained by running the
method presented in this paper. We want to minimize∑size(perioResult)

i=0 Si/Si 6∈ realResult (with Si standing
for a frequent sequence inperioResult), as well as
maximize

∑size(realResult)
i=0 Ri/Ri ∈ perioResult (with

Ri standing for a frequent sequence inrealResult).
In other words, we want to find most of the sequences
occurring in realResult while preventing the proposed
result becoming larger than it should (otherwise the set
of all client navigations would be considered as a good
solution, which is obviously wrong).

This heuristic is inspired from genetic algorithms and
their neighborhood operators. Those operators are provided
with properties of frequent sequential patterns in order to
produce optimal candidates. The main idea of thePERIO

algorithm is to scanPstable the set of stable periods and, for
eachp in Pstable to propose candidates population thanks
to previous frequent patterns and neighborhood operators.
These candidates are then compared to the sequences ofCp

2http://www-sal.cs.uiuc.edu/̃ hanj/software/prefixspan.htm
3In a web usage pattern, numerous repetitions of requests for pdf or php

files, for instance, are usual.

in order to know their threshold (or at least their distance
from a frequent sequence). These two phases (neighbor-
hood operators and candidate valuation) are explained in
this section.

5.1.1 Neighborhood Operators

Figure 6. Some operators designed for ex-
tracting frequent navigation patterns

The neighborhood operators we used were validated by
experiments performed on the Web logs of Inria Sophia
Antipolis (see section 6). We chose ”Genetic-like” op-
erators as well as operators based on sequential pattern
properties. We present here some of the most efficient
operators for the problem presented in this paper. When
we talk about random sequence, we use a biased random
such that sequences having a high threshold may be chosen
before sequences having a low threshold.

Finally, we evaluated the success rates for each of our op-
erators thanks to the average number of frequent sequences
compared to the proposed candidates. An operator having
a success rate of 20 % is an operator for which 20 % of the
proposed candidates are detected has frequent.

New frequent items:When a new frequent item occurs
(after being requested by one or more users) it is used
to generate all possible 2-candidate sequences with other
frequent items. The candidate set generated is thus added
to the global candidate set. Due to the number of candidate
sequences to test, this operator only has a 15% ratio of
accepted (i.e. frequent) sequences. This operator however
remains essential since the frequent 2-sequences obtained
are essential for other operators.

Adding items: This operator aims at choosing a random
item among frequent items and adding this item to a
random sequences, after each item ins. This operator
generateslength(s)+1 candidate sequences. For instance,

with the sequence< (a) (b) (d)> and the frequent itemc,
we will generate the candidate sequences< (c) (a) (b) (d)
>, < (a) (c) (b) (d)>, < (a) (b) (c) (d)> and finally< (a)
(b) (d) (c) >. This operator has a 20% ratio of accepted
sequences, but the sequences found are necessary for the
following operators.

Basic crossover: This operator (largely inspired by
genetic algorithms operators) uses two different random
sequences and proposes two new candidates coming from
their amalgamation. For instance, with the sequences<
(a) (b) (d) (e)> and< (a) (c) (e) (f)>, we propose the
candidates< (a) (b) (e) (f)> and< (a) (c) (d) (e)>. This
operator has a good ratio (50%) thanks to frequent se-
quences embedded in the candidates generated by previous
operators.

Enhanced crossover:Encouraged by the result obtained
when running the previous operator, we developed a new
operator, designed to be an enhancement of the basic
crossover, and based on the frequent sequences properties.
This operator aims at choosing two random sequences,
and the crossover is not performed in the middle of each
sequence, but at the end of the longest prefix common to
the considered sequences. Let us consider two sequences
< (a) (b) (e) (f)> and< (a) (c) (d) (e)> coming from the
previous crossover operator. The longest prefix common to
these two sequences is< (a) >. The crossover therefore
starts after the item followinga, for each sequence. In our
example, the two resulting candidate sequences are,< (a)
(b) (c) (d) (e)> and< (a) (c) (b) (e) (f)>. This operator
has a success ratio of 35%.

Final crossover: An ultimate crossover operator was
designed in order to improve the previous ones. This
operator is based on the same principle as the enhanced
crossover operator, but the second sequence is not randomly
chosen. Indeed, the second sequence is chosen as being the
one having the longest common prefix with the first one.
This operator has a ratio of 30%.

Sequence extension: This operator is based on the
following idea: frequent sequences are extended with
new pages requested. The basic idea aims at adding new
frequent items at the end of several random frequent
sequences. This operator has a success ratio of 60%.

Figure 6 gives an illustration of some operators described
in this section.

5.1.2 Candidate Evaluation

The PERIO heuristic is described by the following algo-
rithm:

Algorithm PERIO

In: Pstable the set of stable periods.
Out: SP The sequential patterns corresponding

to the most frequent behaviours.
For (p ∈ Pstable) {

// Update the items thresholds
itemsSupports=getItemsSupports(Cp);
// Generate candidates from frequent
// items and patterns
candidates=neighborhood(SP , itemsSupport);
For (c ∈ candidates) {

For (s ∈ Cp) {
CandidateValuation(c, s);

}
}
For (c ∈ candidates) {

If (support(c) > minSupport ORcriteria){
insert(c, SP);

}
}

}
End algorithm PERIO

Algorithm CANDIDATE EVALUATION

In: c a candidate to evaluate ands the
navigation sequence of the client.

Out: p[c] the percentage given toc.
// If c is included ins, c is rewarded
If (c ⊆ s) p[c]=100+length(c);
// If c, having length 2, is not included then
// give c the lowest mark.
If (lengthc)≤ 2) p[c]=0;
// Else, gives a mark and give
// largest distances a penalty
p[c]= length(LCS(c,s))∗100

length(c) − length(c);
End algorithm CANDIDATE EVALUATION

For each stable period ofPstable, PERIO will generate
new candidates and then compare each candidate to the se-
quence ofCp. The comparison aims at returning a percent-
age, representing the distance between the candidate and
the navigation sequence. If the candidate is included in
the sequence, the percentage should be 100% and this per-
centage decreases when the amount of interferences (differ-
ences between the candidate and the navigation sequence)
increases. To evaluate this distance, the percentage is ob-
tained by the fraction of the length of the longest com-

mon subsequence (LCS) [5] betweens andc, on the length
of s: |LCS(s, c)|/|s|. Furthermore, in order to obtain fre-
quent sequences that are as long as possible, we use an al-
gorithm that rewards long sequences if they are included in
the navigation sequence. On the other hand, the algorithm
has to avoid long, not included, sequences (in order for the
clients not to give a good mark to any long sequence). To
cover all these parameters, the calculation performed by the
client machine is described in the algorithmCANDIDATE E-
VALUATION . Finally evaluated candidates having either
their support greater than or equal to the minimal support
value or corresponding to a ”natural selective criteria” are
stored intoSP . This last criteria, which is user-defined, is
a threshold corresponding to the distance between the can-
didate support and the minimal support. In our case, this
criteria is used in order to avoid than thePERIOD heuristic
leads towards a local optima.

5.2 Result Summary and Visualization

Figure 7. Clustering of sequential patterns be-
fore their alignment

Due to the number of candidates proposed by such a
heuristic, the number of resulting sequences is very large.
For instance, if the patterns<(a)(b)> and <(a)(b)(c)>
are extracted byPERIO, then they will be both inserted
in the result. In fact this problem cannot be reduced to
the inclusion problem. As the size of extracted patterns is
very long and as the delay of processing period has to be
as short as possible, we could obtain patterns which are
very close. Furthermore, extracted patterns could be very
different since they represent different kind of behaviours.
In order to facilitate the visualization of the issued result,
we propose to extend the work of [10].

Our method performs as follows. We cluster together
similar sequences. This operation is based on a hierarchical
clustering algorithm [7] where the similarity is defined as
follows:

Step 1:
S1 : <(a,c) (e) () (m,n)>
S2 : <(a,d) (e) (h) (m,n)>
SA12 : (a:2, c:1, d:1):2 (e:2):2 (h:1):1 (m:2, n:2):2

Step 2:
SA12 : (a:2, c:1, d:1):2 (e:2):2 (h:1):1 (m:2, n:2):2
S3 : <(a,b) (e) (i,j) (m)>
SA13 : (a:3, b:1, c:1, d:1):3 (e:3):3 (h:1, i:1, j:1):2 (m:3, n:2):3

Step 3:
SA13 : (a:3, b:1, c:1, d:1):3 (e:3):3 (h:1, i:1, j:1):2 (m:3, n:2):3
S4 : <(b) (e) (h,i) (m)>
SA14 : (a:3, b:2, c:1, d:1):4 (e:4):4 (h:2, i:2, j:1):3 (m:4, n:2):4

Figure 8. Different steps of the alignment
method with the sequences from example 2

Definition 8 Lets1 ands2 be two sequences.
Let |LCS(s1, s2)| be the size of the longest common subse-
quence betweens1 ands2. The degree of similarity between
s1 ands2 is defined as:d = 2×|LCS(s1,s2)|

|s1|+|s2| .

The clustering algorithm performs as follows. Each se-
quential pattern is first considered as a cluster (C.f. Step 0,
Figure 7). At each step the matrix of similarities between
clusters is processed. For instance, sequences<(a)(b)>
and<(b)(c)> are similar at 50% since they share the same
itemset (b). If we now consider the two following se-
quences<(a)(b)> and <(d)(e)>, their similarity is 0%.
The two close clusters are either{<(a)(b)>, <(b)(c)>}
or {<(d)(e)>, <(d)(f)>} since they have a same distance.
They are grouped together into a unique cluster. Step “2” of
Figure 7 shows the three clusters:{<(a)(b)>, <(b)(c)>},
{<(d)(e)>} and{<(d)(f)>}. This process is repeated un-
til there is no more cluster having a similarity greater than
0 with an existing cluster. The last step of Figure 7 gives
the result of the clustering phase:{<(a)(b)>, <(b)(c)>} et
{<(d)(e)>, <(d)(f)>}.

The clustering algorithm ends with clusters of similar
sequences, which is a key element for sequences align-
ment. The alignment of sequences leads to a weighted
sequence represented as follows:SA =< I1 : n1, I2 :
n2, ..., Ir, nr >: m. In this representation,m stands for
the total number of sequences involved in the alignment.Ip

(1 ≤ p ≤ r) is an itemset represented as (xi1 : mi1 , ...xit :
mit), wheremit is the number of sequences containing the
item xi at thenth

p position in the aligned sequences. Fi-
nally, np is the number of occurrences of itemsetIp in the
alignment. Example 2 describes the alignment process on
4 sequences. Starting from two sequences, the alignment
begins with the insertion of empty items (at the beginning,
the end or inside the sequence) until both sequences contain
the same number of itemsets.

Example 2 Let us consider the following sequences:
S1 =< (a,c) (e) (m,n)>, S2 =< (a,d) (e) (h) (m,n)>,
S3 =< (a,b) (e) (i,j) (m)>, S4 =< (b) (e) (h,i) (m)>.
The steps leading to the alignment of those sequences are

detailed in Figure 8. First, an empty itemset is inserted in
S1. ThenS1 andS2 are aligned in order to provideSA12.
The alignment process is then applied toSA12 and S3.
The alignment method goes on processing two sequences
at each step.

At the end of the alignment process, the aligned se-
quence (SA14 in Figure 8) is a summary of the correspond-
ing cluster. The approximate sequential pattern can be ob-
tained by specifyingk: the number of occurrences of an
item in order for it to be displayed. For instance, with the se-
quenceSA14 from Figure 8 andk = 2, the filtered aligned
sequence will be:<(a,b)(e)(h,i)(m,n)> (corresponding to
items having a number of occurrences greater than or equal
to k).

6 Experiments

PERIO was written in C++ and compiled using gcc with-
out any optimizations flags. All the experiments were per-
formed on a PC computer with Pentium 2,1 Ghz running
Linux (RedHat). They were applied on Inria Sophia An-
tipolis logs. These logs are daily obtained. At the end of a
month, all daily log are merged together in a monthly log.
During experiments we worked on 14 monthly logs. They
were merged together in order to be provided with a unique
log for a 14 months period (from January 2004 to March
2005). Its size is 14 Go of records. There are 3.5 millions
of sequences (users), the average length of these sequences
is 2.68 and the maximal size is 174 requests.

6.1 Extracted Behaviours

We report here some of the extracted behaviours. Those
behaviours show that an analysis based on multiple division
of the log (as described in this paper) allows to obtain
behavioural patterns embedded in short or long periods.
Execution time of PERIO on this log with a minimal
support value of 2% is nearly 6 hours. The support of
2% was the best setting for obtaining interesting patterns
and limiting the size of the output. We have found 1981
frequent behaviours which were grouped together on 400
clusters with techniques described in Section 5.2.

Figure 10 focuses on the evolution of the following be-
haviours:

• C1 =<(semir/restaurant)
(semir/restaurant/consult.php)
(semir/restaurant/index.php)
(semir/restaurant/index.php)>

• C2 =<(eg06) (eg06/dureve040702.pdf)
(eg06/fer040701.pdf) (eg06)>

• C3 =<(requete.php3) (requete.php3)
(requete.php3)>

• C4 =<(Hello.java) (HelloClient.java)
(HelloServer.java)>

• C5 =<(mimosa/fp/Skribe)
(mimosa/fp/Skribe/skribehp.css)
(mimosa/fp/Skribe/index-5.html)>

• C6 =<(sgp2004) (navbar.css)
(submission.html)>

All itemsets of behaviourC4 are prefixed by “oa-
sis/anonym2/Prog Rpt/TD03-04/hello/”. ForC3 the prefix
is “mascotte/ anonym3/web/td1/” and forC6 the prefix is
“geometrica/events/”.

The first behaviour (C1) corresponds to a typically pe-
riodic behaviour. Actually, the Inria’s restaurant has been
closed for a few weeks and people had to order a cold
meal through a dedicated web site. This web site was lo-
cated at “semir/restaurant”.C2 is representative of be-
haviours related to the recent “general assembly” of French
researchers, hosted in Grenoble (France, Oct 2004).

Behaviours C3 and C4 correspond to navigation
performed by students on pages about computer science
courses and stored on some Inria researcher pages.

When we have noticed theC5 behaviours, we asked the
reasons of such behaviours to the pages owner. His inter-
pretation is that such behaviours are due to the large num-
ber of exchanged mails on March 2004 through the mailing
list of Skribe (generating numerous navigations on the web
pages of this project). Two different peaks appear, (begin
of April and middle of April) for the behaviourC6. Those
peaks correspond in fact to the submission steps (respec-
tively abstract and full papers) of articles for the SGP2004
Conference.

Some of the extracted behaviours do not occur on short
periods only. Their occurrences are frequent on several
weeks or even several months. Their support on the global
log is related to the number of customers connected for each
period. This is the case, for instance, of:

• C7 =<(css/inriasophia.css)
(commun/votreprofil en.shtml)
(presentation/ chiffresen.shtml)
(actu/actuscientcolloque encoursfr.shtml)>

The evolution ofC7 is reported in Figure 9. We can observe
that this behaviour occurs for 5 consecutive months (from
May to September).

6.2 Comparison to Sequential Pattern Mining

Section 6.1 is devoted to showing some extracted be-
haviours and their content. In this section we aim at show-

Figure 9. Peaks of frequency for a behaviour on a long period

Figure 10. Peaks of frequency for C1, C2, C3, C4, C5 and C6

ing a comparison between our method on the one hand, and
traditional method for sequential patterns on the other hand.
We will show that the behaviours obtained byPERIO have
such a low support that:

1. They cannot be extracted by a traditional sequential
pattern mining algorithm.

2. The period they belong to cannot be identified by a
traditional sequential pattern mining algorithm.

In Figure 11 we report several informations about the
behaviours presented in section 6.1. The meaning of each
value is given in Figure 12. We give those informations at
three granularities (year, month and day). First of all, we
give the maximum number of simultaneous occurrences of
each behaviour in a stable period (column “Max”). Then

we report the global support of this behaviour: the number
of sequences containing the behaviour in the whole log file
is given in column ”Global” whereas the ratio is given in
column “%Global”.

A first comparison is given with PSP on the whole
log file for each behaviour. We report in PSPGlobal the
execution time of PSP on the whole log file with a support
of %Global. We can observe that for each behaviour, PSP
is unable to extract the patterns corresponding to the given
support. The main reason is that this support is much lower
than any traditional method for mining sequential patterns
would accept. The number of frequent items forC6 with
a support of 0.0364% (bold “–”) is 935. In this case, the
number of candidates having length 2 is 1,311,805 so the
main memory was rapidly overloaded and PSP could not

Max Global %Global PSPGlobal Month %Month PSPMonth Day %Day PSPDay

C1 13 507 0.0197% – 08–2004 0.031% – Aug–09 0.095% 20s
C2 8 69 0.0027% – 07–2004 0.004% – Jun–10 0.2% –
C3 10 59 0.0023% – 07–2004 0.004 % – Jul–02 0.33% 10s
C4 12 19 0.0007% – 02–2004 0.006% – Feb–06 0.35% 18s
C5 10 32 0.0012% – 02–2004 0.01% – Feb–16 0.33% 21s
C6 10 935 0.0364 – 02–2004 0.09% – Mar–15 0.35% 12s
C7 10 226 0.0088% – 04–2004 0.01% – Apr–03 0.23s 8s

Figure 11. Supports of the extracted behaviours at 3 granularities (Global, Month & Day)

Max The maximum number of simultaneous occurrences of this behaviour in a stable period
Global The support (total number of occurrences) of this behaviour in the global (14 months) log file
%Global The support (percentage) corresponding toGlobalw.r.t the number of data sequences in the global log file
PSPGlobal The execution time of PSP on the global log file with a minimum support of%Global

Month The month having the highest number of simultaneous occurrences of this behaviour in a stable period
%Month The support (percentage) of this behaviour onMonth
PSPMonth The execution time of PSP on the log file corresponding toMonth with a minimum support of%Month

Day The day having the highest number of simultaneous occurrences of this behaviour in a stable period
%Day The support (percentage) of this behaviour onDay
PSPDay The execution time of PSP on the log file corresponding toDay with a minimum support of%Day

Figure 12. Legend for the table of Figure 11

succeed.

We also identified (by comparing months between each
others) for each behaviour the month having the highest
number of simultaneous occurrences of this behaviour in
a stable period. In fact, the column “Month” corresponds
to the month where this behaviour has the best support
compared to other months. We report in column %Month

the support of each behaviour on the corresponding month
and in column PSPMonth the execution time of PSP on the
corresponding month with a support of %Month. We can
observe that PSP is unable to extract the sequential patterns
corresponding to each month.

Finally, we identified for each behaviour the day having
the highest number of simultaneous occurrences of this be-
haviour in a stable period (column “Day”). We report in
column %Day the support of each behaviour on the corre-
sponding day and in column PSPDay the execution time of
PSP on the corresponding day with a support of %Day. We
can observe that, at this granularity, PSP is able to extract
most of the behaviours. Furthermore, PSP is even so fast
that it could be applied on each day of the log and the total
time would be around 70 minutes (420 days and an aver-
age execution time of approximately 10 seconds per day).
Nevertheless, we have to keep in mind that with such an
approach:

1. Undiscovered periods will remain (for instance a pe-
riod of two consecutive days or a period of one hour
embedded in one of the considered days).

2. Undiscovered behaviours will remain (embedded in
the undiscovered periods).

3. The method would be based on an arbitrary division
of the data (why working on each day and not on each
hour or each week or each half day?).

Finally, in order to avoid the drawbacks enumerated above,
the only solution would be to work on each stable period
and apply a traditional sequential pattern algorithm. How-
ever this would require several millions of calls to the min-
ing algorithm and the total execution time would be around
20 days (3,500,000 periods and an average execution time
of approximately 0.5 seconds per period). Furthermore (as
stated in section 4.3) this solution is not satisfying because
of the long repetitive sequences that may be embedded in
the data.

7 Conclusion

The proposition developed in this paper has shown that
considering a log at large,i.e. without any division ac-
cording to different values of granularity like traditional ap-
proaches, could provide the end user with a new kind of

knowledge cutting: periods where behaviours are particu-
larly significant and distinct. In fact, our approach aims
at rebuilding all the different periods the log is made up
with. Nevertheless, by considering the log at large (sev-
eral month, several years, ...) we have to deal with a large
number of problems: too many periods, too low frequency
of behaviours, inability of traditional algorithms to mine
sequences on one of these periods, etc. We have shown
that a heuristic-based approach is very useful in that con-
text and by indexing the log, period by period, we can ex-
tract frequent behaviours if they exist. Those behaviours
could be very limited on time, or frequently repeated but
their main particularity is that they are very few on the logs
and they are representative of a dense period. Conducted
experiments have shown different kind of behaviours con-
cerning for instance either students, conferences, or restau-
rants. These behaviours were completely hidden on the log
files and cannot be extracted by traditional approaches since
they are frequent on particular periods rather than frequent
on the whole log.

References

[1] R. Agrawal and R. Srikant. Mining Sequential Patterns.
In Proceedings of the 11th Int. Conf. on Data Engineering
(ICDE’95), Tapei, Taiwan, March 1995.

[2] F. Bonchi, F. Giannotti, C. Gozzi, G. Manco, M. Nanni,
D. Pedreschi, C. Renso, and S. Ruggieri. Web log data
warehousing and mining for intelligent web caching.Data
Knowledge Engineering, 39(2):165–189, 2001.

[3] W. W. W. Consortium. httpd-log files. In
http://lists.w3.org/Archives, 1998.

[4] R. Cooley, B. Mobasher, and J. Srivastava. Data preparation
for mining world wide web browsing patterns.Knowledge
and Information Systems, 1(1):5–32, 1999.

[5] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Al-
gorithms. MIT Press.

[6] U. Fayad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors. Advances in Knowledge Discovery and
Data Mining. AAAI Press, Menlo Park, CA, 1996.

[7] J. Han and M. Kamber.Data Mining, concepts and tech-
niques. Morgan Kaufmann, 2001.

[8] B. Hay, G. Wets, and K. Vanhoof. Mining Navigation Pat-
terns Using a Sequence Alignment Method.Knowl. Inf.
Syst., 6(2):150–163, 2004.

[9] http Analyze. http://www.http-analyze.org/.
[10] H. Kum, J. Pei, W. Wang, and D. Duncan. ApproxMAP:

Approximate mining of consensus sequential patterns. In
Proceedings of SIAM Int. Conf. on Data Mining, San Fran-
cisco, CA, 2003.

[11] F. Masseglia, F. Cathala, and P. Poncelet. The PSP Ap-
proach for Mining Sequential Patterns. InProceedings of
the 2nd European Symposium on Principles of Data Min-
ing and Knowledge Discovery (PKDD’98), pages 176–184,
Nantes, France, September 1998.

[12] F. Masseglia, F. Cathala, and P. Poncelet. The PSP Ap-
proach for Mining Sequential Patterns. InProceedings of
the 2nd European Symposium on Principles of Data Min-
ing and Knowledge Discovery, Nantes, France, September
1998.

[13] F. Masseglia, P. Poncelet, and R. Cicchetti. An efficient al-
gorithm for web usage mining.Networking and Information
Systems Journal (NIS), April 2000.

[14] F. Masseglia, D. Tanasa, and B. Trousse. Web usage min-
ing: Sequential pattern extraction with a very low support.
In Advanced Web Technologies and Applications: 6th Asia-
Pacific Web Conference, APWeb 2004, Hangzhou, China.,
14-17 April 2004.

[15] N. Meger and C. Rigotti. Constraint-Based Mining of
Episode Rules and Optimal Window Sizes. InProc. of
the 8th European Conference on Principles and Practice
of Knowledge Discovery in Databases (PKDD), pages 313–
324, Pisa, Italy, September 2004.

[16] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Discovery
and evaluation of aggregate usage profiles for web person-
alization.Data Mining and Knowledge Discovery, 6(1):61–
82, January 2002.

[17] M. Nakagawa and B. Mobasher. Impact of Site Character-
istics on Recommendation Models Based On Association
Rules and Sequential Patterns. InProceedings of the IJ-
CAI’03 Workshop on Intelligent Techniques for Web Person-
alization, Acapulco, Mexico, August 2003.

[18] C. Neuss and J. Vromas.Applications CGI en Perl pour les
Webmasters. Thomson Publishing, 1996.

[19] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M. Hsu. PrefixSpan: Mining Sequential Pat-
terns Efficiently by Prefix-Projected Pattern Growth. In17th
International Conference on Data Engineering (ICDE),
2001.

[20] M. Spiliopoulou, L. C. Faulstich, and K. Winkler. A data
miner analyzing the navigational behaviour of web users.
In Proceedings of the Workshop on Machine Learning in
User Modelling of the ACAI’99 Int. Conf., Creta, Greece,
July 1999.

[21] R. Srikant and R. Agrawal. Mining Sequential Patterns:
Generalizations and Performance Improvements. InPro-
ceedings of the 5th Int. Conf. on Extending Database Tech-
nology (EDBT’96), pages 3–17, Avignon, France, Septem-
ber 1996.

[22] Webalizer. http://www.mrunix.net/webalizer/.
[23] J. Zhu, J. Hong, and J. G. Hughes. Using Markov Chains

for Link Prediction in Adaptive Web Sites. InProceedings
of Soft-Ware 2002: First Int. Conf. on Computing in an Im-
perfect World, pages 60–73, Belfast, UK, April 2002.

